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Inducing topological flat bands in bilayer graphene with electric and magnetic superlattices
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It was recently argued that Bernal stacked bilayer graphene (BLG) exposed to a two-dimensional superlattice
(SL) potential exhibits a variety of intriguing behaviors [Ghorashi et al., Phys. Rev. Lett. 130, 196201 (2023)].
Chief among them is the appearance of flat Chern bands that are favorable to the appearance of fractional Chern
insulator states. Here, we explore the application of spatially periodic out-of-plane orbital magnetic fields to the
model of Ghorashi et al. to find additional means of inducing flat Chern bands. We focus on fields that vary on
length scales much larger than the atomic spacing in BLG, generating what we refer to as magnetic SLs. The
magnetic SLs we investigate either introduce no net magnetic flux to the SL unit cell or a single quantum of flux.
We find that magnetic SLs acting on their own can induce topological flat bands, but richer behavior, such as
the appearance of flat and generic bands with high Chern numbers, can be observed when the magnetic SLs act
in conjunction with commensurate electric SLs. Finally, we propose a method of generating unit-flux-quantum
magnetic SLs along with concomitant electric SLs. The magnetic SL is generated by periodic arrays of flux
vortices originating from type II superconductors, while the electric SL arises due to a magnetic SL-induced
charge density on the surface of a magnetoelectric material. Tuning the vortex lattice and the magnetoelectric
coupling permits control of both SLs, and we study their effects on the band structure of BLG.
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I. INTRODUCTION

The past few years have witnessed much excitement sur-
rounding the field of twisted moiré materials. Beginning with
the discovery of Mott insulating [1] and superconducting
[2,3] behavior in twisted bilayer graphene (TBG), twisted
heterostructures—including those not based on graphene
alone—have since revealed themselves as highly tunable
platforms capable of generating a rich variety of interaction-
driven phenomena [1–41]. Underlying the appearance of
correlated electron physics in these systems are flat bands
induced by the emergence of spatially modulated interlayer
couplings acting on the moiré length scale to quench the
kinetic energy [42].

Impeding further progress in the field, however, is the high
sensitivity of twisted moiré materials to disorder stemming
from twist angle inhomogeneities, lattice relaxation, domain
formation, and substrate effects. Collectively, these factors
hinder sample reproducibility [43], thus making alternative
methods of reproducing moiré flat-band physics highly sought
after.

Recently, the authors of Refs. [44–46] demonstrated that
gated Bernal stacked bilayer graphene (BLG) exposed to a
spatially modulated superlattice (SL) potential provides such
an alternative platform, whereby the potential emulates the
effect of the moiré interlayer coupling. In particular, Ref. [44]
indicated that under experimentally feasible conditions, two
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distinct flat band regimes may occur. The first “stack of flat
bands” scenario features many topologically trivial almost
perfectly flat bands spanning a range of energies relevant
to the low-energy Hamiltonian describing the system. The
second regime features topologically nontrivial flat bands with
nonzero Chern numbers C, including those with |C| > 1.

The latter regime is especially interesting as it provides
the opportunity to explore the interplay between topology
and electronic correlations. In twisted heterostructures, this
interplay can lead to the appearance of correlation-induced
effects and states such as orbital Chern ferromagnetism and
the quantum anomalous Hall effect [9–14], as well as the
fractional quantum anomalous Hall effect at fractional fill-
ings [15–20,40,41,47]. Bands with |C| > 1 have also been
proposed to lead to fractional Chern insulating states with-
out Landau level analogues and to other exotic phenomena
[48–60]. Furthermore, it has been argued that topology and
interactions may be vital to the emergence of superconductiv-
ity in these materials [61–63]. In the case of the SL-exposed
BLG (SL-BLG) model of Ref. [44], some of the topologically
nontrivial flat bands were shown to potentially host fractional
Chern insulating states at fractional fillings. Correlated insu-
lating phases have also been recently claimed to have been
observed in this setup [64].

Motivated by the possibility of correlated phases in SL-
BLG stemming from topological flat bands, the present paper
investigates extensions of the model of Ref. [44] to find ad-
ditional means of inducing flat Chern bands. We focus on the
effects of externally applied out-of-plane magnetic fields, due
to their tendency to flatten bands and induce band topology.
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FIG. 1. (a) Schematic depiction of the experimental setup mod-
eled by the SL-BLG Hamiltonian of Ghorashi et al. [44]. The system
is tuned by a displacement field V0 and the ESL potential VESL.
(b) Scattering vectors of the triangular ESL of Eq. (5), as well as
the corresponding mBZ and its high-symmetry points.

As the model of SL-BLG in Ref. [44] is meant to emulate
TBG, we are also motivated to incorporate magnetic fields
due to their observed ability to induce interesting correlated
behavior in TBG [65–70]. In particular, we study spatially
periodic magnetic fields whose variation is on length scales
much larger than the intralayer atomic spacing in BLG, gener-
ating what we refer to as magnetic SLs (MSLs). Furthermore,
we consider two types of MSLs: those that introduce no net
magnetic flux to the SL unit cell, and those that introduce a
quantum of flux. Due to the size of the SL unit cell, a flux
quantum may be realized with magnetic fields on the order
of a few Tesla. We find that MSLs on their own can induce
topological flat bands, but richer behavior, which can include
the appearance of multiple flat and generic (nonflat) bands
with high Chern numbers, can be observed when the MSLs
act in conjunction with commensurate electric SLs (ESLs).

This paper is organized as follows. In Sec. II, we review
the model of SL-BLG introduced in Ref. [44]. In Sec. III we
discuss the computational methods we employ to calculate the
band structure of SL-BLG exposed to periodic magnetic fields
that either do or do not introduce flux to the SL unit cell. Using
the methods outlined in the section prior, Sec. IV explores the
qualitative impacts of MSLs on SL-BLG using a model of a
triangular MSL. In Sec. V, we propose a method of generating
MSLs featuring a flux quantum along with concomitant ESLs.
The MSL is generated by a periodic array of flux vortices
originating from a type II superconductor, while the ESL
appears due to an MSL-induced charge density on the surface
of a magnetoelectric material. Tuning the vortex lattice and
the magnetoelectric coupling permits control of both SLs, and
we study their effects on the band structure of BLG. Finally,
we summarize the findings of this paper in Sec. VI.

II. BILAYER GRAPHENE EXPOSED TO
AN ELECTRIC SUPERLATTICE

In this section we briefly review the model of SL-BLG
introduced by Ghorashi et al. in Ref. [44]. The suggested
experimental setup is depicted schematically in Fig. 1(a), in
which the BLG sample is subject to top and bottom gates of
equal and opposite voltage, as well as to a spatially varying
ESL gate. The latter may be realized in practice by a patterned

dielectric [71], and has been employed in studies of mono-
layer graphene [71–73]. The BLG exposed to these gates was
then modeled by a continuum Hamiltonian,

H = HBLG + HV0 + HESL. (1)

Because the spin-orbit coupling is extremely weak in BLG,
this Hamiltonian may be considered spin degenerate, and we
will thus ignore spin labels. The first term on the right-hand
side of Eq. (1) describes the low-energy Hamiltonian of in-
trinsic BLG near the K and K ′ valleys of the BLG Brillouin
zone (BZ) and is given by the four-band Hamiltonian

HBLG = h̄vτ 0(−iμ∂xσ
x − i∂yσ

y) + t

2
(τ xσ x − τ yσ y). (2)

Here τ and σ denote Pauli matrices describing the layer and
sublattice spaces, respectively, and μ = ±1 indicates the K or
K ′ valley.

