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The direct calculation of the elastic and piezoelectric tensors of solids can be accomplished by treating
homogeneous strain within the framework of density-functional perturbation theory. By formulating the energy
functional in reduced coordinates, we show that the strain perturbation enters only through metric tensors, and
can be treated in a manner exactly paralleling the treatment of other perturbations. We present an analysis of
the strain perturbation of the plane-wave pseudopotential functional, including the internal strain terms neces-
sary to treat the atomic-relaxation contributions. Procedures for computationally verifying these expressions by
comparison with numerical derivatives of ground-state calculations are described and illustrated.
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I. INTRODUCTION

Two seminal contributions to the theory of the electronic
structure of solids were the quantum mechanical theory of
stress1 and density-functional perturbation theory.2 The abil-
ity to calculate stress was readily incorporated into density-
functional pseudopotential calculations of the ground-state
total energies of solids, and finite-difference derivatives of
the stress with respect to strain deformations of the unit cell
were shown to yield the elastic tensor.3 Density-functional
perturbation theorysDFPTd was widely applied to the direct
calculation of phonon spectra, interatomic force constants,
Born effective charges, dielectric tensors, and a variety of
other properties.4

The general structure of DFPT is based upon the system-
atic expansion of the variational expression for the density-
functional theorysDFTd total energy5 in powers of a param-
eter l characterizing some dependence of the energy
functional.6 Such parameters as the internal atomic coordi-
nates and the macroscopic electric field7 could be handled in
this framework in a conceptually straightforward manner.8,9

Treating macroscopic strain as a parameter within this for-
malism, however, was apparently less straightforward. A
canonical-transformation approach to this problem intro-
duced by Baroniet al.10 will be reviewed in Sec. III A.

The current approach is based on an overall formulation
of the DFT energy expression in reduced coordinates, which
introduces real- and reciprocal-space metric tensors into ev-
ery term in this expression. This formulation will be intro-
duced in Sec. III B, and the treatment of the strain deriva-
tives of each term will be detailed in Secs. III C–III H. In
these subsections, we will specialize to the plane-wave rep-
resentation and norm-conserving pseudopotentials.11 The ad-
vantage of the metric tensor approach is that it puts strain on
an equal footing with other parameters characterizing the en-
ergy functional, and provides a straightforward if sometimes
tedious procedure for evaluating the strain derivatives. While
only the first and second derivatives necessary for the evalu-
ation of the elastic and piezoelectric tensors within DFPT are
presented here, extensions of the formalism to higher deriva-
tives to evaluate such quantities as nonlinear elastic con-

stants and Grüneisen parameters should be straightforward.
The reduced-coordinate metric tensors were previously

used by Souza and Martins as dynamical variables in mo-
lecular dynamics simulations with variable unit cell shape.12

This study has some common conceptual elements with the
work presented here, but is not related to the utilization of
the metric tensors within DFPT. An unrelated use of the real-
space metric tensor in DFT was presented by Rogers and
Rappe.13 Their interest was in calculating the stress tensor
field as a function which could vary within the unit cell of a
periodic system, and could be formulated as a derivative
with respect to a Riemannian metric tensor field. This is to be
contrasted with the metric tensors treated here, which are
constant throughout space, and related to stresses integrated
over bounding surfaces of a unit cell.

Section II briefly reviews DFPT and introduces notation
that will be used subsequently. Section III, as indicated
above, presents the details of the metric tensor formulation.
In Sec. IV we discuss the comparison of the new, DFPT
results for elastic and piezoelectric tensors with the old,
numerical-derivative approach and present an illustrative ex-
ample. We discuss both the clamped-atom case in which all
the atoms are displaced proportionally to the strain, and the
relaxed-atom case, in which only the unit cells are strained
and the atomic positions readjust. In Sec. V, we summarize
our findings and comment on extensions to other representa-
tions of DFT.

II. DENSITY-FUNCTIONAL PERTURBATION THEORY

We will briefly recap density-functional perturbation
theory in its lowest order both for completeness and to point
out the differences present in the context of the strain pertur-
bation in the reduced-coordinate formulation. The notation
will follow Gonze8 as closely as possible. The ground-state
electronic energy in DFT is derived by minimizing the func-
tional

Eelhcaj = o
a

occ

kcauT + Vextucal + EHxcfng s1d

subject to the orthogonality constraintkca ucbl=dab whereT
is the kinetic energy,Vext is the external potential, the sum is
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over occupied statesa, and EHxc is the Hartree and
exchange-correlation energy functional of the density

nsr d = o
a

occ

ca
* sr dcasr d. s2d

The set of wave functions minimizingEel satisfy the Kohn-
Sham equations5

Hucal = «aucal, s3d

where the Hamiltonian operator is

H = T + Vext+
dEHxc

dn
= T + Vext+ VHxc. s4d

Within the framework of the reduced-coordinate formula-
tion, all problems have an invariant unit cell, a cube of unit
dimensions, and an invariant basis set, plane waves periodic
in this simple cubic lattice. As will be described in detail in
Sec. III, the actual cell shape and dimensions are absorbed
into the definitions of all the operators acting on this basis set
through the introduction of metric tensors in real and recip-
rocal space. While DFPT is usually formulated as an expan-
sion of the response to changes inVext, in our case the kinetic
energy, Hartree energy, and exchange-correlation energy all
have explicit strain dependencies, as well as the implicit
strain dependence of the latter two through strain-induced
changes of the density.

