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Metric tensor formulation of strain in density-functional perturbation theory
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The direct calculation of the elastic and piezoelectric tensors of solids can be accomplished by treating
homogeneous strain within the framework of density-functional perturbation theory. By formulating the energy
functional in reduced coordinates, we show that the strain perturbation enters only through metric tensors, and
can be treated in a manner exactly paralleling the treatment of other perturbations. We present an analysis of
the strain perturbation of the plane-wave pseudopotential functional, including the internal strain terms neces-
sary to treat the atomic-relaxation contributions. Procedures for computationally verifying these expressions by
comparison with numerical derivatives of ground-state calculations are described and illustrated.
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[. INTRODUCTION stants and Griineisen parameters should be straightforward.
, o _ The reduced-coordinate metric tensors were previously
Two semmallcontnbutlons to the theory of the electronic ,geq by Souza and Martins as dynamical variables in mo-
structure of solids were the quantum mechanical theory ofecylar dynamics simulations with variable unit cell shipe.
stres$ and density-functional perturbation thedryhe abil-  This study has some common conceptual elements with the
ity to calculate stress was readily incorporated into densitywork presented here, but is not related to the utilization of
functional pseudopotential calculations of the ground-statghe metric tensors within DFPT. An unrelated use of the real-
total energies of solids, and finite-difference derivatives ofspace metric tensor in DFT was presented by Rogers and
the stress with respect to strain deformations of the unit celRappe!® Their interest was in calculating the stress tensor
were shown to yield the elastic tensobensity-functional field as a function which could vary within the unit cell of a
perturbation theoryDFPT) was widely applied to the direct periodic system, and could be formulated as a derivative
calculation of phonon spectra, interatomic force constantsyith respect to a Riemannian metric tensor field. This is to be
Born effective charges, dielectric tensors, and a variety ofontrasted with the metric tensors treated here, which are
other propertie$. constant throughout space, ano! related to stresses integrated
The general structure of DFPT is based upon the systenfver bounding surfaces of a unit cell. _
atic expansion of the variational expression for the density- Section Il briefly reviews DFPT and introduces notation
functional theory(DFT) total energ§ in powers of a param- that will be used subsequently. Sectl'on I, as mdlcat_ed
eter A characterizing some dependence of the energf‘bove' presents the details of the metric tensor formulation.
functional® Such parameters as the internal atomic coordi-n S€¢- IV we discuss the comparison of the new, DFPT
nates and the macroscopic electric flefduld be handled in results for elastic and piezoelectric tensors with the old,

this framework in a conceptually straightforward marfter numerical-derivative approach and present an illustrative ex-

Treating macroscopic strain as a parameter within this for?mple' We discuss both the clamped-atom case in which all
9 P P the atoms are displaced proportionally to the strain, and the

ma"S”f" however, was apparently less ;tra|ghtforwa_rd. Arelaxed-atom case, in which only the unit cells are strained
canonical-transformation approach to this problem intro—.q the atomic positions readjust. In Sec. V, we summarize

ot 2110 wi i : Je .
duced by Baronet al.> will be reviewed in Sec. Il A. _our findings and comment on extensions to other representa-
The current approach is based on an overall formulatiofjons of DET.

of the DFT energy expression in reduced coordinates, which
introduces real- and reciprocal-space metric tensors into ev- Il. DENSITY-FUNCTIONAL PERTURBATION THEORY

ery term in this expression. This formulation will be intro- e will briefly recap density-functional perturbation

duced in Sec. Ill B, and the treatment of the strain derivatheory in its lowest order both for completeness and to point
tives of each term will be detailed in Secs. Il C-lll H. In gyt the differences present in the context of the strain pertur-
these subsections, we will specialize to the plane-wave repsation in the reduced-coordinate formulation. The notation
resentation and norm-conserving pseudopotentiaisie ad- il follow Gonze® as closely as possible. The ground-state

vantage of the metric tensor approach is that it puts strain oglectronic energy in DFT is derived by minimizing the func-
an equal footing with other parameters characterizing the enignal

ergy functional, and provides a straightforward if sometimes
tedious procedure for evaluating the strain derivatives. While _
only the first and second derivatives necessary for the evalu- EetVa} = % (Wal T+ Veud o) + Erd ] (1)
ation of the elastic and piezoelectric tensors within DFPT are

presented here, extensions of the formalism to higher derivasubject to the orthogonality constraif,| 5= 8,5 whereT
tives to evaluate such quantities as nonlinear elastic coris the kinetic energyV,,; is the external potential, the sum is

occ
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over occupied statesy, and E,,. is the Hartree and oce X
exchange-correlation energy functional of the density ndr) = > [P0 Q) + O], (8
occ “
N(r) =2 (1) (r). (2 and ¢V is varied subject to the constraint
The set of wave functions minimizingg, satisfy the Kohn- Wygh=0 9)

Sham equatiorts
for all occupied states and 8. The appearance of a first-

Hl,) = 4|, (3)  order kinetic energy terrm® is a consequence of our for-
o _ mulation of the strain perturbation, and will be clarified in
where the Hamiltonian operator is Sec. Il C below. In Eq(7) we have departed from Ref. 8 in
representing tha derivatives ofg,,,. as partial derivatives to
H=T+ Vet B _ T+ Vor+ Vie: (4) mgke (cj:lear that only the explick dependence is to be con-
sidered.

Within the framework of the reduced-coordinate formula-_ 1€ fwst-qrder wave funct|o_ns that mwm_é? subject
tion, all problems have an invariant unit cell, a cube of unitt© I_Eq. _(9) satisfy the self-con3|sten_t Sternhe_lmer equalﬁon
dimensions, and an invariant basis set, plane waves periodYt‘fh'Ch is the Euler-Lagrange equation for this functional,
in this simple cubic lattice. As will be described in detail in
Sec. llI, the actual cell shape and dimensions are absorbed Po(HO ~ e?)Py) = = PHY|yD), (10)
into the definitions of all the operators acting on this basis set
through the introduction of metric tensors in real and recip-whereP; is the projector onto unoccupied statesnduction
rocal space. While DFPT is usually formulated as an expanbands and
sion of the response to changes/yg, in our case the kinetic
energy, Hartree energy, and exchange-correlation energy all H® :T(1)+Vg()t+ Vl(—|l>)«:!
have explicit strain dependencies, as well as the implicit
strain dependence of the latter two through strain-induced

h f th ity. 5’E
changes of the density v _Vf-il)Zd)-" Hxc n®(rYdr

The usual formulation of DFPT posits a dependencepf Hxe ™ an(r)én(r’)
on a parametex and develop&,(\) and all its components
in a power series in,?
1 (2 1 _ i % (12)
X()\):X(O)+7\X()+)\ X()+"', (5) wa_&)\ 61’](!‘) n(O).