We take the Fermi velocity to be v = 106 m/s and adopt
t = 400 meV as the interlayer hopping between the vertically
aligned A and B sublattice sites of the two layers. We shall be
interested in energies on the order of tens of meV, i.e., E � t .
In this limit there are two remote high-energy bands near E =
±t , as well as a pair of bands in the low-energy sector that
touch quadratically with dispersions E (k) = ±γ |k|2 (in the
limit of large t), where γ = h̄2v2/t and k is defined relative to
the K or K ′ point [74–77].

The displacement field term is given by

HV0 = V0τ
zσ 0, (3)

and applies equal and opposite potential energies on the top
and bottom layers. This term opens a gap of size 2|V0| between
the low-energy bands, which now disperse as

E (k) = ±
√

V 2
0 + γ 2|k|4, (4)

and as a result are also slightly flattened near k = 0 [74,75,77–
80]. In the presence of a nonzero V0, BLG becomes a valley
Chern insulator exhibiting opposite signs of Berry curvature
in opposite valleys [76,77,81,82].

The potential term HESL that is primarily featured in the
model of SL-BLG is triangular and symmetric under two-
dimensional (2D) inversion (i.e., C2z) and takes the form

HESL = VESL

2
[(τ 0 + τ z ) + α(τ 0 − τ z )]σ 0

6∑
n=1

exp(iGn · r),

(5)
where r = (x, y) denotes in-plane position and the Gn are
the scattering wave vectors of the ESL potential. Specif-
ically, Gn = Q(cos φn, sin φn) where Q = 4π/

√
3L, φn =

π (n − 1)/3, and L is the SL lattice constant. The Gn vec-
tors introduce a “mini Brillouin zone” (mBZ) as shown in
Fig. 1(b), with its center 	m coinciding with the K or K ′ point
of the original BLG BZ. The parameter α is the ratio of SL
potentials felt by the top and bottom graphene layers, and
takes into account that the top graphene layer is located further
away from the SL gate than the bottom layer and experiences
a different screening environment. In the rest of this paper,
we treat α as a phenomenological parameter and set it to 0.3
[44,83], but we note that it may be computed self-consistently
[46].
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The ESL potential opens gaps at the mBZ boundaries, and
in doing so may generate isolated valley Chern bands. Varying
V0, VESL, and L then permits control of the band widths as well
as their Chern numbers. It is important to note however, that
while increasing L will lead to greater band flattening, SLs
with large L are also more susceptible to disorder [71]. Addi-
tionally, greater L values tend to diminish interband spacings,
increasing the sensitivity of band topology to small parameter
changes. These considerations must be taken into account
when constructing the SL to generate isolated topological
bands.

III. BILAYER GRAPHENE EXPOSED
TO MAGNETIC SUPERLATTICES

We now turn to a discussion of the calculation of the
continuum electronic band structure of SL-BLG exposed to
out-of-plane magnetic fields B(r) that vary on length scales
much larger than the atomic spacings in BLG. The fields we
consider either introduce no net flux to the SL unit cell, or else
a single quantum of flux. For both cases, the minimal coupling
prescription introduces the magnetic field B(r) to the SL-
BLG Hamiltonian via the vector potential A(r), where B(r) =
∇ × A(r). The vector potential in turn produces an effective
periodic scattering potential in both cases. In the presence of a
flux quantum, however, it additionally introduces Landau lev-
els (LLs) to the problem. As the magnetic fields we consider
are strictly out-of-plane, we will treat them as scalar fields
B(r). The electromagnetic gauge can then be chosen so that
the vector potential is in-plane: A(r) = [Ax(r), Ay(r)].

The electron spin g factor in BLG is close to 2 [75,84–87]
and the magnetic fields we consider are only a few Tesla in
strength. (In the case of unit magnetic flux per supercell, we
consider superlattice sizes with area about 10 times that of
magic-angle TBG, where the corresponding field would be a
few tens of Tesla.) As a result, the spin splitting is negligible
and we will continue to neglect the spin degree of freedom in
the remainder of the paper.

A. Zero net flux magnetic superlattices

When the magnetic field is spatially periodic and intro-
duces no net flux in the periodic domain (unit cell), it can be
expressed as a Fourier series without a zeroth harmonic,

B(r) =
∑
G �=0

B(G) exp(iG · r), (6)

where B(G) denotes a Fourier coefficient. It is then possible to
select an electromagnetic gauge in which the vector potential
A(r) shares the same periodicity as B(r):

A(r) =
∑
G �=0

A(G) exp(iG · r). (7)

Note that since we are working with in-plane vector potentials,
the Fourier coefficients A(G) are in-plane as well. As the
magnetic field is given by the curl of the vector potential, it
is then easy to see that

A(G) = B(G) ẑ × G
i|G|2 . (8)

The magnetic field is incorporated into the Hamiltonian of
Eq. (1) via minimal coupling. In particular, the kinetic energy
in Eq. (2) is modified to become

h̄vτ 0

[
k − e

h̄
A(r)

]
· σ. (9)

In the above line, e < 0 is the electron charge, k = (kx, ky) =
(−i∂x,−i∂y), σ = (σ x, σ y), and we focus on the K valley
(μ = 1). Taking advantage of the fact that the kinetic energy
is linear in momentum, we may split Eq. (9) into two parts,

h̄vτ 0k · σ − evτ 0A(r) · σ, (10)

resulting in the full SL-BLG Hamiltonian of Eq. (1) acquiring
an additional term

HMSL = −evτ 0A(r) · σ. (11)

In the case of zero net magnetic flux, we may therefore
view the periodic magnetic field as generating an effective
scattering potential via A(r) that is superimposed on the one
produced by the ESL. Unlike the potential of Eq. (5), however,
we note that it now acts to mix the two sublattices.

If we further assume that HMSL is commensurate with
HESL, then the magnetic Hamiltonian remains periodic, just as
in the original nonmagnetic case, and the energy eigenstates
take the form of Bloch waves, ψk(r) = eik·ruk(r), where uk(r)
is the cell-periodic Bloch function. Due to the cell-periodicity
of uk(r), all Bloch waves are expressible as superpositions of
plane waves, and so we diagonalize the Hamiltonian using the
latter. Numerically, convergence of the resulting band struc-
ture is ensured by selecting a sufficiently high momentum
cutoff for the plane waves.

The Chern number C of an isolated band n is computed
from the k-space Berry curvature

�n(k) = −2 Im〈∂xunk|∂yunk〉, (12)

where ∂i = ∂/∂ki. An integration of �n(k) over the mBZ then
yields the Chern number as

C = 1

2π

∫
mBZ

�n(k) d2k. (13)

Numerically, we compute C by tiling the mBZ with plaquettes
of sufficiently small size and summing the discretized Berry
phases around the boundary of each plaquette [88].

B. Magnetic superlattices with a quantum of flux

When a net magnetic flux permeates the SL unit cell,
Eq. (6) is modified by the addition of a zeroth harmonic term,
so that

B(r) = B� +
∑
G �=0

B(G) exp(iG · r), (14)

where B� is a constant. By superposition, the vector potential
corresponding to this magnetic field can then be expressed as

A(r) = A�(r) +
∑
G �=0

A(G) exp(iG · r). (15)

A�(r) is taken to be a linear function of position, as in the
Landau or symmetric gauge, to generate a uniform B�. The
second term, which we will denote as A0(r), is the same as
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that of Eq. (7), with the Fourier coefficients A(G) given by
the formula of Eq. (8).