The usual formulation of DFPT posits a dependence ofEel
on a parameterl and developsEelsld and all its components
in a power series inl,8

Xsld = Xs0d + lXs1d + l2Xs2d + ¯ , s5d

whereX can beEel, T, Vext, casr d, nsr d, «a, or H. The lowest-
order expansion of the Kohn-Sham equation, Eq.s3d, is

Hs0duca
s0dl = «a

s0duca
s0dl. s6d

The second-order energyEel
s2d, in a form which is stationary

relative to variations in the first-order wave functionscs1d, is
a slight generalization of Eq.s13d of Ref. 8,

Eel
s2dhcs0d;cs1dj = o

a

occ

fkca
s1dusHs0d − «a

s0dduca
s1dl

+ skca
s1dusTs1d + Vext

s1dduca
s0dl + kca

s0dusTs1d

+ Vext
s1dduca

s1dld + kca
s0dusTs2d + Vext

s2dduca
s0dlg

+
1

2
E E d2EHxc

dnsr ddnsr 8d
ns1dsr dns1dsr 8ddr dr 8

+E ]

]l
UdEHxc

dnsr d
U

ns0d
ns1dsr ddr

+
1

2
U ]2EHxc

]l2 U
ns0d

, s7d

where the first-order density is given by

ns1dsr d = o
a

occ

fca
* s1dsr dca

s0dsr d + ca
* s0dsr dca

s1dsr dg, s8d

andcs1d is varied subject to the constraint

kca
s0ducb

s1dl = 0 s9d

for all occupied statesa and b. The appearance of a first-
order kinetic energy termTs1d is a consequence of our for-
mulation of the strain perturbation, and will be clarified in
Sec. III C below. In Eq.s7d we have departed from Ref. 8 in
representing thel derivatives ofEHxc as partial derivatives to
make clear that only the explicitl dependence is to be con-
sidered.

The first-order wave functions that minimizeEel
s2d subject

to Eq. s9d satisfy the self-consistent Sternheimer equation14

which is the Euler-Lagrange equation for this functional,

PcsHs0d − «a
s0ddPcuca

s1dl = − PcH
s1duca

s0dl, s10d

wherePc is the projector onto unoccupied statessconduction
bandsd and

Hs1d = Ts1d + Vext
s1d + VHxc

s1d ,

VHxc
s1d = VHxc0

s1d +E d2EHxc

dnsr ddnsr 8d
ns1dsr 8ddr 8,

VHxc0
s1d =

]

]l
UdEHxc

dnsr d
U

ns0d
. s11d

Equations10d can be solved by a variety of methods, includ-
ing Green’s function2 and conjugate-gradient8 approaches.
While we have lumped the Hartree and exchange-correlation
energies and potentials into single terms above following
Ref. 8, we will treat them separately asEH, VH, Exc, andVxc
in the detailed analysis presented in Secs. III F and III G
below.

Practical calculations require finite Bloch wave-vector
sums to approximate Brillouin-zonesBZd integrations. In the
case of metals, discontinuous changes in state occupancies as
eigenvalues at the finite set ofk points cross the Fermi sur-
face can lead to computational instabilities. Finite-
temperature formulations15 of DFT smooth the variation of
occupancy number with eigenvalue and solve this problem.
Equations10d must be modified in this case for states in a
band of energies around the Fermi energy«F,2,16 and the
first-order wave functions in this band can be expressed in a
form reminiscent of ordinary finite-temperature perturbation
theory. While first-order variations of«F vanish for perturba-
tions with finite wave vector, the first-order Fermi energy«F

s1d

and its contributions toca
s1d and hencens1d must be included

for zero-wave-vector perturbations including strain.4 An ex-
pression for«F

s1d is given in Eq.s79d of Ref. 4, but we prefer
a simple alternative expression,
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«F
s1d = o

a

«a
s1dfF8s«a

s0d − «F
s0ddYo

a

fF8s«a
s0d − «F

s0dd, s12d

where fF8s«d is the derivative of the Fermi function,«a
s0d and

«F
s0d are the zero-order eigenvalues and Fermi energy, and the

first-order eigenvalues are given by

«a
s1d = kca

s0duHs1duca
s0dl. s13d

We note that the energy dependence offF8 confines the con-
tributions in the sums in Eq.s12d to states within the band
discussed above. Since the self-consistent contributions to
Hs1d depend on«F

s1d, it must be converged in the iterative
process of solving the Sternheimer equationsas modified for
finite temperatured.2,16