whereX can beEg;, T, Vexy #,(r), N(r), &,, or H. The lowest-

order expansion of the Kohn-Sham equation, &, is Equation(10) can be solved by a variety of methods, includ-

ing Green’s functioh and conjugate-gradiéhtapproaches.
HO| 0y = £ y0y (6)  While we have lumped the Hartree and exchange-correlation
energies and potentials into single terms above following
The second-order enerdg?, in a form which is stationary Ref. 8, we will treat them separately Bg, Vi, Ey,, andVy,

el ? . . . .
relative to variations in the first-order wave functioid), is  in the detailed analysis presented in Secs. lllF and Il G

a slight generalization of Eq13) of Ref. 8, below.
Practical calculations require finite Bloch wave-vector
oce sums to approximate Brillouin-zon8Z) integrations. In the
E{O g = X [P I(HO = &) |yt case of metals, discontinuous changes in state occupancies as

@ eigenvalues at the finite set kfpoints cross the Fermi sur-
+ (<¢£Xl)|(-|—(l) +Vg)t)|¢53)> + <¢E§)|(T(1) face can lead to _ computational instabilitie_s. _ Finite-

(A D) (012 4 \ADh|.1(O) temperature formulatlpﬁ% of DFT smooth the variation of
+ Vo) + (P [(T? + Ve [, )] occupancy number with eigenvalue and solve this problem.

1 SE, Equation(10) must be modified in this case for states in a

+EJJW’E,)n(”(r)n(”(r’)dr dr’ band of energies around the Fermi energy?'® and the

first-order wave functions in this band can be expressed in a

PR = @ form remin_isce_nt of ordinary finite-temperature perturbation
+f n % (O)H (r)dr theory. While first-order variations af- vanish for perturba-
" tions with finite wave vector, the first-order Fermi enesdy
L1 PErixc ) and its contributions t@/” and hencen® must be included
2 o\ |0 for zero-wave-vector perturbations including strhiin ex-
pression forele) is given in Eq.(79) of Ref. 4, but we prefer
where the first-order density is given by a simple alternative expression,
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1 = E (1)f/( 0 _ (0)) 2 fI( 0 _ (0)) (12) PE Q oce ~
& eDfHEe? - Eq ~EF), s

P men) [ Lo e = oo | S adia, e
9E0Nap ) JBZ m
wherefi(¢) is the derivative of the Fermi functiom;” and  wherey/® is the first-order wave function in the presence of

s(FO) are the zero-order eigenvalues and Fermi energy, and thfe so-called)/ dk perturbation(an intermediate step in com-

first-order eigenvalues are given by puting electric-field-perturbed quantitfey, and y/” is the
first-order wave function for strain. We have replaced the
&'l = (YOIHW| Oy, (13)  generica occupied-state subscript by the Bloch wave vector,

band pairkm, and explicitly indicated the Brillouin zone

We note that the energy dependencef/otonfines the con- (BZ) integration. Our conventions with regard to reduced
tributions in the sums in Eq12) to states within the band quantities and vector and tensor components will be ex-
discussed above. Since the self-consistent contributions f¥/@ined in the following section. We remark that there are
H® depend ons(Fl), it must be converged in the iterative ne|ther fr.ozen-wgve-.funcUon nor clamped-ion contributions
process of solving the Sternheimer equatias modified for 0 this mixed derivative.
finite temperaturg?16

Excepting the diagonal elements of the elastic tensor, all [ll. STRAIN AND INTERNAL-STRAIN DERIVATIVES
of the quantities we wish to compute involve mixed second
derivatives ofE with respect to two different perturbations.
The generalization of Eq5) to this case i

This section develops our strain formalism and derives all

the terms required for its treatment within DFPT. In Sec.

Il A, the formal expression for a strained solid is introduced,
and its unique issues are discussed in terms of the existing

treatment of Ref. 10. In Sec. Ill B, our notation and conven-
(14) tions for the reduced-coordinate formulation are introduced,

along with the metric tensors which are central to our treat-

While stationary expressions for such mixed derivatives ofment and their strain derivatives. Sections Ill C-llI G treat in
E, can be derived, we have in fact implemented these calturn the kinetic, local pesudopotential, nonlocal pseudopo-

XN \p) = X0 4 )\1)(0\1) + )\zx(kz) + )\1)\2)(0\1’\2) F oo

culations using the simpler nonstationary expression tential, Hartree, and exchange-correlation energies. In each
of these sections, we derive the first-derivative operator
oce terms needed in the Hamiltonia#? appearing in Eq(10),
Egll)‘zz > <¢gz)|('r<h1> +Vg;%) + H,(j‘xlé))|¢§)> the self-consistent Sternheimer equation, and in the first line
a of Eqg. (15), the nonstationary expression for the mixed
oce second-order energies. We also derive the frozen-wave-
+2<¢ES)|(T()‘1)‘2)+Vg;})‘2))|1//f)>+1- @ , function terms in the second line of E¢L5) for second
o 2 ININ, | qO derivatives with respect to two strains and with respect to

one strain and one atomic displacement. For the kinetic and
nonlocal terms, these are given as matrix elements of opera-

hich ires the first-ord functi ‘ | ftors whose expectation values are to be evaluated using the
\tl\fllelc err?l??blgii)nse zlarr? d'o.ru;r :r::vioﬁ?scell?-r;noszs?gn){ O::n?” _zpf) wave functions, while for the local pseudopotential, Har-

P ' ) ) 1o . tree, and exchange-correlation energies, these contributions
tonian terms for the othérFor metals,,* derived as dis-

din th gi h b 4 and Ferde expressed in terms of the ground-state demsty Fi-
cussed In the preceding paragraph can be used, and Ferfly sec, |iI G treats the ion-ion interactions, which are an
weighting factorsfe(e,,’) should be included in ther sums.

important contribution to the total energy of a solid, but lie
We will refer to the terms involving only'” andn© in Egs.  outside the framework of DFPT since they do not involve the
(7) and (15) and as the frozen-wave-function contributions. electrons. The second derivatives of the ion-ion energy must
In the following sections, we will refer to mixed derivatives pe added to the terms in E¢L5) to obtain the elastic and
with respect to a strain component and an internal atomicinternal-strain tensors.
coordinate component as “internal straif@a’term whose us-
age in the literature is somewhat ambiguous