Under the minimal coupling scheme, the kinetic energy in
Eq. (2) reads

h̄vτ 0

[
k − e

h̄
A�(r)

]
· σ + HMSL, (16)

where HMSL = −evτ 0A0(r) · σ. We thus see that the periodic
piece A0(r) of the full vector potential again generates an
effective scattering potential, and we will restrict our con-
siderations to MSLs that are commensurate with the ESL.
The resulting minimally coupled Hamiltonian therefore de-
scribes the low-energy electrons of BLG as being subject to
an effective scattering potential HSL = HESL + HMSL, a dis-
placement field, and a constant out-of-plane magnetic field
B�. The presence of the latter, however, ultimately results in
the Hamiltonian losing its periodicity.

Nonetheless, under certain conditions it is still possible to
generate a band structure for this Hamiltonian; we shall now
briefly outline the reasons. For more thorough expositions
on the subject of band structures in the presence of orbital
magnetic fields, we refer the reader to Refs. [89–104].

Under the action of a translation operator TR = eip·R/h̄,
where R is any nonzero lattice vector, the magnetic Hamil-
tonian (which now incorporates B� and all scattering terms)
is generally not left invariant, since A�(r) �= A�(r + R) in
general. As A�(r) is a linear function of position, however,
A�(r + R) must generate the same magnetic field B�, and so
must be related to A�(r) via a gauge transformation,

A�(r + R) = A�(r) + ∇φR(r), (17)

with ∇φR(r) = A�(r + R) − A�(r). ∇φR(r) must therefore
be independent of r, resulting in φR(r) being linear in r. By
the same token, ∇φR(r) is linear in R. The specific form of
φR(r) is determined by the choice of gauge for A�(r).

The magnetic Hamiltonian is then found to be invariant
under the action of the magnetic translation operator

T̃R = eiφR (r)TR. (18)

Letting T̃1 and T̃2 denote the magnetic translation operators
corresponding to translations by the unit cell vectors a1 and
a2, respectively, it can be shown that generally these operators
do not commute, with

T̃1T̃2 = e2π i�/�0 T̃2T̃1, (19)

where � = B�|a1 × a2| is the flux through the nonmagnetic
unit cell and �0 = h/|e| is the flux quantum. When an integer
number of flux quanta pierce the unit cell, the magnetic trans-
lation operators do commute, and it is possible to generate
a band structure. If instead �/�0 = p/q where p and q are
coprime, then the unit cell must be enlarged q times along
one of the lattice vectors to generate a new magnetic cell
with p flux quanta. Each band of the A�(r) = 0 Hamiltonian
is then split into q subbands upon inclusion of B�. Finally,
when �/�0 is an irrational number, no band structure may
be obtained and other methods must be used to solve the
Hamiltonian [94].

Although it is tempting to diagonalize the Hamiltonian in
the basis of plane waves, as was done in the case of zero

magnetic flux, this can no longer be done when an integer
number of flux quanta penetrate the magnetic unit cell. The
eigenstates of the magnetic translation operators obey

T̃Rψk(r) = eik·Rψk(r), (20)

and can always be written in a Bloch-like form as

ψk(r) = eik·ruk(r). (21)

However, in light of ψk(r) being an eigenstate of T̃R, rather
than TR, uk(r) must obey twisted boundary conditions:

uk(r + R) = e−iφR (r)uk(r). (22)

Due to this fact, the magnetic translation eigenstates cannot
be expanded using a plane wave basis.

In the absence of any periodic scattering potential and
when A�(r) solely generates the magnetic field, the energy
eigenstates belong to degenerate LLs. A band structure repre-
sentation of the energy levels may be obtained by selecting a
unit cell with � = �0 and realizing that specific linear com-
binations of energy eigenstates within a single LL produce
energy eigenstates in Bloch form. When a periodic potential
is reintroduced to the problem, resulting in a magnetic cell
with p flux quanta, each original LL is split into p magnetic
subbands. Although states from a single LL no longer form
Bloch energy eigenstates, they can be used to construct a basis
of magnetic translation eigenstates |k, n〉, where k denotes
the wave vector and n indexes the LLs, in which the mag-
netic Hamiltonian can be diagonalized [89,92,93]. Numerical
convergence of the resulting band structure is ensured by a
sufficiently high LL cutoff.

The effective kinetic energy in Eq. (16) (first term) can be
rewritten in terms of π = p − eA�(r), where the components
of π obey [πx, πy] = ih̄eB�. The introduction of the ladder
operators

a = πx + iπy√
2h̄eB�

, a† = πx − iπy√
2h̄eB�

, [a, a†] = 1, (23)

then allows for straightforward, gauge-independent evaluation
of the matrix elements of the kinetic energy in the |k, n〉 basis;
the matrix elements solely depend on the LL n, and not k. The
same cannot be said of the matrix elements of the scattering
potential, which further depend on the choice of gauge for the
magnetic vector potential.

Reference [100] (see also Supplementary Notes 11 and 12
of Ref. [104] for further discussion) recently demonstrated
that the issue of the gauge dependence of the scattering po-
tential matrix elements can be avoided. By expressing the
magnetic translation operators via gauge-invariant LL guiding
center momenta, and by generating the magnetic translation
eigenstates |k, n〉 using these operators, the authors derived
expressions for the scattering matrix elements that are gauge
invariant.

Following the results of this work, for a given scattering
potential expressible as a Fourier series with reciprocal lattice
vectors G, we compute a matrix element 〈k, m|eiG·r|k, n〉 as

e−iπ (G1G2+G1+G2 )−2π i(G1k2−G2k1 )HG
mn. (24)

G1 and G2 are the internal coordinates of G, while k1 and
k2 are those of k. HG

mn denotes the purely LL-dependent part
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FIG. 2. Evolution of low-energy bands in BLG induced by a tri-
angular MSL, here with zero net flux (B� = 0) and in the absence of
the triangular ESL (VESL = 0). The high-symmetry points are defined
in Fig. 1(b). (a) Folded bands characterize an empty-lattice starting
configuration (B0 = 0 T, V0 = 5 meV, L = 40 nm). (b) As B0 is tuned
to 2.5 T, topological bands emerge. (c) Further increasing B0 to 5 T
flattens the bands and produces a flat C = 2 band close to the Fermi
energy. (d) Decreasing the magnetic field and gate strength while in-
creasing the SL lattice constant (B0 = 3 T, V0 = 3 meV, L = 50 nm)
introduces more topological bands and further flattens preexisting
bands.

of the scattering amplitude, and is expressed via associated
Laguerre polynomials.

We note that the above scattering amplitude is a slight
modification of the one explicitly presented in Ref. [100],
implementing a suggestion of Herzog-Arbeitman [105]. The
modification follows the observation that the original formal-
ism is found to feature an implicit selection of the BZ origin
	. However, the selected origin may not necessarily be the
k-point of maximal symmetry (i.e., the little group of 	 may
not equal the point group of the system), and the point of
highest symmetry may instead be located elsewhere in the BZ.
The scattering amplitude as written in Eq. (24) circumvents
this issue to ensure that 	 is the point of highest symmetry.
For further details we refer the reader to the Appendix.