Excepting the diagonal elements of the elastic tensor, all
of the quantities we wish to compute involve mixed second
derivatives ofEel with respect to two different perturbations.
The generalization of Eq.s5d to this case is9

Xsl1,l2d = Xs0d + l1X
sl1d + l2X

sl2d + l1l2X
sl1l2d + ¯ .

s14d

While stationary expressions for such mixed derivatives of
Eel can be derived, we have in fact implemented these cal-
culations using the simpler nonstationary expression

Eel
l1l2 = o

a

occ

kca
sl2dusTsl1d + Vext

sl1d + HHxc0
sl1d duca

s0dl

+ o
a

occ

kca
s0dusTsl1l2d + Vext

sl1l2dduca
s0dl +

1

2
U ]2EHxc

]l1]l2
U

ns0d
,

s15d

which requires the first-order wave functions for only one of
the perturbations, and just the non-self-consistent Hamil-
tonian terms for the other.9 For metals,ca

sl2d derived as dis-
cussed in the preceding paragraph can be used, and Fermi
weighting factorsfFs«a

s0dd should be included in thea sums.
We will refer to the terms involving onlyca

s0d andns0d in Eqs.
s7d and s15d and as the frozen-wave-function contributions.
In the following sections, we will refer to mixed derivatives
with respect to a strain component and an internal atomic-
coordinate component as “internal strain”sa term whose us-
age in the literature is somewhat ambiguousd.

Calculation of the piezoelectric tensor involves mixed
second derivatives ofEel with respect to components of the
strainh and the electric fieldE. It is beyond the scope of the
present discussion to review the modern Berry-phase theory
of polarization in solids.7,17 However, this theory has been
successfully applied within DPFT to the mixed derivative
with respect toE and atomic displacements, which yields
Born effective charges, among other quantities. A simple al-
ternative expression to Eq.s15d can be derived for that par-
ticular case, Eq.s42d of Ref. 9. The analogous expression for
mixed h-E derivatives is

]2Eel

]Ẽ j]hab

= 2
V

s2pd3E
BZ

o
m

occ

kickm
sk̃jduckm

shabdldk , s16d

wherecskd is the first-order wave function in the presence of
the so-called] /]k perturbationsan intermediate step in com-
puting electric-field-perturbed quantities7,8d, and cshd is the
first-order wave function for strain. We have replaced the
generica occupied-state subscript by the Bloch wave vector,
band pairkm, and explicitly indicated the Brillouin zone
sBZd integration. Our conventions with regard to reduced
quantities and vector and tensor components will be ex-
plained in the following section. We remark that there are
neither frozen-wave-function nor clamped-ion contributions
to this mixed derivative.

III. STRAIN AND INTERNAL-STRAIN DERIVATIVES

This section develops our strain formalism and derives all
the terms required for its treatment within DFPT. In Sec.
III A, the formal expression for a strained solid is introduced,
and its unique issues are discussed in terms of the existing
treatment of Ref. 10. In Sec. III B, our notation and conven-
tions for the reduced-coordinate formulation are introduced,
along with the metric tensors which are central to our treat-
ment and their strain derivatives. Sections III C–III G treat in
turn the kinetic, local pesudopotential, nonlocal pseudopo-
tential, Hartree, and exchange-correlation energies. In each
of these sections, we derive the first-derivative operator
terms needed in the HamiltonianHs1d appearing in Eq.s10d,
the self-consistent Sternheimer equation, and in the first line
of Eq. s15d, the nonstationary expression for the mixed
second-order energies. We also derive the frozen-wave-
function terms in the second line of Eq.s15d for second
derivatives with respect to two strains and with respect to
one strain and one atomic displacement. For the kinetic and
nonlocal terms, these are given as matrix elements of opera-
tors whose expectation values are to be evaluated using the
ca

s0d wave functions, while for the local pseudopotential, Har-
tree, and exchange-correlation energies, these contributions
are expressed in terms of the ground-state densityns0d. Fi-
nally, Sec. III G treats the ion-ion interactions, which are an
important contribution to the total energy of a solid, but lie
outside the framework of DFPT since they do not involve the
electrons. The second derivatives of the ion-ion energy must
be added to the terms in Eq.s15d to obtain the elastic and
internal-strain tensors.