Calculation of the piezoelectric tensor involves mixed o ) )
second derivatives df,, with respect to components of the  The application of homogeneous strain to a crystal lattice
strain and the electric field. It is beyond the scope of the Simply moves the positions of the atoms and hence changes
present discussion to review the modern Berry-phase theofjie DFT external potential,
of polarization in solidg:*” However, this theory has been cell
successfully applied within DPFT to the mixed derivative v )=> v (r-7-R) -
with respect to€ and atomic displacements, which yields R = ]
Born effective charges, among other quantities. A simple al-

(15)

A. Canonical-transformation formulation

ternative expression to EL5) can be derived for that par- cell
ticular case, Eq(42) of Ref. 9. The analogous expression for v (r)=> > V,[r - (1+ ) -7-(1+ ») -R], (17)
mixed #-£ derivatives is R =
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yvherer denote_s the positions qf atoms within. a.u_nit gl, S RGP = 276, (19)
is the set of lattice vectors, anglis the Cauchy infinitesimal T !
strain tensot® From the point of view of the infinite lattice
the differenceVZ? .~ Ve, can never be a small perturbation. where the summation range 1,3 will be understood for Car-
Within a single unit cell, of course, an infinitesimal strain tesian and reduced components throughout. We will notate
will produce an infinitesimal change in potential. However, itthe reduced counterparts of vectors using a tilde, so a real-
also changes the boundary conditions, so the perturbed wagpace vectoX and its counterpalii are related by
functions cannot be expanded in a basis of the unperturbed
wave functio_ns, and DFPT is not applicable. _ X,=2>, Rii;(i- (20)

One solution to this problem was proposed by Baremni i
al.l® They introduced afictitious strained self-consistent
Hamiltonian obtained from the unstrained HamiltonianWe will denote the sum of a Bloch vector in the first Bril-
through a scale transformation, louin zone and a reciprocal lattice vector Ky=k+G, and

the reduced counterpart k¢, with components related by

HZ.(r, V)=Hsed(1+ )t -r,(1+ ) - V]. (19 -
o s Ke= 3 GHK;. (21
Eigenfunctions oﬂgCF obey the same boundary conditions l

as those of the actual strained Hamiltontd#.. The spec- Essentially every term in the electron energy functional
trum of ﬁgCF is identical to that of the unstrained Hamil- 2" be expressed as dot products of vectors in real or recip-

tonian since the two are related by a unitary transformationrocal space. The introduction of the metric tens&réor real

_ _ ~ $pace and’ for reciprocal space,
and the wave functions and charge dengityof HZ.. are
generated by simple transformations of the corresponding = =SRPR" Y. =S GPGP 29
unstrained quantities. The energy difference between the fic- - % o ey % o Zap (22
titious and unstrained systems is easily computed. The strat-
egy is to then compute the energy difference between thallows us to express dot produdia real unitg in terms of

system described byiZ. and that described by the real reduced vector components, for example
strained HamiltoniarHZ- using DFPT0 -~

One difficulty in carrying this out is that the Hartree and K'-K= E KiYjiK;. (23
exchange-correlation terms kg are not the Hartree and !

xc potentials produced by”. However,HZ.- can be inter- One further quantity that enters into the energy functional,
preted as a genuine Kohn-Sham Hamiltonian by modifyinghe unit cell volume(), can also be expressed in terms of
the external potentiaf either metric tensor, for example édef =;;1)Y/2 but the spe-

While we do not question the validity of this two-step cial dependence of? on strain leads us to represent it as a
approach, it does change the structure of the calculationseparate entity.
from that of ordinary, periodicity-preserving perturbations The advantage we obtain from formulating DFT in re-
such as changes in internal atomic coordinateMloreover, duced coordinates is that the boundary conditions never
Baroniet al. present their analysis in terms of uniform dila- change. The unit cell is a unit cube. Granted, the price we
tion and local potential%) and the steps to treat arbitrary pay for this is a pervasive dependence of all the components
strains and nonlocal pseudopotentials appear to be rathef the reduced-coordinate self-consistent Hamiltonian on
nontrivial within their formulation. strain through the metric tensors. However, these are all

Another formulation for the direct calculation of the DFT straightforward parametric dependencies, similar in every
elastic tensor was given by Hebbacfiewhile citing the  way to dependencies on parameters such as internal atomic
work of Baroniet al. ' this author included only the frozen- coordinates, and DFPT can be applied in a straightforward
wave-function contributions, and failed to consider $#&  manner. We will derive expressions for the various terms
andn® contributions toE® shown in Eq.(7). entering intoH?, H?, and other components of the second-
order energy in Secs. Il C-lll H below.

The derivatives of real space and reciprocal space vectors
with respect to strain afe
The reduced coordinates are defined in real space using

B. Reduced-coordinate formulation

the basis of three primitive lattice vectcR§ ordered accord- X, = 5, X K, -5 K (24)
ing to their index to form a right-handed coordinate system. Mg T g arh

We will follow the convention of using Latin indices

i,j,K,...running from 1 to 3 to indicate reduced-coordinate Applying these rules to the metric tensors, we find that their
components, and Greek indicesg, y, ... toindicate Carte- first and second strain derivatives are

sian component®. Thus the components of the primitive

lattice areR%,

tors GJ-P areG”

aj’

ot
=T
=

S ) X . _ P
those of the.prlm.ltlve reuprogal Iat_tlce vec :i(ja,g) — - RZiRZj + RZi sz’ (25)
and the pair satisfy the relationship Mg
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Y o p - C. Kinetic energy
Y =~ =~ GGy - GGy, (26) 0 ®
IMap The wave functions),,” and ¢~ are to be expanded as
sums of reduced plane waves,
and
o P N [ice) = 2 Crac|K), (33
B = &_1_77 . Sa(R5iR5 + RaRg;) G
Y @ . . .
PP PP PP . PP so most of the operators involved in the Sternheimer equa-
* 8py(ReiRy + RsRyy) + 8as(RaR; + R,iRg) tion and the second-order energies will be expressed in terms
+ 5,85(R5iR5j + R;-sz), (27) of their reduced plane-wave matrix elements. Expressed in
the reduced plane-wave basis, the kinetic energy acquires
PY. strain dependence through the reciprocal-space metric tensor.
Yi(j“ﬁyﬁ) =—1 = 5ay(GZiG';j +G§GZJ.) It remains a diagonal operator in the reduced plane-wave
INy59 basis, and its strain derivatives are found rather trivially from
¥ 5BV(GZiG;j i G;chvi) i 5a5(GZiGPj i G;GZJ-) the metric tensor derivatives given in the previous section.
b P o P 7 However, in procedures in which the real unit cell varies,
+0s(G,i G + GLiGyy), (28)  such as constant-pressure molecular dynamics or lattice pa-

where we have introduced the notation of parenthesized Caggmeter optimization, it may be desirable to add a function

tesian superscripts to denote strain derivatives. It can be ver, sm(ek) 10 thehk|nett|ﬁ enlergyag which fnfwroothly be9rc;]mes il
fied that these formulas are invariant under interchange rge approaching the plane-wave cutolt energy. 1his wi

