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Nonlocality of Kohn-Sham Exchange-Correlation Fields in Dielectrics
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The theory of the macroscopic field appearing in the Kohn-Sham exchange-correlation potent
dielectric materials, as introduced by Gonze, Ghosez, and Godby [Phys. Rev. Lett.78, 294 (1997)],
is reexamined. It is shown that this Kohn-Sham field cannot be determined from a knowledg
the local state of the material (local crystal potential, electric field, and polarization) alone. Ins
it has an intrinsically nonlocal dependence on the global electrostatic configuration. For examp
vanishes in simple transverse configurations of a polarized dielectric, but not in longitudinal o
[S0031-9007(97)04433-5]
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Ever since it became clear that electric polarization
indeed a well-defined bulk quantity in an insulating crys
tal [1–4], the status of this electric polarization in th
Kohn-Sham (KS) density-functional theory (DFT) [5,6
has become a topic of considerable interest [2,7–1
(Throughout this Letter, I refer to theexact version of
KS-DFT in which the true KS exchange-correlation (XC
functional is presumed known.) In Ref. [2] it was argue
that the polarization of a crystalline insulator should b
given exactly by KS-DFT, on the basis that charge den
ties are given exactly, and that any errors in polarizatio
would show up as errors in charge densities at surfaces
interfaces. Gonze, Ghosez, and Godby (GGG) [7,8] th
pointed out that in order for the KS-DFT polarization to
be correct, the KS XC potential would need to have a lin
ear spatial variation (i.e., an “XC electric field”§xc would
have to be present). They formulated a new version
KS-DFT appropriate for crystalline insulators, in which th
densitynsrd and the electronic polarizationP are shown
to be uniquely related to the periodic part of the potentieV srd and the electric field§. This extended Hohenberg-
Kohn (HK) [5] principle then allows the XC energy to be
expressed as a functional ofnsrd andP, instead of justnsrd
alone. Recently, Martin and Ortiz [12] have reformulate
and extended this analysis. While agreeing with many
the conclusions of GGG, they nevertheless appear to
press some doubts about the GGG interpretation of the X
field, preferring instead to focus on the HK and KS descri
tions for thechangein polarization connected to achange
in field.

In this Letter, I present an analysis that clarifies th
role of the XC field in the exact KS theory. I start by
deducing the behavior of the XC potential for severa
simple configurations of a finite sample of spontaneous
polarized dielectric material in vacuum. These exampl
illustrate misleading aspects of certain arguments given
the previous Refs. [2,8,12]. Briefly, it is now understoo
[7,8,12] that the local periodic charge density in som
small region of the sample can be generated by any o
continuous family of KS potentials labeled by the choic
0031-9007y97y79(20)y3966(4)$10.00
is
-

e
]
2].

)
d
e
si-
n
or

en

-

of
e

al

d
of
ex-

C
p-

e

l
ly
es
by
d
e
f a
e

of effective field§eff ­ § 1 §xc or, equivalently, by the
choice of electric polarizationPeff, in the same small
region of the corresponding fictitious KS system. Bas
on Refs. [2,8], one might assume that the correct cho
would be the one that makes the polarization corre
Peff ­ P; while in a naive approach one would make th
choice§eff ­ §, at least for the case§ ­ 0. Here, I show
that neither of the above choices is generally correc.
Instead, the correct choice is inherently nonlocal, a
depends upon the electrostatic configuration of the en
system. For example, for configurations in whichPsrd
is essentially longitudinal, the correct choice isPeff ­ P;
but if essentially transverse, then§xc ­ 0; and for more
complicated geometries, neither simple choice is corre
This ultra-non-locality of the XC potential appears to b
an inherent complicating feature of the exact KS-DF
theory.