The Chern numbers of isolated bands can no longer be
computed using the simple plaquette approach outlined pre-
viously. A Bloch energy eigenstate at wave vector k can be
expressed as a linear combination |ψmk〉 = ∑

n ξmk(n) |k, n〉
of the |k, n〉 basis states, which themselves represent topolog-
ically nontrivial LLs. The Berry curvature at k therefore arises
from two contributions: the Berry curvature of the underlying
LLs, and the Berry curvature of the coefficient vectors ξmk
that give the change in character of the Bloch state in k-space
[106,107]. The former contribution is simple, as the Berry
curvature of any LL is uniform, and yields a Chern number
C = −1 [98–100], while the latter contribution can be com-
puted using the plaquette method [106,107]. Thus, the Chern

TABLE I. Details of flat bands appearing in Fig. 2. Energy at 	m,
Chern number, band width, gap below, and gap above, respectively
(energies in meV).

E	m C W Eg− Eg+

Panel (c) 5.00 2 1.02 9.99 1.75
Panel (d) 3.00 2 0.88 6.00 1.14

number of a band is given by the sum of the LL and character
Chern numbers. We employ this method in our calculations.

We note that an alternative approach to computing the
Chern numbers involves obtaining the winding numbers of
the eigenvalues of appropriately constructed Wilson loops, as
shown by Ref. [100]. We confirmed that the Chern numbers
computed in this way match those found using the plaquette-
based method outlined above.

IV. TRIANGULAR MAGNETIC SUPERLATTICE

In this section we apply the methods described in Sec. III
to obtain a qualitative understanding of the effects of MSLs
on the band structure of SL-BLG. To this end, we focus on
the relatively simple case of a triangular MSL generated by

B(r) =
6∑

n=1

B0 cos(Gn · r), (25)

where the reciprocal vectors Gn are the same as those depicted
in Fig. 1(b), and where the field is commensurate with the
ESL potential of Eq. (5). We consider both the zero and single
flux quantum cases, where the latter is obtained by adding the
constant B� = (2�0/

√
3L2) to B(r). For each flux case, we

first study the effect of the magnetic field acting by itself with-
out the ESL, and subsequently study its action in conjunction
with the ESL. We find that MSLs acting alone are capa-
ble of generating topological flat bands with |C| = 1 and 2,
but the inclusion of the ESL can further enrich the topology
of the band structures by generating an increased number
of not only flat, but also generic (nonflat) bands with even
higher Chern numbers. In the band structures to be shown,
topological bands are highlighted in red. However, we do not
highlight those that feature gaps to neighboring bands that
are smaller than 0.5 meV, as the topology of these bands is
particularly sensitive to changes in model parameters.

We will indicate the topological flat bands in tables corre-
sponding to the band structures. The featured data are Chern
numbers C, band widths W , energies at the BZ origin E	m ,
and energy gaps to the bands immediately below and above,
Eg− and Eg+, respectively. A listed gap value is taken to be
the smaller of the indirect or direct gaps; however, in the case
when an indirect gap is less than 0.5 meV, we list the smallest
direct gap and indicate this fact with a “(D)” next to the gap
value. We consider a band to be flat when W < 2 meV, and
will otherwise refer to it as “generic” or “dispersive.”

We note that periodic zero-flux fields, including the one we
will employ, may in practice be generated by the stray fields
of periodic arrays of ferromagnetic nanorods, and have been

205115-5



SELEZNEV, CANO, AND VANDERBILT PHYSICAL REVIEW B 110, 205115 (2024)

FIG. 3. Band structures of BLG plotted in the presence of both the triangular ESL and zero-net-flux triangular MSL. (a) B0 = 0 T,
VESL = 10 meV, V0 = −5 meV, L = 50 nm. (b) B0 = −2 T, VESL = 10 meV, V0 = −5 meV, L = 50 nm. (c) B0 = −5 T, VESL = 10 meV, V0 =
−10 meV, L = 44 nm. (d) B0 = 3 T, VESL = 15 meV, V0 = −5 meV, L = 50 nm. (e) B0 = −5 T, VESL = 10 meV, V0 = 10 meV, L = 45 nm.

utilized and studied in the context of spintronic applications
[108–111].

A. Zero net flux

Throughout this work, we present results for the K valley.
Corresponding results for the K ′ valley can be obtained with
an appropriate modification of the parameters. As a reminder,
we work in the low-energy regime relative to the scale of
interlayer hopping t , so that all of the bands shown emerge
from the two low-energy bands of the continuum model of
Eq. (4).

Figure 2 depicts the evolution of the band structure as B0,
V0, and L are varied, while the ESL is absent. Starting with
the MSL absent as well (B0 = 0 T, V0 = 5 meV, L = 40 nm),
turning the MSL on (increasing B0) lifts the degeneracies at
high-symmetry points and along high-symmetry lines in the
band structure. Isolated Chern bands appear as B0 is first
increased to 2.5 T, and are subsequently flattened as B0 is
further increased to 5 T. A flat Chern band with C = 2 and
a band width W on the order of 1 meV then appears close
to the Fermi energy, as detailed in Table I. The same band
may be further flattened by increasing L to 50 nm, while
simultaneously decreasing B0 and V0 to 3 T and 3 meV. The
increase in lattice constant also introduces more Chern bands
into the energy window, though the bands are not necessarily
flat. We therefore see that the MSL may introduce flat topo-
logical bands, including those with |C| > 1, without the ESL.
Increasing the field strength reduces band widths, as does
increasing the SL size; the latter, however, also increases the
density of states and reduces the gaps between isolated bands,
potentially increasing the sensitivity of the band topology
to changes in model parameters. Barring the emergence of

TABLE II. Details of flat bands appearing in Fig. 3. Energy at
	m, Chern number, band width, gap below, and gap above, respec-
tively (energies in meV).

E	m C W Eg− Eg+

Panel (a) 3.20 −1 0.55 3.26 8.34
Panel (b) 0.94 −2 1.46 2.37 1.62

4.38 1 1.80 1.62 6.57
Panel (c) 4.62 −2 0.96 1.15 4.17

10.28 1 1.48 4.17 5.55
Panel (d) 12.09 2 0.90 1.82 2.00

22.29 −2 0.92 1.52 3.23
Panel (e) 33.51 −3 0.87 2.44 1.33

additional symmetries, accidental degeneracies may also oc-
cur between pairs of bands at generic k-points as the model
parameters are evolved.

We briefly note that although the band structure of Fig. 2(a)
is perfectly symmetric about E = 0, the band structures in
Figs. 2(b)–2(d) are not; this is evident from the Chern numbers
of the bands, and closer inspection also reveals asymmetry in
the band energies upon reflection about E = 0. For a given set
of model parameters, the energy spectrum in the K ′ valley is
obtained by reflecting all of the K valley bands about E = 0,
with the Chern numbers being unchanged by the reflection.
As a result, the full two-valley energy spectrum is symmetric
about the zero energy.