A. Canonical-transformation formulation

The application of homogeneous strain to a crystal lattice
simply moves the positions of the atoms and hence changes
the DFT external potential,1

Vextsr d = o
R

o
t

cell

Vtsr − t − Rd →
h

Vext
h sr d = o

R
o

t

cell

Vtfr − s1 + hd · t − s1 + hd ·Rg, s17d
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wheret denotes the positions of atoms within a unit cell,R
is the set of lattice vectors, andh is the Cauchy infinitesimal
strain tensor.18 From the point of view of the infinite lattice
the differenceVext

h −Vext can never be a small perturbation.
Within a single unit cell, of course, an infinitesimal strain
will produce an infinitesimal change in potential. However, it
also changes the boundary conditions, so the perturbed wave
functions cannot be expanded in a basis of the unperturbed
wave functions, and DFPT is not applicable.

One solution to this problem was proposed by Baroniet
al.10 They introduced afictitious strained self-consistent
Hamiltonian obtained from the unstrained Hamiltonian
through a scale transformation,

H̃SCF
h sr , = d = HSCFfs1 + hd−1 · r ,s1 + hd · = g. s18d

Eigenfunctions ofH̃SCF
h obey the same boundary conditions

as those of the actual strained HamiltonianHSCF
h . The spec-

trum of H̃SCF
h is identical to that of the unstrained Hamil-

tonian since the two are related by a unitary transformation,

and the wave functions and charge densityñh of H̃SCF
h are

generated by simple transformations of the corresponding
unstrained quantities. The energy difference between the fic-
titious and unstrained systems is easily computed. The strat-
egy is to then compute the energy difference between the

system described byH̃SCF
h and that described by the real

strained HamiltonianHSCF
h using DFPT.10

One difficulty in carrying this out is that the Hartree and

exchange-correlation terms inH̃SCF
h are not the Hartree and

xc potentials produced byñh. However,H̃SCF
h can be inter-

preted as a genuine Kohn-Sham Hamiltonian by modifying
the external potential.10

While we do not question the validity of this two-step
approach, it does change the structure of the calculations
from that of ordinary, periodicity-preserving perturbations
such as changes in internal atomic coordinatest. Moreover,
Baroni et al. present their analysis in terms of uniform dila-
tion and local potentials,10 and the steps to treat arbitrary
strains and nonlocal pseudopotentials appear to be rather
nontrivial within their formulation.

Another formulation for the direct calculation of the DFT
elastic tensor was given by Hebbache.19 While citing the
work of Baroniet al.,10 this author included only the frozen-
wave-function contributions, and failed to consider thecs1d

andns1d contributions toEs2d shown in Eq.s7d.

B. Reduced-coordinate formulation

The reduced coordinates are defined in real space using
the basis of three primitive lattice vectorsRi

P ordered accord-
ing to their indexi to form a right-handed coordinate system.
We will follow the convention of using Latin indices
i , j ,k, . . . running from 1 to 3 to indicate reduced-coordinate
components, and Greek indicesa ,b ,g , . . . to indicate Carte-
sian components.20 Thus the components of the primitive
lattice areRai

P , those of the primitive reciprocal lattice vec-
tors G j

P areGa j
P , and the pair satisfy the relationship

o
a

Rai
P Ga j

P = 2pdi j , s19d

where the summation range 1,3 will be understood for Car-
tesian and reduced components throughout. We will notate
the reduced counterparts of vectors using a tilde, so a real-

space vectorX and its counterpartX̃ are related by

Xa = o
i

Rai
P X̃i . s20d

We will denote the sum of a Bloch vector in the first Bril-
louin zone and a reciprocal lattice vector byK =k +G, and

the reduced counterpart byK̃ , with components related by

Ka = o
i

Gai
P K̃i . s21d

Essentially every term in the electron energy functional
can be expressed as dot products of vectors in real or recip-
rocal space. The introduction of the metric tensorsJ for real
space andY for reciprocal space,

Ji j = o
a

Rai
P Ra j

P , Yi j = o
a

Gai
P Ga j

P , s22d

allows us to express dot productssin real unitsd in terms of
reduced vector components, for example

K 8 ·K = o
i j

K̃i8Yi j K̃ j . s23d

One further quantity that enters into the energy functional,
the unit cell volumeV, can also be expressed in terms of
either metric tensor, for example assdetfJi jgd1/2, but the spe-
cial dependence ofV on strain leads us to represent it as a
separate entity.

The advantage we obtain from formulating DFT in re-
duced coordinates is that the boundary conditions never
change. The unit cell is a unit cube. Granted, the price we
pay for this is a pervasive dependence of all the components
of the reduced-coordinate self-consistent Hamiltonian on
strain through the metric tensors. However, these are all
straightforward parametric dependencies, similar in every
way to dependencies on parameters such as internal atomic
coordinates, and DFPT can be applied in a straightforward
manner. We will derive expressions for the various terms
entering intoHs1d, Hs2d, and other components of the second-
order energy in Secs. III C–III H below.