I begin by establishing some notation and reviewin
some basic results of Refs. [7,8,12]. Consider a perio
insulating crystal with fixed lattice vectors specifying th
unit cell, and an external electron potential consistin
of a periodic and a linear part,V srd ­ eV srd 2 e§ ? r.
A tilde, as on eV , will be used to indicate a quantity
having the periodicity of the unit cell, and§ is a uniform
electric field. As long as§ is not too large, one can
with very good precision identify a physical (although
strictly, metastable) state of the system, having perio
density, that is connected to the§ ­ 0 ground state by
slow adiabatic switching of§ [12–14]. Lettingen be this
periodic density, we can then search for thenoninteracting
KS system for which the effective potential has thesame
linear part (same field§) but periodic parteV KS

eff . These
relations are those of the conventional KS theory appli
naively to the periodic system, and can be summarized

heV , §j $
I

hen, §j $
NI

heV KS
eff , §j (1)

(here “I” and “NI” indicate “interacting” and “noninter-
acting,” respectively). Alternatively, one can identify th
electronic polarizationP of the true interacting system
and search for the noninteracting system that correc
© 1997 The American Physical Society
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reproduces bothen andP; that is,

heV , §j $
I

hen, Pj $
NI

heV GGG
eff , §effj . (2)

This is the approach of GGG [7,8]. Unless dictated b
symmetry, as for a centrosymmetric crystal in zero fie
there is no reason to expect§eff ­ §, any more than
we expect some particular Fourier component ofeVeff to
match that ofeV . Thus, the “exchange-correlation field
defined as§xc ­ §eff 2 § is generally nonzero. (It is
understood that§xc is not a true electric field, since it acts
only on the electrons.) In either case, Eq. (1) or (2),
has to be supposed that the noninteracting system is
an insulator [15], and that the field§ or §eff acting on this
noninteracting insulator is again small enough so tha
metastable state is well defined [14].

Either procedure, Eq. (1) or (2), is perfectly sensib
in the absence of knowledge of the global electrosta
configuration, but we now have to investigate wheth
and how it might apply to the case of a more realist
nonuniform configuration of a dielectric material. Th
focus here will be on finite samples embedded in vacuu
(in the absence of external fields). Consider, for examp
the three geometries sketched in Fig. 1; we consider fi
the electrostatic configuration of the physical (interactin
system for each case. Figure 1(a) shows a cubic sam
of a spontaneously polarized material. For definitene
let us take this material to be BaTiO3 in the cubic
perovskite structure with the atomic coordinates froz
as follows: the unit cell is ideal cubic, the Ba nuclei li
at the cube corners, the O nuclei lie on the cube fa
centers, and the Ti nuclei are displaced by a const
distancedTi ­ 0.05 Å along x̂ from the cube centers.
This material retains a gap of several eV and has
spontaneous (zero-field) polarizationP

s0d
tot ­ Pion 1 Ps0d

with both componentsPion (nuclear plus core) andPs0d

(valence electronic) lying along1x̂ [16]. The geometry
of Fig. 1(a) is such that the surface discontinuities
Ptotsrd give rise to macroscopic surface charges on t
left and right faces [17], generating an electric field th

FIG. 1. Sample geometries of a spontaneously polariz
material. Details are given in text. (a) Cubic sample wi
spontaneous polarization along1x̂, partially reduced by de-
polarization fields arising from surface charges. (b) Sl
geometry in which surface chargesPtot ? n̂ are precisely can-
celed by appropriately chosen external planar charges6s0. (c)
Geometry composed of four domains in such a way th
= ? P ­ 0.
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partially depolarizes the sample. Thus, the electron
polarization at pointA in Fig. 1(a) will be somewhat
reduced fromPs0d. In the configuration of Fig. 1(b), this
is avoided by placing infinitely thin sheets of additiona
external charge6s0 ­ 6Ps0d

tot on the left and right faces,
respectively, precisely canceling the depolarization fie
[18]. Thus, the macroscopic electric field vanishes
point B, and the electronic polarization at this poin
is just P ­ Ps0dx̂. Finally, Fig. 1(c) shows a different
configuration in which the internal fields also vanish. Th
time the sample is comprised of four domains in whic
the displacements of the Ti nuclei are alongêsrd with
ê ­ 1x̂, 2ŷ, 2x̂, and 1ŷ in the top, right, bottom,
and left domains, respectively. Clearly the solution
§srd ­ 0, as can be checked as follows. If§srd ­ 0 then
Psrd ­ Ps0d êsrd, and thusPtot ­ Pion 1 P is perfectly
uniform, within each domain. Then clearly= ? Ptot ­ 0
inside each domain,Ptot ? n̂ vanishes on all surfaces, and
DPtot ? n̂ vanishes on all domain boundaries (which li
at 45± angles). There being no macroscopic charges,
consistency of§ ­ 0 is proven.Thus, the local conditions
at point B of Fig. 1(b) and point C of Fig. 1(c) are
identical: § ­ 0 andP ­ Ps0dx̂.