Next we reintroduce HESL to the Hamiltonian. Beginning
with the magnetic field switched off in Fig. 3(a) (see fig-
ure caption for details of the parameters), a C = −1 flat
band is observed near the Fermi energy, as well as a generic
C = −2 band [44]. When the magnetic field is turned on
(B0 = −2 T) in Fig. 3(b), the number of topological bands
belonging to the same energy window increases, with C = −2
and C = 1 flat bands being found particularly close to the
Fermi energy. A band with C = 3 can also be observed at
lower energies. Further strengthening B0 while modifying the
top and bottom gate voltages and lattice constant, shown in
Fig. 3(c), further flattens the C = −2 and C = 1 bands near
the Fermi energy, while also introducing generic bands with
high Chern numbers C = 4 and C = −3. As the magnetic
field is diminished in strength and changed in sign while VESL,
V0, and L are increased in Fig. 3(d), two flat bands with C = 2

FIG. 4. Band structures of BLG plotted in the presence of the
field B� and without any scattering potentials. All bands are perfectly
flat with C = −1, and directly correspond to LLs. (a) Band structure
for V0 = 0. The spectrum is particle-hole symmetric and the bands
at E = 0 are doubly degenerate. (b) Band structure for V0 = −10.
Particle-hole symmetry is broken, and the formerly doubly degener-
ate bands at E = 0 acquire a splitting.
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FIG. 5. Band structures of BLG plotted in the presence of the B� background field and one or both of the magnetic or electric triangular SLs.
The band structures in panels (a, b) do not feature the ESL (VESL = 0), those in panels (c, d) do not feature the MSL (B0 = 0), while panels (e, f)
incorporate both SLs. The specific parameters employed are: (a) B0 = −5 T, VESL = 0 meV, V0 = −5 meV, L = 40 nm. (b) B0 = −3 T, VESL =
0 meV, V0 = −5 meV, L = 50 nm. (c) B0 = 0 T, VESL = 15 meV, V0 = −3 meV, L = 40 nm. (d) B0 = 0 T, VESL = 20 meV, V0 = 10 meV,
L = 50 nm. (e) B0 = −3 T, VESL = 10 meV, V0 = −5 meV, L = 60 nm. (f) B0 = 5 T, VESL = 20 meV, V0 = 10 meV, L = 51 nm.

and −2 are found at higher energies. Finally, in Fig. 3(e),
another parameter set is found that generates a flat band with
C = 3 at higher energies, along with other topological bands.
Details of the flat bands may be found in Table II.

The detailed nature of these results should not obscure our
main point, which is that the addition of the magnetic degree
of freedom associated with the strength B0 of the MSL gives
additional opportunities for tuning the system, raising the like-
lihood of achieving topological flat bands close to the Fermi
energy. We additionally note that the qualitative nature of the
results is independent of the signs of the model parameters.

B. Single flux quantum

We now consider the case that the background magnetic
field B� of Eq. (14) is present, and has been chosen such that
the unit cell contains a single flux quantum.

We first plot the magnetic band structures of low-energy
continuum BLG in the absence of any periodic scattering
potentials; these are just the ordinary LLs of low-energy BLG.
Figure 4(a) depicts the band structure in the empty lattice
approximation for L = 50 nm and V0 = 0 meV. All of the
bands are perfectly flat and feature Chern numbers of −1
[95,98]. The bands at E = 0 are doubly degenerate; as we
are considering the states of BLG originating from the K
valley, these LL states are predominantly formed from orbitals
on the A sublattice of the bottom layer. For states in the K ′
valley, the E = 0 states are instead formed from orbitals at
the B sublattice sites of the top layer [75]. In Fig. 4(b) the
displacement field is turned on with V0 = −10 meV. All of
the bands retain their original Chern numbers and remain flat,

but are shifted in energy, resulting in broken particle-hole
symmetry in the valley. The previously doubly degenerate
bands at E = 0 are also shifted upwards and feature a small
energy splitting [75]. In the opposite K ′ valley, the energy
shifts occur in the opposite direction.

Next we include the effective scattering potentials stem-
ming from the ESL and the inhomogeneous component of the
total magnetic field and depict the resulting band structures
in Fig. 5 (see figure caption for details of the parameters).
Further information on the identified flat bands appears in
Table III. We omit flat bands with |C| = 1 from the tables, as
perfectly flat bands with those Chern numbers can be obtained
without employing MSLs. The first column in Fig. 5 depicts
band structures with VESL = 0, the middle column those with
B0 = 0, while the last column combines both the ESL and

TABLE III. Details of flat bands appearing in Fig. 5. Energy at
	m, Chern number, band width, gap below, and gap above, respec-
tively (energies in meV). Flat bands with |C| = 1 are omitted.

E	m C W Eg− Eg+

Panel (a) −35.59 2 1.60 1.14 (D) 8.62
35.12 2 1.38 8.09 1.22 (D)

Panel (b) 24.22 2 1.31 5.12 0.54 (D)
Panel (c) −1.87 −2 1.28 5.06 1.23
Panel (d) 27.72 2 1.17 6.86 1.96
Panel (e) 13.10 2 0.85 1.36 2.24

16.36 −2 0.37 2.24 3.70
Panel (f) 15.61 −2 1.19 3.18 1.31
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FIG. 6. Schematic depiction of the setup proposed to gener-
ate flux quantum MSLs with concomitant ESLs. The MSLs are
generated by the magnetic fields (blue lines) emanating from the
vortices (blue cylinders) of a mixed state type II superconductor
(SC), with each vortex introducing half of a flux quantum �0/2. Prior
to penetrating the BLG sample, the magnetic fields pass through
a magnetoelectric (ME) material characterized by a ME coupling
tensor α, inducing a polarization in the bulk and a periodic charge
density on the surface. The charge density (red areas) on the surface
closest to the BLG generates the ESL potential.

MSL. Starting with the parameters B0 = −5 T, V0 = −5 meV,
and L = 40 nm, the band structure in Fig. 5(a) exhibits flat
bands with C = 2 near the top and bottom of the energy
window. Other bands with |C| = 2 are present as well. As B0

is weakened to −3 T and the lattice constant is increased to
50 nm [Fig. 5(b)], all band widths are decreased.

Now focusing on the B0 = 0 regime, Fig. 5(c) reveals the
appearance of a single flat topological band with C = −2
appears close to the Fermi energy, while a C = −3 band
is present at lower energies. As the ESL potential and the
displacement field are strengthened while the SL constant
is increased in going to Fig. 5(d), a topological flat band
with C = 2, as well as generic topological bands with Chern
numbers −2 and −3 appear.

When the MSL and ESL are combined in Fig. 5(e), we
observe a flat C = 2 band, as well as a single particularly
flat C = −2 band with a bandwidth on the order of 0.4 meV.
Subsequently in Fig. 5(f), B0, VESL, and V0 are increased while
L is decreased, resulting in an observed C = −2 flat band, as
indicated in Table III.

We again emphasize that the main point of these results is
to demonstrate that the size L of the MSL, in addition to its
strength B0, provide additional degrees of freedom for tuning
the system to obtain topological flat bands close to the Fermi
energy. We also emphasize that as in Sec. IV A, the qualitative
nature of the results is independent of the signs of the model
parameters.