(ar, ) OF (1, 8) index pairs. This is a manifestation of the fact orce the wave-function coefficients to zero at the cutoff and
that antisymmetric components gf correspond to rotations regul_anz_e the variation of the_ enerEj_’ywhne _the DF_PT cal-
culation is of course done with a fixed unit cell, it may be

rather than strains, under which the metric tensors are invariz ~ . . . : N
ant desirable to keep the smoothing function used in optimizing

The strain derivative of the unit cell volun®@ is suffi. € Cell parameters to ensure that stresses remain below the

ciently simple so as not to warrant additional notation, '"T“t a_lchleved in the optimization. Incorporating this gener-
alization, the reduced-coordinate operators are

Q) =~ ~ _ ~
Ineg = Gap2. (29 (K'[TIK) =[eg + fsmer) 1o & (34
The extension to second derivatives is obvious. Finally, it iswhere
easily shown from Eq(19) that 1 ~~
o SR ZEE Y”KlK], (35)
K -X=2aK - X, (30) ’
so dot products between real and reciprocal vectors do not ~ 4T ~ 1 . (@B ™ _
involve the metric tensors and are strain independent. (K |&7] K)= 5{[1 +fSM(gK)]Z Yii KK ok
We note that DFPT vyields second derivatives of the en- s U
ergy per unit cell. This has the consequence that the naturally (36)
defined “elastic tensor” as calculated in DFPT,
~ PT ~ 1 ]2
o _1 Py (31 <K’|W|K>= Gei)| 52 YiPKK,
aB,yd — QO 37704;(97]75’ aB?lyo U]
, . . 1o e (on (BYOR 7
is not equal to the conventional elastic tensor + 5[1 +fen(e) 12 Y7 KK;
ij
) d 1k . -
CHB’ﬁE Tys _ = el _ Caﬁ75_ 5050 (32) X OK K » (37

(97]01[7’ - ‘97]0(,89 ‘977715 . . . . .
and primes denote derivatives 6§, The kinetic energy

where o, is the stress tensor. If the reference state of theyperator has no explicit dependence on atomic positions, so

system has had its lattice parameters fully relax@&dandC  the mixed second-derivative term for internal strain is zero.
are identical. However, for calculations of the elastic tensor

of materials under stress, E(B2) gives important correc- D. Local pseudopotential
tions, and the \oigt symmetry under the interchange

aBe v can be violated Operations of the local pseudopotential component of

Finally, we point out that when higher-order elastic prop-Vexn Viee: ON the wave functions are most efficiently evalu-

erties are to be considered as extensions of this approach, tﬁ%ed n red9ced "ial space, foIIowed'by Fo‘ﬂ“er transfgrma-
connection between the Cauchy infinitesimal strain and th&on to obtain the(K| components. This applies to the first-
conventional Lagrangian strain needs to be taken int@rder local potential as well, so the strain derivativeVigh
account-18 operating on g[/ikOi) is evaluated as
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(9V|oc E. Nonlocal pseudopotential

(K| % f e 2K IVEDE) ) PEF. (39

The first strain derivative of the semilocal form of norm-
conserving pseudopotentifliswas given by Nielsen and
The first-order potentlal itself is most Convenlently evaluatecMamn 3 The fu||y Separab|e form introduced by Kleinman
in reciprocal space. Following E¢23), the squared magni- and Bylande®® and its generalization by BlocHl are far
tude of the reciprocal lattice vectors expressed in terms ofnore widely used today because of their computational effi-
reduced coordinates is ciency. The matrix elements of the nonlocal pseudopotentials

— are most commonly expressed in the form
G?=2 Y;;GG;. (39) .
’ (K Vi) = 5 20 €70, (K ) Yo B, i )& ™
The potential components are given by tm

cell X (KDY em( b, ) (44)

fg?(e QE g72miC ’Kl— R (C)) where each Fourier-transformed separable atomic potential is
G K =4m | je(|KINv(rridr, 45
KI;E(; )2 Y(aBGG ] (40) UK((| |) Wfo J€(| | JU (1) (45)

v,¢(r) is the real-space potential in angular momentum chan-
wherev o is the Fourier transform of the local pseudopo-ne| ¢ for the atomx, andj, are spherical Bessel functions.

tential of the aton at site7,, We show the single-projector form, but the generalization to
" more projector¥ is obvious. We have omitted the conven-
10G) = 477_[ 1o(GNw o) r2dr, (41) tional O Y2in Eq. (45) as in the local case in Sec. Il D. The
0 first strain derivative of Eq(44) was initially given by By-

landeret al.?® but their expression had substantial omissions

anduv . is its first derivative. We have omitted the conven-which were corrected by Leet al?® The resulting expres-
tional Q™! normalization in Eq(41) and placed itin Eq(40)  sion is quite cumbersome, not suitable for evaluation in
so that the Fourier transform atomic potentials depend omerms of reduced coordinates and the metric tensors, and ap-
strain only through their arguments. We note that the phasgsears to be extremely difficult to extend to higher deriva-
(or structure factopsdo not contribute to the strain deriva- tives.
tives. To transform Eq.44) so that it is suitable for our pur-

The second derivative of the local pseudopotential energposes, we explicitly carry out th@ sum to obtain
with respect to two strains occurring in E@.5) can be ex- 4
pressed entlrely. in terms of the Fourier components of the (K'|VpLK) = _772 (20 + 1)e|K’-7KUT€(|K/|)
zero-order density,

7E 0% onid XPy(coste k)& ™ v (K), (46
oc _ -2mG T,
— = ns 2 € «| 8,50 G
M apdMys 62#0 G ; g0y oc( G) where P, are Legendre polynomials ank: « is the angle
betweenK’ andK. Introducing the modified function
U"<| (G) a ' ' et
%2 (8.5Y 177+ 8,5Y P 9K K' K" K,K-K)
|
: , = 4m(20 + D|K'[|[K|‘Py(cosbe k), (47)
Y_(qﬁy&))é.é' + K|OC(G) K|OC(G) i Lo
ij i9j 4G2 4G° whereg, is a polynomial in the three dot products, and the
modified potential form factor
X2 Y66 Y&T‘”GKG'] , (42) Fe(K - K) = v, (KK (48)
i ki
we reformulate Eq(46) as
wherev’,.. is the second derivative. Finally, mixed second
derivatives with respect to one strain component and one ’|v,, |K)= = E K T, (K’ -K")
reduced-atomic-coordinate component are required for inter- Q em
nal strain,

XpoK"- K K" K,K-K)e™®7nf (K -K).