Of course it must be assumed that the samples
Fig. 1 are sufficiently large that macroscopic fields ca
be defined. So, when we speak of “pointA,” we really
refer to a region, large compared to atomic dimensio
but small compared to sample dimensions, in which
periodic eV and field§ can be identified. But note, also
that for a macroscopic sample having the configuration
Fig. 1(a), the electrostatic potential difference between t
left and right faces may greatly exceed the band gap,
that in principle the ground state would become metall
However, in the context of dielectric theory one is aga
much more interested in the metastable [14] insulati
state obtained by starting from a configuration witho
macroscopic electric fields, such as that of Fig. 1(b), a
then adiabatically restoring the fields. Throughout th
Letter it will always be assumed that both the physical a
the fictitious KS systems are in such metastable states [1

Let us now deduce what must be the behavior ofVxcsrd
for each of the configurations of Fig. 1. The dot labele
“A” in Fig. 2 represents the values of the physical electr
field § and polarizationP of the interacting system of
Fig. 1(a) at pointA. These determine the densityen at
point A, which must be reproduced by the fictitious KS
system at pointA. The dashed curve indicates the locu
of valuess§eff, Peffd of the KS system that are consisten
with each other and with this givenen. The choice of
Eq. (1) corresponds to pointA0 (insisting that§eff ­ §),
while that of Eq. (2) corresponds to pointA00 (insisting
that Peff ­ P). Any point on the dashed curve generate
the correct periodic density atA, and so is a candidate for
the state of the KS system atA.

Now comes the crucial point of the argument. In ord
to decide which point on this curve should be selected
3967
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FIG. 2. A, B, and C indicate the local states of the physica
(interacting) system at corresponding points of Fig. 1; solid lin
is the dielectric relation for the physical material.A0 and C0

indicate states of the Kohn-Sham system having the corr
density and field, Eq. (1);A00 andB00 indicate KS states having
the correct density and polarization, Eq. (2). Dashed and dot
curves indicate the KS dielectric relations defined under t
constraint that the periodic density match that of the physic
system atA, or B andC, respectively.

is necessary to inspect the configuration of the systemas a
whole. This is illustrated by the geometries of Figs. 1(b
and 1(c), for each of which the correct choice is easi
deduced. As remarked above, in both cases the phys
system is locally the same (point labeled “B,C” in Fig. 2).
For the geometry of Fig. 1(b), the translational symmet
[18] along ŷ and ẑ ensures that bothP andPeff lie along
x̂. But in either the physical (interacting) or the KS
systems, the value ofP is necessarily related [2] to the
presence of a macroscopic electronic surface chargeP ?

n̂; and since this electronic charge must be given correc
in the KS theory, it is safe to conclude thatPeff ­ P.
Thus, for every point in the interior of Fig. 1(b), the
state of the KS system is given byB00 in Fig. 2. On
the other hand, in Fig. 1(c) both the physical and K
electric fields must vanish everywhere. Heuristically, th
is suggested by the invariance ofVeffsrd under fourfold
rotation. More precisely, we can check that a consiste
solution is obtained when, for every point in the interio
of Fig. 1(c), the state of the KS system is given byC0 in
Fig. 2. In this case the polarizationis given incorrectly by
the KS theoryat every interior point. Nevertheless, sinc
= ? Peff ­ 0 everywhere, such an error is still consisten
with the KS system having exactly the correctnsrd.

The example of Figs. 1(b) and 1(c) demonstrates tha
knowledge of the local state of the physical interactin
system (i.e., a knowledge of the material, and of§ or
equivalently ofP) is inherently insufficientto determine
the corresponding local state of the KS system. Thus
field §xc exists at pointB, but not at pointC, in spite of
the fact that the local states of the physical systems aB
andC are identical.