V. FLUX QUANTUM MAGNETIC SUPERLATTICES AND
CONCOMITANT ELECTRIC SUPERLATTICES

We presently propose a method of generating single-flux-
quantum MSLs and concomitant ESLs, for which we envision
an experimental setup as illustrated in Fig. 6. The MSL is
generated by the magnetic fluxes emanating from the vortices
of a type II superconductor in the mixed state. Since we
have adopted the notation �0 = h/|e| for the fundamental
flux quantum, each superconducting vortex contributes a flux

FIG. 7. Magnetic unit cells (top row) and corresponding mBZ
domains (bottom row) for the (a) honeycomb, (b) square, and (c) tri-
angular vortex lattices. Each blue dot represents a superconducting
flux quantum of �0/2. Panels (a, b) employ the Wigner-Seitz re-
ciprocal lattice cell, with high symmetry points are indicated. Panel
(c) shows the primitive reciprocal unit cell and labels points defining
the straight-line paths in the mBZ along which the band structures
will be plotted.

amount of h/2|e| = �0/2. Thus, a band structure may be
generated when the SL unit cell contains an even number
of vortices. For simplicity, we model the in-plane profiles
of the magnetic fields stemming from individual vortices by
isotropic Gaussians. Letting ρ be the width of each Gaussian,
the total magnetic field piercing the BLG is then given by

B(r) = �0

2

∑
R,τ

exp[−|r − R − τ|2/(2ρ2)]

2πρ2
, (26)

where R denotes the origins of unit cells and τ indicates the
basis (locations of vortex centers relative to the origin of a unit
cell). We emphasize that Eq. (26) models the magnetic field
located inside the BLG, and not the superconductor; hence ρ

describes the Gaussian profiles located in the former. In the
limit of large ρ, B(r) approaches the homogeneous value of
�0/A, where A is the cell area, and we recover the ordinary
LL band structure.

In the scenario envisioned in Fig. 6, the concomitant
ESL stems from the periodic surface charge density σ (r)
induced by placing a magnetoelectric material above the
superconductor. The vortex magnetic fields penetrating the
magnetoelectric induce columns of electric polarization, and
the latter in turn produce the surface charge density. The
surface charge density is then equal to the z component of
the polarization,

σsurf(r) = Pz(r) = αzz

μ0
B(r), (27)

where αzz is the relevant component of the magnetoelectric
coupling tensor. The resulting potential is then obtained from
the 2D integral

HESL = [(τ 0 + τ z ) + α(τ 0 − τ z )]σ 0

2

∫
eσsurf(r′)d2r′

4πε0|r − r′| . (28)
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FIG. 8. Band structures of BLG exposed to MSLs and ESLs generated by honeycomb vortex lattices. Starting from a configuration with
αzz = 0 ps/m (a), the topological characters of the bands are identical to those of LLs. As the ME constant is increased through panels
(b) and (c), trivial bands and topological bands with |C| > 1 appear. The width ρ is subsequently increased in panel (d), resulting the bands
reverting back to LL character. Modifying the other parameters (e) can then result in the appearance of more topological flat bands. The
specific parameters employed are: (a) L = 50 nm, ρ = 10 nm, V0 = −5 meV, αzz = 0 ps/m. (b) L = 50 nm, ρ = 10 nm, V0 = −5 meV, αzz =
30 ps/m. (c) L = 50 nm, ρ = 10 nm, V0 = −5 meV, αzz = 80 ps/m. (d) L = 50 nm, ρ = 15 nm, V0 = −5 meV, αzz = 80 ps/m. (e) L = 60 nm,
ρ = 10 nm, V0 = 5 meV, αzz = 80 ps/m.

Employing the convolution theorem and Eq. (27), the ESL
potential can then be expressed as

HESL = [(τ 0 + τ z ) + α(τ 0 − τ z )]σ 0
∑
G �=0

eαzzc2

4|G| B(G)eiG·r,

(29)
where c is the speed of light and

B(G) = �0

2A

[ ∑
τ

e−iG·τ
]

e−|G|2ρ2/2. (30)

The G = 0 term is omitted from HESL since the magnetoelec-
tric material is net neutral, with the bottom and top surface
charges canceling at large distances. The expression in the
brackets corresponds to the structure factor.

In the following, we will consider three types of vortex
lattices: honeycomb, square, and triangular, all of which are
depicted in Fig. 7. Although triangular vortex lattices are
most commonly found in practice, square lattices have been
identified in a number of materials [112–116] and proposals
for honeycomb lattices have been put forth [117–119]. By
studying these three lattices, we aim to identify which struc-
ture is most favorable for the emergence of flat topological
bands. We consider the vortex spacing to be controllable using
temperature or magnetic field strength, and the magnetoelec-
tric constants we will employ belong to the typical range of
0.1 to 100 ps/m. We again emphasize that the detailed nature
of the following results is not meant to obscure the main point
of this being a highly tunable setup that enables the generation
of topological flat bands close to the Fermi energy.

A. Honeycomb vortex lattice

We consider a honeycomb lattice as depicted in Fig. 7(a),
with the internal coordinates of the two vortex centers within
the unit cell being (1/3, 1/3) and (2/3, 2/3). For this arrange-
ment of vortices, the magnetic cell is identical to the geometric
cell.

We track the evolution of the resulting BLG band structure
in Fig. 8, which also contains the details of the specific param-
eters employed. More information on the identified |C| > 1
flat bands may be found in Table IV. We initially consider
a parameter set with αzz = 0 (no ESL) as shown in Fig. 8(a).
The resulting bands are all found to be topological, but feature
the same Chern numbers as the original BLG LLs. Upon

increasing αzz to 30 ps/m [Fig. 8(b)], several band touchings
occur, with band gaps closing and reopening, such that a
number of bands become trivial, with a single particularly
flat topological band with C = −2 emerging near the Fermi
energy, as detailed in Table IV. There is also a single generic
band with C = −2, while all other bands are found to exhibit
C = −1. Upon further increasing the ME coupling to 80 ps/m
[Fig. 8(c)], additional band touchings occur, resulting in more
trivial bands, as well as generic bands with higher Chern num-
bers, including one with C = −3. The flat C = −2 band close
to the Fermi energy remains, but its band width is slightly
increased.

Increasing the width ρ of the vortex fields recovers the LL
character of many of the bands, as evidenced by Fig. 8(d),
although the flat C = −2 close to the Fermi energy remains.
Subsequently reducing ρ while increasing the cell size L and
displacement field V0 [Fig. 8(e)] introduces more topologi-
cal flat bands, including those with higher Chern numbers:
C = −3, −2, and 2. Detailed information on these bands is
contained in Table IV.

B. Square vortex lattice

We now turn to the consideration of square flux lattices of
the type depicted in Fig. 7(b), with the internal coordinates
of the two vortex centers within the unit cell being (0,0) and
(1/2, 1/2). Unlike the honeycomb lattice case, the present
magnetic cell is twice the size of the geometric cell. The
parameter L is now taken to be the lattice constant of the
geometric cell, not that of the magnetic cell as was the case
in the previous sections.

TABLE IV. Details of flat bands appearing in Fig. 8. Energy at
	m, Chern number, band width, gap below, and gap above, respec-
tively (energies in meV). Flat bands with |C| = 1 are omitted.