The derivatives of real space and reciprocal space vectors
with respect to strain are3

]Xg

]hab

= dagXb,
]Kg

]hab

= − dagKb. s24d

Applying these rules to the metric tensors, we find that their
first and second strain derivatives are

Ji j
sabd ;

]Ji j

]hab

= Rai
P Rb j

P + Rbi
P Ra j

P , s25d
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Yi j
sabd ;

]Yi j

]hab

= − Gai
P Gb j

P − Gbi
P Ga j

P , s26d

and

Ji j
sabgdd ;

]2Ji j

]hgd]hab

= dagsRbi
P Rd j

P + Rdi
PRb j

P d

+ dbgsRai
P Rd j

P + Rdi
PRa j

P d + dadsRbi
P Rg j

P + Rgi
P Rb j

P d

+ dbdsRai
P Rg j

P + Rgi
P Ra j

P d, s27d

Yi j
sabgdd ;

]2Yi j

]hgd]hab

= dagsGbi
P Gd j

P + Gdi
PGb j

P d

+ dbgsGai
P Gd j

P + Gdi
PGa j

P d + dadsGbi
P Gg j

P + Ggi
P Gb j

P d

+ dbdsGai
P Gg j

P + Ggi
P Ga j

P d, s28d

where we have introduced the notation of parenthesized Car-
tesian superscripts to denote strain derivatives. It can be veri-
fied that these formulas are invariant under interchange of
sa ,bd or sg ,dd index pairs. This is a manifestation of the fact
that antisymmetric components ofh correspond to rotations
rather than strains, under which the metric tensors are invari-
ant.

The strain derivative of the unit cell volumeV is suffi-
ciently simple so as not to warrant additional notation,

]V

]hab

= dabV. s29d

The extension to second derivatives is obvious. Finally, it is
easily shown from Eq.s19d that

K ·X = 2pK̃ · X̃ , s30d

so dot products between real and reciprocal vectors do not
involve the metric tensors and are strain independent.

We note that DFPT yields second derivatives of the en-
ergy per unit cell. This has the consequence that the naturally
defined “elastic tensor” as calculated in DFPT,

Cab,gd
* ;

1

V

]2Eel

]hab]hgd

, s31d

is not equal to the conventional elastic tensor

Cab,gd ;
]sgd

]hab

=
]

]hab

1

V

]Eel

]hgd

= Cabgd
* − dabsgd, s32d

wheresgd is the stress tensor. If the reference state of the
system has had its lattice parameters fully relaxed,C* and C
are identical. However, for calculations of the elastic tensor
of materials under stress, Eq.s32d gives important correc-
tions, and the Voigt symmetry under the interchange
ab↔gd can be violated.21

Finally, we point out that when higher-order elastic prop-
erties are to be considered as extensions of this approach, the
connection between the Cauchy infinitesimal strain and the
conventional Lagrangian strain needs to be taken into
account.1,18

C. Kinetic energy

The wave functionsca
s0d and ca

s1d are to be expanded as
sums of reduced plane waves,

uck̃al = o
G̃

ck̃aG̃uK̃ l, s33d

so most of the operators involved in the Sternheimer equa-
tion and the second-order energies will be expressed in terms
of their reduced plane-wave matrix elements. Expressed in
the reduced plane-wave basis, the kinetic energy acquires
strain dependence through the reciprocal-space metric tensor.
It remains a diagonal operator in the reduced plane-wave
basis, and its strain derivatives are found rather trivially from
the metric tensor derivatives given in the previous section.
However, in procedures in which the real unit cell varies,
such as constant-pressure molecular dynamics or lattice pa-
rameter optimization, it may be desirable to add a function
fSMs«K̃d to the kinetic energy«K̃ which smoothly becomes
large approaching the plane-wave cutoff energy. This will
force the wave-function coefficients to zero at the cutoff and
regularize the variation of the energy.22 While the DFPT cal-
culation is of course done with a fixed unit cell, it may be
desirable to keep the smoothing function used in optimizing
the cell parameters to ensure that stresses remain below the
limit achieved in the optimization. Incorporating this gener-
alization, the reduced-coordinate operators are

kK̃ 8uTuK̃ l = f«K̃ + fSMs«K̃dgdK̃8K̃ , s34d

where

«K̃ =
1

2o
i j

Yi j K̃iK̃j , s35d

kK̃ 8u
]T

]hab

uK̃ l =
1

2Hf1 + fSM8 s«K̃dgo
i j

Yi j
sabdK̃iK̃jJdK̃8K̃ ,

s36d

kK̃ 8u
]2T

]hab]hgd

uK̃ l = H fSM9 s«K̃dF1

2o
i j

Yi j
sabdK̃iK̃jG2

+
1

2
f1 + fSM8 s«K̃dgo

i j

Yi j
sabgddK̃iK̃jJ

3dK̃8K̃ , s37d

and primes denote derivatives offSM. The kinetic energy
operator has no explicit dependence on atomic positions, so
the mixed second-derivative term for internal strain is zero.