#E ~ . 49
_9Hoc _ _ 2mi >, ng)er—Zle-7K|:_ P pm(c) (49)
IMapdT g Equation(49) is now straightforward to express in reduced

coordinates. First, we observe that the phases constituting the
KIOC(G)E 0 (aP) é G. } (43) structure factors are independent of the metric tensors,
2G K -7,=27K -7,, and will thus be independent of strain. After
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introducing the metric tensors and reduced wave vectors in ~ Ny = 1 I, ~~,
¢, We obtain K=Ky =43 > @K T“ffdz)(E YiKi Ki>
Nap xemm' v/ v ij
S oy LN ik =i XTpagm m(KNCH, (Y, Y %P
(K’ ViKY = 62 & "U«(E YK Kj) ¢+2v",m emmy oA ijo Lj
Kl ij

-~ . - Xe_ZWiK;“fEfe)(Z YiniRj)THZu,m(R)
XW@(E YiiK; K,-,E YiiK; sz Yinin> i
ij ij ij = ~
- —— = S,5(K' VLK), (54)
xe_me'T"f,J(E Y”KlKJ> . (50) i . .
i where the indicew, v’ run from 0 to 1 subject to+v' <1,
the m index runs from 1 to({+2v+1)(€+2v+2)/2, and

If p, is expanded, we observe that it is a polynomial insimilarly for m’ (with »v—»'). TheC{?,  matrix elements

which all terms are products éfcomponent&/ and¢ com- ~ are each polynomials if;; and Y{*. The couplings here

ponentsK;. We can regroup terms and formulate E80) in can be translated back to more Hamiliar angular momentum
terms of guch tensor produc terms, since the leadingank) index of theT,,, tensors does

correspond to the ordinary. This derivative operator
o ~ ~ couples componentson the right tof -2, €, and€+2 on the
Tem(K) = KOG M ITLEM=n26m = (51)  jeft. The last term arises from the derivative of el pref-
actor in Eq.(52).
wherel(i,€,m) is an indexing array of non-negative inte-  The extension to second strain derivatives, needed in the
gers. This array can be defined in a systematic way for tert/?|H?[¢/%) contribution to the second-order energies, is
sors from rank O up to the highest we shall encounter.mhe similarly straightforward and can be expressed in nearly the
index runs from 1 td¢+1)(€£+2)/2. The matrix element can same form,
then be expressed as

~ PV ~
. Kl 1K)
~ ~ o~ ~,~, ~, aBYlys
<K,|VNL|K>:5 2 27K 'TKfo(Z Yini Kj)Tfm'(K ) 1 - ) o _
x¢mm’ 1 = — 2 eme kas_]é)(E Y'J i,Kj’)T€+2V’,m’(K’)
wtmm v v ij

XC|m/m(Yij)e_2ﬁiK}KfK€(ZYij KIKJ)Tfm(K)a aBys (@B) ~r(y8) Ao 5
i XC€m’ymv’v(Yij’Yija‘8aYijy ,Yijaﬁy )
(52 = -~ ~
Xe—zle-foLu{)(z Y Kin)Te+2v,m(K)
where eaclC,,,,y is a polynomial in the components af, Y
whose coefficients can be calculated once fof’allhe no-
tation in Eq.(52) has been chosen to resemble that of Eq.
(44), so that its fully separable form is clear. However, the _ _
andm’ terms are coupled both because g, tensors do + 6,50,K’ VLK), (55)

not form an orthogonal set like th¥,,, and because the o ) .

shapes of the angular projectors are no longer spherical ha\f\lh,ere the 'nd'C?S"V now run from (? to 2 subject to
monics when mapped into reduced coordinates. There is nb?’ <2, them,m’ ranges depend on,»' as above, and the
coupling among different angular momerftanowever, be- C matrix elements are polynomials in components of all the
cause deformations cannot change the number of nodes Bidicated arguments. Here, possible right-to-left angular mo-
the projectors. mentum couplings aré to €-4,¢-2, ¢, {+2, and{+4.

The procedure for evaluating strain derivatives is now Finally, we need to consider mixed derivatives with re-
Comp'ete'y Straightforward_ The Operamanaﬂ app“ed to SpeCt to .On.e strain Component and one atomic dISp|acement.
in the p, polynomial, and on the arguments of thg. De-  nate7, will introduce factors -ziK, or 2K, and our
fining the vth derivative off ., with respect to its argument as result will be of the form
f(Tj,) wherev=0,1,2,..., weobserve

~  NpL i~ ~  NyL i~
= Sop(K'|[ 7K - 8, 4K /|5 [K)
‘97]75 ‘971043

~ . Py = 2mi i
© <K,|a” aNL K= Q 2 e
ﬁfK( _ (l)z (aﬁ)"' ~ Tik 7]‘113 emnt
(9_ - fK( Y” K|KJ ’ (53) ’ ’
naﬁ ij VY

XS Y KUK Toaayrar (K
so this derivative raises the rank of one of the tensor products «t (% e J) ez (K1)
by 2. The derivative of Eq50)can be written in a form very

7o kaB a,
similar to Eq.(52), X C(m’mv’v;uu(Yij’Yi(J ?)
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Xe_Z”iR'?KfE,’g)<E YiniRj>T€+2v+,u,m(R) G. Exchange-correlation potential
ij The operation of the first-order exchange-correlation po-
~ Ny = tential on the zero-order wave functions is evaluated as in
- 5QB<K’| IK), (56) Eq. (38). If the densityn® consisted only of contributions
Tick from the zero-order wave functions, its explicit strain depen-

dence would arise only from th@™! normalization factor,
and would be trivially found from Eq29).2° However, it is
frequently desirable to include a nonlinear core correction
through model core chargé$which significantly compli-
cates the analysis. In this section, we must distinguish “elec-
fron” and “core” contributionsn(o):nfso)+nc, where the core
density is given by a sum of finite-range spherically symmet-
ric atom-centered functions,

where the indices, v’ run from 0 to 1 subject to+v' <1,
the new index paim, u’ run from 0 to 1 subject tqu+pu’
=1, and them, m’ indices span the ranges indicated by the
rank of the respectiv@ tensors. Here, the angular momen-
tum couplings are to -3, ¢-1, ¢+1, and¢+3. The ex-
pression for the atomic-displacement derivative in the las
term is given by Eq(55) of Ref. 8.