E	m C W Eg− Eg+

Panel (b) 3.91 −2 0.38 10.32 0.74
Panel (c) 1.90 −2 0.72 4.30 0.87
Panel (d) 4.31 −2 0.31 12.19 0.64
Panel (e) −14.15 −3 1.40 0.65 2.89

−11.18 −2 1.70 2.89 0.83
24.09 2 1.89 1.21 (D) 2.20
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FIG. 9. Band structures of BLG exposed to MSLs and ESLs generated by square vortex lattices. All band structures shown employ ρ =
10 nm. Panels (a, b) both feature L = 40 nm and V0 = −5 meV, with αzz increased from 50 to 80 ps/m in going from panel (a) to panel (b). V0

is subsequently increased to 5 meV in panels (c, d), with αzz again varying between 50 and 80 ps/m in going from panel (c) to panel (d). In
panels (e, f) L is increased to 50 nm, with panel (e) additionally featuring V0 = 5 meV and αzz = 30 ps/m, while panel (f) has V0 = −5 meV
and αzz = 80 ps/m. In the course of varying the parameters, some of the bands retain the Chern numbers of the original LLs, but generic, as
well as flat topological bands with |C| > 1 may be found near the Fermi energy, or at higher energies.

The evolution of the resulting BLG band structure as a
function of the model parameters is depicted in Fig. 9 (see fig-
ure caption for parameter values employed), with further flat
|C| > 1 band details indicated in Table V. In all plots shown,
ρ = 10 nm. Beginning with Fig. 9(a), we initially consider
the case of L = 40 nm, V0 = −5 meV, and αzz = 50 ps/m.
While the majority of the topological bands exhibit C = −1,
two bands are found to feature C = −3, with one of them
featuring a band width on the order of 1.5 meV. Increasing
αzz to 80 ps/m in Fig. 9(b) results in several band touchings,
with an increased number of bands exhibiting C �= −1, and
with a flat C = −3 band occurring once again.

Figures 9(c) and 9(d) employ the same parameters as
Figs. 9(a) and 9(b), respectively, but with V0 = 5 meV. We
again find that as αzz is increased from 50 to 80 ps/m in going
from Fig. 9(c) to 9(d), a smaller number of bands exhibits the
Chern numbers of LLs. In both Figs. 9(c) and 9(d), a C = −3
flat band appears.

TABLE V. Details of flat bands appearing in Fig. 9. Energy at 	m,
Chern number, band width, gap below, and gap above, respectively
(energies in meV). Flat bands with |C| = 1 are omitted.

E	m C W Eg− Eg+

Panel (a) −16.75 −3 1.50 0.79 (D) 0.63
Panel (b) 17.28 −3 0.99 1.88 0.78
Panel (c) 19.70 −3 0.63 1.07 0.90
Panel (d) −11.40 −3 1.51 0.75 2.47
Panel (e) −11.90 −3 0.49 0.71 0.88
Panel (f) 1.97 3 1.26 0.80 0.59

In going to Figs. 9(e) and 9(f), L is increased to 50 nm.
The rest of the parameters in Fig. 9(e) take the values of
V0 = 5 meV, αzz = 30 ps/m, while in Fig. 9(f) they are V0 =
−5 meV and αzz = 80 ps/m. Independently of the fact that V0

changes sign in going between the two band structures, we
find that that increasing the ME coupling again results in a
smaller number of bands sharing the same Chern numbers as
bands representing LLs. There are also topological flat bands
with |C| = 3 as before, but due to the increase in unit cell size
the spacings between the bands are diminished.

A notable feature of the results presented above is that
the Chern numbers are all odd integers. Since we start from
C = −1 in the trivial limit, Fig. 8(a), this means that Chern
numbers transfer between bands in units of two when bands
touch as parameters are varied. This can be understood from
the fact that the unit cell has to be doubled to accommodate a
single quantum of flux, and will also be observed in the results
presented in the next subsection.

C. Triangular vortex lattice

The triangular vortex lattice and our chosen magnetic unit
cell are depicted in Fig. 7(c), with vortex centers located at
(1/2, 0) and (1/2, 1/2) in internal coordinates. By L we again
denote the geometric rather than magnetic cell lattice constant,
and note that as in the square vortex lattice case earlier, the
magnetic unit cell is twice the size of the geometric cell.

Band structures as a function of the model parameters
are shown in Fig. 10 (see figure caption for parameter de-
tails), with Table VI giving some details of selected bands
shown in the figure. Starting with L = 40 nm, ρ = 10 nm,
V0 = −5 meV, and αzz = 50 ps/m [Fig. 10(a)], we find that
most of the bands retain LL topology, with Chern numbers
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FIG. 10. Band structures of BLG exposed to MSLs and ESLs
generated by triangular vortex lattices. (a) In the initial configuration
with L = 40 nm, ρ = 10 nm, V0 = −5 meV, and αzz = 50 ps/m, the
majority of the bands share the topology of the LLs. (b) The in-
crease of L, V0, and αzz to values of 45 nm, 5 meV, and 80 ps/m,
respectively, is marked by the appearance of multiple topological
flat bands, including one with C = −5. Decreasing ρ to 8 nm, while
increasing αzz to 100 ps/m in panel (c) also results in the appearance
of a number of topological flat bands, as well as generic bands with
|C| > 1. Finally panel (d), increasing L and ρ to 50 and 10 nm,
respectively, while decreasing V0 and αzz to −5 meV and 80 ps/m,
also yields nontrivial flat bands.

C = −1. A single band is found to have C = 1, and there is a
flat band with C = −3, as detailed in Table VI.

Subsequently increasing L, V0, and αzz (while keeping ρ

fixed), results in an increase in the number of bands with |C| >

1, with many of them being flat. Remarkably, a flat band with
C = −5 can be found at lower energies, and several bands
with C = −3 and band widths on the order of 1 meV are also
present.

We subsequently decrease ρ to 8 nm and increase αzz to
100 ps/m while keeping L and V0 fixed [Fig. 10(c)]. This time
there are not as many flat bands with higher Chern numbers,
but we do find generic bands with higher Chern numbers,
including ones with C = −5 and C = −3. At lower energies
we also encounter two adjacent flat bands with C = −3 and
C = 3.

In Fig. 10(d), L = 50 nm, ρ = 10 nm, V0 = −5 meV, and
αzz = 80 ps/m. We find a number of topological flat bands,
including a variety of |C| = 3 bands of varying band widths
and at various energies. A generic C = −5 band also appears
at higher energies.

VI. SUMMARY

In this paper we have studied the application of MSLs gen-
erated by out-of-plane orbital magnetic fields as an additional
means of inducing topological flat bands in BLG. We con-
sidered MSLs that either introduce no net flux or a quantum

TABLE VI. Details of flat bands appearing in Fig. 10. Energy at
	m, Chern number, band width, gap below, and gap above, respec-
tively (energies in meV). Flat bands with |C| = 1 are omitted.

E	m C W Eg− Eg+

Panel (a) −20.02 −3 0.53 0.66 2.33
Panel (b) −22.69 −5 0.91 1.05 2.07

−16.18 −3 0.81 0.99 2.20
−11.27 −3 0.92 1.11 4.62

20.30 −3 1.09 1.56 1.45
23.84 −3 1.76 1.45 0.64

Panel (c) −25.52 −3 0.89 1.38 2.14
−20.77 3 1.52 2.14 0.98
−1.99 −3 0.71 0.75 0.52 (D)

Panel (d) −33.39 3 1.92 0.54 0.65 (D)
6.79 −3 1.10 2.58 1.19

13.68 3 1.98 0.88 (D) 2.68
16.41 −3 0.92 2.68 0.92
18.09 −3 1.36 0.92 0.56
32.47 −3 1.47 0.89 (D) 0.71

of flux to the SL unit cell. In the latter case, we employed
the recently developed gauge-invariant method of Ref. [100]
to perform band structure calculations. We also explored the
consequences of MSLs acting in conjunction with ESLs on
the band structure of BLG.