D. Local pseudopotential

Operations of the local pseudopotential component of
Vext, Vloc, on the wave functions are most efficiently evalu-
ated in reduced real space, followed by Fourier transforma-

tion to obtain thekK̃ u components. This applies to the first-
order local potential as well, so the strain derivative ofVloc

operating onuc
k̃a

s0d
l is evaluated as
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kK̃ u
]Vloc

]hab

uc
k̃a

s0dl =E e−2piK̃ ·r̃Vloc
sabdsr̃ dc

k̃a

s0dsr̃ dd3r̃ . s38d

The first-order potential itself is most conveniently evaluated
in reciprocal space. Following Eq.s23d, the squared magni-
tude of the reciprocal lattice vectors expressed in terms of
reduced coordinates is

G2 = o
i j

Yi j G̃iG̃j . s39d

The potential components are given by

Vloc
sabdsG̃d =

1

V
o
k

cell

e−2piG̃·t̃kF− dabvklocsGd

+
vkloc8 sGd

2G
o
i j

Yi j
sabdG̃iG̃jG , s40d

wherevkloc is the Fourier transform of the local pseudopo-
tential of the atomk at sitet̃k,

vklocsGd = 4pE
0

`

j0sGrdvklocsrdr2dr, s41d

andvkloc8 is its first derivative. We have omitted the conven-
tional V−1 normalization in Eq.s41d and placed it in Eq.s40d
so that the Fourier transform atomic potentials depend on
strain only through their arguments. We note that the phases
sor structure factorsd do not contribute to the strain deriva-
tives.

The second derivative of the local pseudopotential energy
with respect to two strains occurring in Eq.s15d can be ex-
pressed entirely in terms of the Fourier components of the
zero-order density,

]2Eloc

]hab]hgd

= o
G̃Þ0

n
G̃

s0do
k

cell

e−2piG̃·t̃kFdabdgdvklocsGd

−
vkloc8 sGd

2G
o
i j

sdabYi j
sgdd + dgdYi j

sabd

− Yi j
sabgdddG̃iG̃j + Svkloc9 sGd

4G2 −
vkloc8 sGd

4G3 D
3o

i j

Yi j
sabdG̃iG̃jo

kl

Ykl
sgddG̃kG̃lG , s42d

wherevkloc9 is the second derivative. Finally, mixed second
derivatives with respect to one strain component and one
reduced-atomic-coordinate component are required for inter-
nal strain,

]2Eloc

]hab]t̃kk

= − 2pio
G̃

n
G̃

s0d
G̃ke

−2piG̃·t̃kF− dabvklocsGd

+
vkloc8 sGd

2G
o
i j

Yi j
sabdG̃iG̃jG . s43d

E. Nonlocal pseudopotential

The first strain derivative of the semilocal form of norm-
conserving pseudopotentials11 was given by Nielsen and
Martin.3 The fully separable form introduced by Kleinman
and Bylander23 and its generalization by Blöchl24 are far
more widely used today because of their computational effi-
ciency. The matrix elements of the nonlocal pseudopotentials
are most commonly expressed in the form

kK 8uVNLuK l =
1

V
o
k,m

eiK8·tkvk,suK 8udY,msuK8,fK8de
−iK ·tk

3vk,suK udY,msuK ,fKd s44d

where each Fourier-transformed separable atomic potential is

vk,suK ud = 4pE
0

`

j,suK urdvk,srdr2dr, s45d

vk,srd is the real-space potential in angular momentum chan-
nel , for the atomk, and j, are spherical Bessel functions.
We show the single-projector form, but the generalization to
more projectors24 is obvious. We have omitted the conven-
tional V−1/2 in Eq. s45d as in the local case in Sec. III D. The
first strain derivative of Eq.s44d was initially given by By-
landeret al.,25 but their expression had substantial omissions
which were corrected by Leeet al.26 The resulting expres-
sion is quite cumbersome, not suitable for evaluation in
terms of reduced coordinates and the metric tensors, and ap-
pears to be extremely difficult to extend to higher deriva-
tives.

To transform Eq.s44d so that it is suitable for our pur-
poses, we explicitly carry out them sum to obtain

kK 8uVNLuK l =
4p

V
o
k,

s2, + 1deiK8·tkvt,suK 8ud

3P,scosuK8,Kde−iK ·tkvk,suK ud, s46d

whereP, are Legendre polynomials anduK8,K is the angle
betweenK 8 andK . Introducing the modified function

`,sK 8 ·K 8,K 8 ·K ,K ·K d

; 4ps2, + 1duK 8u,uK u,P,scosuK8,Kd, s47d

where`, is a polynomial in the three dot products, and the
modified potential form factor

fk,sK ·K d ; vk,suK ud/uK u,, s48d

we reformulate Eq.s46d as

kK 8uVNLuK l =
1

V
o
k,m

eiK8·tkfk,sK 8 ·K 8d

3`,sK 8 ·K 8,K 8 ·K ,K ·K de−iK ·tkfk,sK ·K d.