The task of carrying out the differentiations, collecting

terms, and extracting the coefficients of theensors to ob- cell
tain theC matrix element polynomials in Eq&2) and(54)— n(r)=> > pec(r = 7.~ R]). (59)
(56) appears to be extremely tedious. However, the structure R «

of this procedure is sufficiently simple that it is easily auto- L .

mated using a symbolic manipulation progr&hSince they Considering for present purposes only local-density func-

depend only on the primitive lattice vectors, these polynomi-t!onals’ Itis stra|ghtforyvard to show from E¢L1) that the

als need only be evaluated once, and the task of applying tH¥St-order xc potential is

derivative nonlocal potentials to a set of wave functions is N on

computationally comparable to that of applying the poten- Viah) = —XC - KXC<— Spp + — + n(“5)>, (60)

tials themselves. For expectation values such as Nep IMap

(PO|H@[¢9), certain pairs ofy, v" and u, u' indices give  \yhere we define

Hermitian conjugate contributions, and the sums over these

indices may be simplified accordingly. K. = dVi(n)
“ dn

(61)

o
F. Hartree potential . . o )
We have included in Eq60) both the explicit strain depen-

The operation of the first-order Hartree potential on thegence of the zero-order densities and the first-order density
zero-order wave functions is evaluated in real space using &y the strain perturbationn®?, which must be evaluated
analogous expression to that for the local potential,(B8).  self-consistently through Eq$8) and (10). All the terms in
The potential is most easily calculated in reciprocal spaceggs.(60) and(61) are functions of the real or reduced spatial
however, where the Poisson equ%lon is diagonal. The zerpordinate, these arguments having been omitted for clarity.
order electron density componermts depend on strain only The model core charge in reduced coordinate§)), is a

through theirQ)™ normalization factot. The Fourier compo- hontrivial function of strain through the arguments of the

nents of the first-order Hartree potential are Introducing the notation for the magnitudésize”) of a
reduced-coordinate real-space vector

(p)_ 4| (@p_ (0 1 (@B = e \ 112
Ve ‘@[né N <5a/3+§2 YiPGG;) |, S(F):< *:ijrirj) : (62
ij ij
(57) and its strain derivative
(ap) . .
where n~"" are the Fourier components of the first-order
. G . . P . seA(F) = 7s(F) = LE =BT, (63)
density for the strain perturbation, ai@f is given by Eq. J 25(f) < T TR
. . . 77:1/5 ij
(39). The second-order strain derivatives of the Hartree en-
ergy are we have
(92E . on(F cell _ _
T2 S ) 0,00,67 DD = S 3 pdslF 7, - RSP 7, R),
Nap?Mys G0 Map  § "«
+ G (8,5Y 7+ 8,,Y P - Y(P)GG, (64)
! wherep!. are the first derivatives of each model core func-
+2G°8> Yi(jaﬁ)Gisz Y(GG | (58)  tion with respect to its argument. . _
ij K Second-order xc terms in E@15) for the strain-strain

derivatives require corresponding derivatives of the “size”
There is no Hartree contribution to the internal strain. function,
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0725(?) 1 (7TG/§)2 cell
(aBYd)(T) = - = (apr (yor = iG-(7.~7.1
S (F)_ = = rrz,’: Ml e zZ7, iG-(7, ’TK)' 71
anaﬁama I i v 270 GE#, E Ko (D
=i aﬁy&)* , (65) cell _ _
23() ij ! " J E:T E 2 erfc|(§|TK TK’R|R|), (72)
T ™ Tyt —
in terms of which the core charge second derivatives can be !
evaluated as cell
#2n.(F) cell Eﬂ 52 Z (73
g °(9 =2 2 ApidsfF -7~ R)ISPF -7.-R) pE
Map®iys R« whereZ, are the ion charges aridis a convergence param-
B (p) B eter. In Eq.(72) and similar equations below, the_= K’ term
+pldsF -7 - REPF -7 -R) in the sum is to be omitted wheR=0. The strain second
XSY(F -7 —R)L. 66 derivative of the r_eC|pr0caI space sum is similar to E5§),
F-7-R)} (66) the Hartree term in Sec. Il E,
The second derivatives of the xc energy are 2eG o (76187 cell
(9E” _ 1 EZZ eZmGG' 'rr)5 S
PExe 0) ©) _ 1,0 MapdNys 270 G? ) “pTyo
970507 = aﬁgy(?Exc +Q (Kxcne _ch) G#0 e
af vé B «
G2+ YD (8,6Y[) 7 + 8,5Y (P
O _ s ﬂ -5 MNe ij
ﬁne aﬁo.‘n s 'yﬁan 5
Y @ (aByd)\~ 44 22
Yi*#")GG; + + 276G
0 ey Mo one ]df"F (67) . (@B T ( >{~
. 4 [
C Napys Mg Iy *26 )E Y56, E Yid® er.] : (74)

Finally, second-order derivatives with respect to a strai
component and a reduced-atomic-displacement compone
H H Ut ” H H R 1}
are required. The required “size” derivatives are azEﬁ iz, e(mGlH? ce [5
B

nﬁpe strain—reduced-atomic-coordinate second derivative is

eZﬂ'IG TKG E Z . —2miG T

. as(F _ Maprg QG o
$n =D =3 s, e 6+
"o +(G2+ #52)2 VGG, } (75)
and
2s) The derivatives of the real—space sum involve much of the
, S(T ; : ;
(aBi)(7) — -1 '—'(aﬁ)+ 375 @B (F same analysis as was applied to the model core charge in
s 970 g[ = SN O, I Sec. Il G. Let us introduce the compact notation
(69) SKK”li = S(;-K _?K’ - Eé) (76)

The corresponding equations for thederivatives are found  with a similar subscript notation for the several derivatives of
by straightforward substitutiongé—i and n,,—7,; in EQs. s defined in Eqs(63), (65), (68), and(69). The strain-strain

(64) and(66). The xc energy second derivative is derivative of the real-space sum is then
PE #n PER 2 & ~