In general, the correct correspondence to the KS sy
tem must be determined by an analysis of the electrosta
configuration as a whole, and need not reduce to eith
3968
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simple choice (§eff ­ § or Peff ­ P). For example, for
pointA of Fig. 1(a), the correct choice of KS system migh
correspond to any of the points on the dashed curve
Fig. 2. To identify the correct point, an analysis of th
following type would need to be carried through. Assum
ing that the physical§srd andPsrd are known, (i) at each
point in space, obtainen from Eq. (1) or (2), and also ob-
tain the dielectric relationPeff ­ Pñs§effd for a noninter-
acting system constrained to have fixeden as§eff is varied
(e.g., the dashed or dotted curve in Fig. 2). (ii) Taking fir
§xc ­ 0 (i.e., §eff ­ §) everywhere, compute the macro
scopic charge density errordnsrd ­ = ? fPeffsrd 2 Psrdg.
(iii) Find a macroscopic field§xcsrd such that, when acting
on the system of nonlinear dielectric materials specifi
by dielectric responsesPñ, it induces precisely a canceling
charge density2dnsrd.

The above is rarely a simple procedure in practic
but it illustrates the conditions under which a field§xc
is needed. In Figs. 1(a) and 1(b), one findsdn fi 0,
so the XC field must be present; while for Fig. 1(c
dn ­ 0 and so§xc ­ 0. In fact, it is evident that for a
purely longitudinalconfiguration such as Fig. 1(b), Eq.(2
applies and the KS field§eff fails to match§; while for
a purely transverseconfiguration as in Fig. 1(c), Eq. (1)
applies and instead the KS polarizationPeff fails to match
P. It is easy to see that infrared-active longitudinal an
transverse phonons in a polar insulator behave in a w
analogous to Figs. 1(b) and 1(c), respectively.

A few comments may be in order. (i) According to
the theory of Refs. [1–4], the polarizationP is actually
only a well-defined moduloeRyV, whereR is a lattice
vector andV is the cell volume. For the purposes o
the arguments given here, we assume that the polariza
differences [e.g., between domains in Fig. 1(c)] are suf
ciently small that there is no difficulty in choosing the cor
rect branch ofP. (ii) When constructing the KS potential
for the configurations of Fig. 1, attention would also hav
to be given to the microscopic details of the choice
Vxcsrd at surfaces and interfaces. For example, at a s
face, a naive choice ofVxcsrd (e.g., exactly periodic plus
linear up to some surface plane) will give rise to erro
dnsrd with respect to the exact interacting surface syste
However, the macroscopic average ofdnsrd must van-
ish exactly if the underlying bulk polarization is correc
[2]; thus, onlylocal modifications toVxcsrd at the surface
will be needed to induce the needed correction2dnsrd.
Indeed, the modifications toVxcsrd must remain local to
the surface, since otherwise errors would be introduc
in the charge density elsewhere. Thus, conclusions ab
§xc in the interior of the sample will not be affected. (iii)
In all of the arguments given here, the lattice coordinat
have remained clamped. A realistic theory of dielectr
materials would of course have to take into account t
lattice relaxation effects.

In summary, it has been shown that the exact KS pote
tial has an ultra-non-local dependence upon the electro
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charge density, and this dependence does not take s
a form that it can be automatically simplified by refer
ence to the local electronic polarization. In some respec
the present conclusions are disappointing. One potentia
appealing motivation for introducing [7,8] the expande
HK correspondenceheV , §j ! hen, Pj, expressed explicitly
in Ref. [12], is a hope that the generalized XC functiona
of density and polarization might be more localized tha
the conventional functional of density alone. The prese
conclusions unfortunately do not support this view. I
fact, they reinforce previous indications that the true K
functionalVxcfng is, in general, an extraordinarily nonlo-
cal and irregular functional of the density. As for the pe
culiar properties ofVxcfng demonstrated here, there seem
to be little hope of capturing these in practical approx
mations, even semilocal ones such as the weighted-
average-density approximations [20]. And indeed, it
not obvious that it would be desirable to do so. Of cours
the approximate local and generalized-gradient functio
als currently in use do not have these peculiarities.

This work was supported by NSF Grant No. DMR
96-13648. I thank R. M. Martin for a conversation tha
stimulated the present Letter.
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