s49d

Equations49d is now straightforward to express in reduced
coordinates. First, we observe that the phases constituting the
structure factors are independent of the metric tensors,

K ·tk=2pK̃ ·t̃k, and will thus be independent of strain. After
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introducing the metric tensors and reduced wave vectors in
`,, we obtain

kK̃ 8uVNLuK̃ l =
1

V
o
k,

e2piK̃8·t̃kfk,So
i j

Yi j K̃i8K̃j8D
3 `,So

i j

Yi j K̃i8K̃j8,o
i j

Yi j K̃i8K̃j,o
i j

Yi j K̃iK̃jD
3e−2piK̃ ·t̃kfk,So

i j

Yi j K̃iK̃jD . s50d

If `, is expanded, we observe that it is a polynomial in

which all terms are products of, componentsK̃i8 and, com-

ponentsK̃i. We can regroup terms and formulate Eq.s50d in
terms of such tensor products,27

T,msK̃ d = K̃1
ITs1,,,mdK̃2

ITs2,,,mdK̃3
,−ITs1,,,md−ITs2,,,md, s51d

where ITsi ,, ,md is an indexing array of non-negative inte-
gers. This array can be defined in a systematic way for ten-
sors from rank 0 up to the highest we shall encounter. Them
index runs from 1 tos,+1ds,+2d /2. The matrix element can
then be expressed as

kK̃ 8uVNLuK̃ l =
1

V
o

k,mm8

e2piK̃8·t̃kfk,So
i j

Yi j K̃i8K̃j8DT,m8sK̃ 8d

3Clm8msYi jde−2piK̃ ·t̃kfk,So
i j

Yi j K̃iK̃jDT,msK̃ d,

s52d

where eachClmm8 is a polynomial in the components ofY,
whose coefficients can be calculated once for all.27 The no-
tation in Eq.s52d has been chosen to resemble that of Eq.
s44d, so that its fully separable form is clear. However, them
and m8 terms are coupled both because theT,m tensors do
not form an orthogonal set like theY,m, and because the
shapes of the angular projectors are no longer spherical har-
monics when mapped into reduced coordinates. There is no
coupling among different angular momenta,, however, be-
cause deformations cannot change the number of nodes of
the projectors.

The procedure for evaluating strain derivatives is now
completely straightforward. The operator] /]hab applied to
Eq. s50d will act on theV−1 prefactor, on theYi j coefficients
in the `, polynomial, and on the arguments of thefk,. De-
fining thenth derivative offt, with respect to its argument as
ft,

snd wheren=0,1,2, . . ., weobserve

]fk,
s0d

]hab

= fk,
s1do

i j

Yi j
sabdK̃iK̃j , s53d

so this derivative raises the rank of one of the tensor products
by 2. The derivative of Eq.s50dcan be written in a form very
similar to Eq.s52d,

kK̃ 8u
]VNL

]hab

uK̃ l =
1

V
o

k,mm8n8n

e2piK̃8·t̃kfk,
sn8dSo

i j

Yi j K̃i8K̃j8D
3T,+2n8,m8sK̃ 8dC,m8mn8n

ab sYi j ,Yi j
sabdd

3e−2piK̃ ·t̃kfk,
sndSo

i j

Yi j K̃iK̃jDT,+2n,msK̃ d

− dabkK̃ 8uVNLuK̃ l, s54d

where the indicesn ,n8 run from 0 to 1 subject ton+n8ø1,
the m index runs from 1 tos,+2n+1ds,+2n+2d /2, and
similarly for m8 swith n→n8d. TheC,m8mn8n

ab matrix elements
are each polynomials inYi j and Yi j

sabd. The couplings here
can be translated back to more familiar angular momentum
terms, since the leadingsrankd index of theT,m tensors does
correspond to the ordinary,. This derivative operator
couples components, on the right to,−2, ,, and,+2 on the
left. The last term arises from the derivative of theV−1 pref-
actor in Eq.s52d.

The extension to second strain derivatives, needed in the
kcs0duHs2ducs0dl contribution to the second-order energies, is
similarly straightforward and can be expressed in nearly the
same form,

kK̃ 8u
]2VNL

]hab]hgd

uK̃ l

=
1

V
o

k,mm8n8n

e2piK̃8·t̃kft,
sn8dSo

i j

Yi j K̃i8K̃j8DT,+2n8,m8sK̃ 8d

3C,m8mn8n
abgd sYi j ,Yi j

sabd,Yi j
sgdd,Yi j

sabgddd

3e−2piK̃ ·t̃kfk,
sndSo

i j

Yi j K̃iK̃jDT,+2n,msK̃ d

− dabkK̃ 8u
]VNL

]hgd

uK̃ l − dgdkK̃ 8u
]VNL

]hab

uK̃ l

+ dabdgdkK̃ 8uVNLuK̃ l, s55d

where the indicesn ,n8 now run from 0 to 2 subject ton
+n8ø2, them,m8 ranges depend onn ,n8 as above, and the
C matrix elements are polynomials in components of all the
indicated arguments. Here, possible right-to-left angular mo-
mentum couplings are, to ,−4, ,−2, ,, ,+2, and,+4.