PR o f 50,3(V§(%) ch(O)) <+ V 0)— — = /_2 E ZKZK’{[(gs + glskk’ﬁ)e_(szK’R)z
877a,3a7',<i J}Ki (97]0433" (977013(97],),5 \ T~ R oK'

Jn. dn a,

+ Kxc—°—°} o¥. (70) +\merfoés, R)/2s. 218 ks "0
577043 J}Ki
— (8280 + merfolgs, R)/4s. 218527
H. lon-ion interactions (77)

While not part ofE,, the ion-ion interactions contribute a The corresponding strain—reduced-atomic-coordinate expres-
strain-dependent part of the total energy of a solid. Since theion is obtained from the analogs of E¢88) and(69), and
ion-ion energyE;, does not involve the electrons, its first the substitutionsyé—i and 7,,— 7, in EQ. (77).
derivatives do not enter into the self-consistent Sternheimer The Ewald result for the ion-ion interaction represents the
equation of DFPT, Eq(10), and need not be considered here.energy of an array of point charges interacting with a uni-
E, is conventionally evaluated as a sum of three terms usinéprm neutralizing background. In fact, the proper reference is
the Ewald summation formufd, the local pseudopotentials, which differ from Coulombic po-
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TABLE |. Comparison of a sample of numerical and DFPT clamped-atom elastic tensor components
C;M(s (GPa for distorted AIP. The strain increment for numerical differentiation is 205, The overall
root-mean-square@tms) difference is 5< 107 GPa.

af vé Numerical DFPT Difference
XX XX 1.249999(x 1(? 1.249999(x 1% 2.400x 10°°
yy XX 6.6990360x 10" 6.6990360x 10" -3.900x 10°®
2z XX 6.8396840x 10" 6.8396840x 10" -1.500x 1076
yz XX 8.837339%< 1072 8.8373500< 1072 1.054x 1077
Xz XX -1.1173330 -1.1173330 -4.380L0°7
Xy XX -4.1892180x 10°* -4.189217x 107t 5.700x 1078
XX yz 8.8374160x 1072 8.8373500< 1072 -6.607x 1077
yy yz 5.1544700 5.1544690 -1.03010°®
2z yz -5.5782700 -5.5782700 -2.96010°7
yz yz 9.031573x 10* 9.031573x 10* 4.500%x 10°6
Xz yz -4.0474890< 1071 -4.0474890< 1071 5.000x 1078
Xy yz 6.4472760< 1071 6.4472770x 1071 6.400x 10°8

The only strain dependence is through fbe* factor, so the
second strain derivative of this term is sim@ly; 6, sEpspcore

tentials in their core region, interacting with the uniform for both the ground-state numerical derivatives and the

background. This energy correction is given by DFPT results. This was necessitated by the fact that the ex-
and(16), are nonstationary, and such convergence errors ap-
pear in first order.

(78 and piezoelectric tensors is illustrated in Tables | and Il, re-
spectively. The system chosen for this example was AlIP, but
domly distorted in the range +5% for both the primitive lat-
tice vectors and the relative atomic positions. This was nec-

IV. IMPLEMENTATION AND RESULTS since most would otherwise be zero or identical because of
A. Clamped-atom perturbations symmetry. Stresses in the refererineminally “unstrainedy
The metric tensor formulation of strain perturbations ingerjvatives needed to be compared WLNQ05) ] 97,5
DFPT was developed and tested in stages within the openather thanda gl 7,5 following Eg. (32). This also en-
merged cleanly into the existing DFPT structure of this codgerms derived in Sec. Ill would mutually cancel for a truly
which had previously been developed to treat atomicunstrained reference structure.
state portions of this code already calculated relevant first,yeats. EquatiofL6) requires first-order wave function
derivatives of the DFT total energy, in particular atomic for the d/dk perturbation, which are best found from DFPT.
larization using the Berry-phase methot. The availability  perform Berry-phase integrations on a discrete gridkof
of first derivatives calculated in a context completely consispoints in the Brillouin zoné:'” For optimum consistency, a
pari_sons to verify our formalism and its computational real'ground-state grid was us&dlin the limit of a largek sample,
Ization. both approaches give the same result, as they must. Results
tives were carried out using the five-point formétaand
strain increments sufficiently small to ensure an invariant seﬁne strain numerical derivatives of the polarization of the
required consistency between the ground-state DFT angield the so-called “improper” piezoelectric tensey, .
DFPT calculations with regard to cutoffs, Brillouin-zone =4pP,/d7,; while DFPT yields the “proper” tenscg, ,s.
with respect to these parameters. What was required for atensor can be calculated from the improper one in a straight-
curate comparisons was an exceedingly high level of convefforward mannef® and this has been done for the compari-

. pressions used for the mixed second derivatives, EGs.
Epspcore™= é(E ZKr> (E 4w L [V oc(r) + ZK/r]rzdr)-

“ “ The level of agreement that can be obtained for the elastic
with the two-atom unit cell of the zinc-blende structure ran-
essary to obtain a full set of tensor elements for comparison,
configuration were not relaxed, so the elastic tensor second-

sourceABINIT software packag& As anticipated, it could be hanced the completeness of these tests, since a subset of the
displacement and electric-field perturbations. The ground- For the piezoelectric tensor comparisons, there are two
forces, stresses using the Nielsen-Martin analfysisd po-  However, the ground-state calculations of the polarization
tent with the strain second derivatives permitted critical com; .o _difference approximation to the;l/';i based on the
Numerical strain derivatives of the various first deriva-
of K within the specified energy cutoffs. These comparisonseference configuration. The straight numerical derivatives
sampling, etc., but not necessarily complete convergencknowing the reference configuration polarization, the proper
gence of the self-consistent potentials and wave functionssons in Table II.
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TABLE II. Comparison of a sample of numerical and DFPT clamped-atom proper piezo-electric tensor
component®, s (C/m?) for distorted AIP. The strain increment for numerical differentiationis205. The
overall rms difference is 1078 C/m?.