To obtain a qualitative understanding of the action of
MSLs on the BLG band structure, we initially explored the
application of a simple triangular MSL in the first-harmonic
approximation. When acting by itself, with or without a quan-
tum of flux, the MSL was found to induce topological flat
bands of Chern number |C| > 1 when the field strength, dis-
placement field voltage and SL lattice constant were varied.
Increasing the strength of the field or increasing the SL size
was found to consistently reduce band widths. Generic topo-
logical bands were also obtained, including those of higher
Chern number. Upon introduction of the commensurate tri-
angular ESL primarily studied by Ghorashi et al. [44], the
topology of the band structures may be enriched, with more
topological flat and generic bands appearing. In the flux quan-
tum case particularly, topological flat bands could be more
readily induced.

We subsequently proposed a platform for the realization
of flux quantum MSLs with concomitant ESL potentials.
Our proposed setup involved generating the MSL using su-
perconductor vortex lattices, and exposing a magnetoelectric
material to the magnetic fields of the vortex lattice; the
subsequently induced commensurate surface charge density
generated the ESL potential. We explored this setup and its
application to BLG with honeycomb, square, and triangular
vortex lattices to identify the structure most amenable to topo-
logical flat bands, including those with higher Chern numbers.
In all cases, band flatness could be tuned by the SL cell size as
well as the width of the in-plane profiles of the magnetic fields
in the vortices, although large widths eventually resulted in the
recovery of LL topology. Increasing the magnetoelectric con-
stant promoted band gap closings and reopenings, leading to
a greater number of bands (flat or generic) with |C| > 1. The
square and triangular vortex lattices proved to be especially
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conducive for the appearance of bands of particularly high
Chern numbers; however, the doubling of the magnetic unit
cell relative to the geometric unit cell yielded smaller band
gaps between neighboring bands.

In the absence of the MSL, the SL-BLG model was demon-
strated by Ref. [44] to feature topological bands favorable to
the appearance of fractional Chern insulator states. An addi-
tional study performed by Ref. [46] indicated the emergence
of quantum anomalous Hall states generated by spontaneous
valley symmetry breaking. While calculations establishing the
appearance of such interaction driven topological states in the
presence of MSLs are beyond the scope of the present work,
we emphasize that the topological flat bands obtained may be
favorable to the appearance of correlated quantum Hall states.
Experimentally, the topology of the bands may be detected
by gating the system to populate or depopulate the bands; the
subsequent measured change in the Hall conductivity would
then indicate the Chern numbers of the bands of interest.
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APPENDIX: MODIFICATION OF THE MAGNETIC BLOCH
STATE SCATTERING AMPLITUDES

As discussed in Sec. III B, we employ a gauge-invariant
formalism developed in Ref. [100] to compute the contin-
uum electronic band structures of SL-BLG in the presence
of magnetic flux quanta �0. The primary advantage of this
formalism is the gauge-invariant evaluation of the scattering
matrix elements 〈k, m|eiG·r|k, n〉, where |k, n〉 is a magnetic
translation eigenstate, with k denoting the wave vector and
n indicating the index of the LL used to construct the state.
Reference [100] demonstrated that

〈k, m|eiG·r|k, n〉 = e−iπG1G2−2π i(G1k2−G2k1 )HG
mn, (A1)

where G1 and G2 are the internal coordinates of G and k1

and k2 are those of k. HG
mn is a LL-dependent quantity that

is expressed in terms of associated Laguerre polynomials.
The gauge-invariant evaluation of the scattering ampli-

tudes is enabled by introducing translation operators written
in terms of gauge-invariant LL guiding center momenta Q,
defined as

Q = π − eB�r × ẑ. (A2)

Here, π = p − eA�(r), where p is the canonical momen-
tum operator, A�(r) is the vector potential corresponding
to the field B�, and r = (x, y, 0). The magnetic translation
eigenstates |k, n〉 are then generated with the help of the

FIG. 11. (a, b) Band structures of the triangular SL lattice model
with flux presented in Sec. IV B computed using (a) the original scat-
tering amplitude of Eq. (A1) or (b) the modified scattering amplitude
in Eq. (A3). The model parameters are B0 = −2 T, VESL = 10 meV,
V0 = −5 meV, L = 50 nm. (c, d) Contour plots for the band high-
lighted in red in panels (a, b), respectively. Here κi = ki/Q, where
Q is the reciprocal lattice constant, and the hexagon outlines the
Wigner-Seitz mBZ.

translation operators corresponding to primitive translations
Tai = exp(iai · Q/h̄), and [Ta1 , Ta2 ] = 0 when an integer num-
ber of flux quanta thread the unit cell.

A subtlety of this formalism is the choice of origin of the
magnetic BZ. In the case of zero-flux band structures, the BZ
origin 	 is the point of highest symmetry in the band structure,
and shares the point group symmetry of the system under
consideration. The formulation of Herzog-Arbeitman et al.
[100] features an implicit selection of the BZ origin, but the
selected 	 may not be the k-point with maximal symmetry.
We see an example of this in Fig. 11(a), in which a band
structure of the triangular MSL model of Sec. IV is shown,
with a contour plot corresponding to the highlighted red band
shown in the panel below. It is clear from the contour plot
that 	m is not the point of highest symmetry, and in the
band structure we find that other high-symmetry points do
not have the expected symmetry either. For example, while
Km—a point with threefold rotational symmetry—is expected
to feature zero group velocity, it is clear from the plotted band
structure that is not the case.

From the contour plot in Fig. 11(a), however, it appears
that a rigid translation of the band structure would result
in 	m becoming the highest symmetry point. A shift of
the band structure in k-space may occur by effecting a
gauge transformation whereby A�(r) → A�(r) + A0, where
A0 is a constant; under such a transformation, k → k − e

h̄ A0.
The choice of A0 is therefore implicit in the formalism of
Ref. [100]. To ensure that A0 is always chosen so that 	 is the
highest symmetry point, the scattering amplitude of Eq. (A1)

205115-12



INDUCING TOPOLOGICAL FLAT BANDS IN BILAYER … PHYSICAL REVIEW B 110, 205115 (2024)

may be modified to be [105]

〈k, m|eiG·r|k, n〉 = e−iπ (G1G2+G1+G2 )−2π i(G1k2−G2k1 )HG
mn,

(A3)
where an additional phase factor of e−iπ (G1+G2 ) now multi-
plies the original scattering amplitude. With this modified
scattering amplitude we find that the band structure, plotted
in Fig. 11(b), now obeys the symmetries of the system. We
employ the modified scattering amplitude to calculate all band
structures plotted in the main text.

A second subtlety in this formalism arises with the choice
of spatial origin of the unit cell relative to the guiding centers.
A change in the origin manifests itself in a constant shift of the

guiding center momentum operator Q, and in turn modifies
the translation operators Tai by constant phase factors. These
phase factors result in a shift of the k-points and therefore
band structure, and thus may again result in 	 not being the
point of maximal symmetry in the BZ.

In the case of the triangular MSL model of Sec. IV, the
obvious choice of origin centered on the maximum of B(r) au-
tomatically ensures the desired symmetry in reciprocal space.
For the structures in Sec. V with two vortices per cell, how-
ever, we find that we need to take care to make a choice
that places the vortices at high-symmetry positions, as other
choices result in a violation of the desired k-space symmetry.
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