a b7 Numerical DFPT Difference
X XX 2.0211410< 1072 2.0211400< 1072 -8.700x 107°
y XX 5.2336140< 1072 5.2336120< 1072 -1.770x10°8
z XX 4.0031790x 1073 4.0031860x 10°3 6.720x 10°°
X yy -8.269731x 1072 -8.2697310< 1072 3.000x 10710
y yy 2.4712180< 1073 2.4712150< 1073 -3.280x 107°
z yy 7.3837080< 1073 7.3837040x 1073 -4.260x 107°
X yz -6.9263100x 1071 -6.9263100< 1071 -3.600x 1078
y yz -1.423518x 1073 -1.4235300< 1073 -1.231x10°8
z yz -1.3531730x 1072 -1.3531760< 1072 -2.880x 1078
B. Relaxed-atom calculations and with respect to one atomic-coordinate component and

one electric-field component, known as the Born effective

While homogeneous strain as defined in ELf) moves  charges® The DFPT expressions needed to evaluate these
all atoms proportionally, in a real experimental situationquantities have also been givéand were previously imple-
macroscopic strain only deforms the unit cells, and themented in theaBINIT package®’? The expressions combining
atomic positions readjust. The effects of this relaxation orall these mixed derivatives to obtain the atomic-relaxation
the elastic and piezoelectric tensors can be calculated aneerrections are straightforward, and will not be detailed
lytically as corrections to the clamped-atom quantities. Thes@ere3®
corrections can be computed from the set of mixed second Numerical-derivative comparisons including the relax-
derivatives with respect to one strain component and onations are especially challenging. In addition to the consid-
component of each internal atomic coordinate, the “internakrations discussed above for consistency and convergence of
strain.’® The expressions needed to compute the frozenthe clamped-atom quantities, the atomic positions in the in-
wave-function contributions to internal strain have beencrementally strained unit cells must be relaxed in the ground-
given in Sec. Ill for each term in the DFT energy. We havestate DFT calculations until the forces are far smaller than
used the nonstationary expression for mixed second derivaypically considered necessary for structural optimization.
tives, Eq.(15), with the strain-perturbation wave function for Tables Il and IV give the relaxed-atom results for the elastic
2 and the atomic-coordinate component first-order Hamil-and piezoelectric tensors for the distorted AIP example dis-
tonian forH®Y, whose terms have been given previodsly. cussed above. The agreement between the numerical deriva-

The relaxation corrections also require mixed second detives and the DPFT results is excellent, but respectively one
rivatives with respect to pairs of internal-atomic-coordinateand two orders of magnitude worse on the average than for
components, known as the interatomic force constant matrixhe clamped-atom quantities. This level of agreement re-

TABLE Ill. Comparison of a sample of numerical and DFPT relaxed-atom elastic tensor components
(GP3 for distorted AIP. The strain increment for numerical differentiation is 7>, The overall rms
difference is 4< 10°® GPa.

af vé Numerical DFPT Difference
XX XX 1.249915 1% 1.249915 10? -1.100x 10°°
yy XX 6.6999750x 10! 6.6999760x 10" 8.200x 1076
2z XX 6.835944(x 10! 6.835944(x 10! 7.000x 1077
yz XX 2.2844680x 1071 2.2846610 1071 1.927x10°°
Xz XX -1.1398380 -1.1398280 9.56010°°
Xy XX -1.5027680x 1072 -1.511725x 1072 -8.957x 10°°
XX yz 2.2847050 1071 2.2846610< 107! -4.380x 10°®
yy yz 1.9400500 1.9400540 3.72010°°
2z yz -2.0792640 -2.0792750 -1.18910°°
yz yz 6.6593340< 10 6.6593390x 10" 5.160x 107°
Xz yz 7.7397220 1071 7.7397730x 107t 5.121x 1078
Xy yz -5.684459x 107! -5.684491x 107! -3.170x 10°®
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TABLE IV. Comparison of a sample of numerical and DFPT relaxed-atom piezoelectric tensor compo-
nents(C/m?) for distorted AIP. The strain increment for numerical differentiation:is20°. The overall rms
difference is 2< 1076 C/m?.

a vé Numerical DFPT Difference
X XX 1.7147690 10°2 1.7146940 10°2 -7.461x 1077
y XX 5.1070690< 1072 5.1070800< 1072 1.069x 10°7
z XX -8.8396190x 1073 -8.8367620< 1073 2.857x 1076
X yy 8.2856910< 1072 8.2845410x 1073 -1.150x 10°®
y yy 3.7168430< 1072 3.7168120< 1072 -3.150x 1077
z yy -8.1020100x 1073 -8.101761x 1073 2.494x 1077
X yz -3.8719800x 1072 -3.8721540x 1072 -1.739x10°®
y yz -1.245173x 1072 -1.2452060< 1072 -3.271x 107
z yz 1.9026870x 1072 1.902693x 1072 5.590x 1078
quired attaining residual forces less tharm*Gtomic units The expressions given here pertain to norm-conserving

(hartree/bohrfor the 2x 107° strain increment needed to sat- pseudopotentials. While the same approach can in principle
isfy the conditions discussed above. The precision of thde applied to ultrasoft pseudopotenti#she closely related
required relaxation illustrates the impracticality of obtaining projector-augmented-wave all-electron metfiddand the
accurate values for the relaxed-atom quantities for mordinear-augmented-plane-wave methiddhese all pose sig-
complex systems by numerical differentiation. Attempts atnificant additional challenges. The first set of challenges re-
further convergence suggested that the level of agreemefdtes to the fact that the nonlocal operators coupling the
shown here is at the limit of numerical precision for the plane-wave components of these methods have off-diagonal
overall set of calculations. terms coupling thefm, ¢’'m’ spherical harmonic indices
Comparing the tables of relaxed and unrelaxed tensorgbout each atomic site. This precludes the reduction to wave-
we see that the relaxation corrections to the large compovector dot products achieved in E@9). The second issue
nents of the elastic tensor, those which would be present fazoncerns the augmentation components of the wave func-
the zinc-blende structure without the random distortions, ar¢ions and charge. These functions are not deformed by ho-
rather small. For the piezoelectric tensor however, the onlynogeneous strain in the manner of the plane waves and

large componentx,yz), is substantially corrected. plane-wave charge density. Thus the mapping onto reduced
coordinates and derivatives of that mapping entail issues
V. SUMMARY AND CONCLUSIONS similar to those discussed in Sec. Ill G in connection with

model core charges and the nonlinear core correéfidin-

In conclusion, we have demonstrated the manner in whiclijke the core charges, however, the augmentation function are
strain can be treated within a standard implementation ofiot spherical, so additional considerations apply. While the
density-functional perturbation theory by using reduced cojmplementation of the strain perturbation within DFPT using
ordinates and the subsequent strain dependence of the metfifese formalisms poses these challenges and requires signifi-

tensor. Expressions necessary to evaluate all the secongant further analysis, the metric tensor approach likely re-
order derivatives of the density-functional theory energymains the most viable.

have been derived, and it has been established that they are
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