Finally, we need to consider mixed derivatives with re-
spect to one strain component and one atomic displacement.
Differentiating Eq.s50d with respect to the reduced coordi-

nate t̃kk will introduce factors −2piK̃k8 or 2piK̃k, and our
result will be of the form

kK̃ 8u
]2VNL

]t̃kk]hab

uK̃ l =
2pi

V
o

,mm8

nn8mm8

e2piK̃8·t̃k

3fk,
sn8dSo

i j

Yi j K̃i8K̃j8DT,+2n8+m8,m8sK̃ 8d

3 C,m8mn8nm8m
kab sYi j ,Yi j

sabdd
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3e−2piK̃ ·t̃kft,
sndSo

i j

Yi j K̃iK̃jDT,+2n+m,msK̃ d

− dabkK̃ 8u
]VNL

]t̃kk

uK̃ l, s56d

where the indicesn, n8 run from 0 to 1 subject ton+n8ø1,
the new index pairm, m8 run from 0 to 1 subject tom+m8
=1, and them, m8 indices span the ranges indicated by the
rank of the respectiveT tensors. Here, the angular momen-
tum couplings are, to ,−3, ,−1, ,+1, and,+3. The ex-
pression for the atomic-displacement derivative in the last
term is given by Eq.s55d of Ref. 8.

The task of carrying out the differentiations, collecting
terms, and extracting the coefficients of theT tensors to ob-
tain theC matrix element polynomials in Eqs.s52d ands54d–
s56d appears to be extremely tedious. However, the structure
of this procedure is sufficiently simple that it is easily auto-
mated using a symbolic manipulation program.28 Since they
depend only on the primitive lattice vectors, these polynomi-
als need only be evaluated once, and the task of applying the
derivative nonlocal potentials to a set of wave functions is
computationally comparable to that of applying the poten-
tials themselves. For expectation values such as
kcs0duHs2ducs0dl, certain pairs ofn, n8 andm, m8 indices give
Hermitian conjugate contributions, and the sums over these
indices may be simplified accordingly.

F. Hartree potential

The operation of the first-order Hartree potential on the
zero-order wave functions is evaluated in real space using an
analogous expression to that for the local potential, Eq.s38d.
The potential is most easily calculated in reciprocal space,
however, where the Poisson equation is diagonal. The zero-

order electron density componentsn
G̃

s0d
depend on strain only

through theirV−1 normalization factor.1 The Fourier compo-
nents of the first-order Hartree potential are

V
HG̃

sabd
=

4p

G2Fn
G̃

sabd
− n

G̃

s0dSdab +
1

G2o
i j

Yi j
sabdG̃iG̃jDG ,

s57d

where n
G̃

sabd
are the Fourier components of the first-order

density for the strain perturbation, andG2 is given by Eq.
s39d. The second-order strain derivatives of the Hartree en-
ergy are

]2EH

]hab]hgd

= 2pV o
G̃Þ0

n
G̃

s0d*
n

G̃

s0dFdabdgdG
−2

+ G−4o
i j

sdabYi j
sgdd + dgdYi j

sabd − Yi j
sabgdddG̃iG̃j

+ 2G−6o
i j

Yi j
sabdG̃iG̃jo

kl

Ykl
sgddG̃kG̃lG . s58d

There is no Hartree contribution to the internal strain.

G. Exchange-correlation potential

The operation of the first-order exchange-correlation po-
tential on the zero-order wave functions is evaluated as in
Eq. s38d. If the densityns0d consisted only of contributions
from the zero-order wave functions, its explicit strain depen-
dence would arise only from theV−1 normalization factor,
and would be trivially found from Eq.s29d.29 However, it is
frequently desirable to include a nonlinear core correction
through model core charges,30 which significantly compli-
cates the analysis. In this section, we must distinguish “elec-
tron” and “core” contributions,ns0d=ne

s0d+nc, where the core
density is given by a sum of finite-range spherically symmet-
ric atom-centered functions,

ncsr d = o
R

o
k

cell

rkcsur − tk − Rud. s59d

Considering for present purposes only local-density func-
tionals, it is straightforward to show from Eq.s11d that the
first-order xc potential is

Vxc
sabd ;

]Vxc

]hab

= KxcS− dabne
s0d +

]nc

]hab

+ nsabdD , s60d

where we define

Kxc ; UdVxcsnd
dn

U
ns0d

. s61d

We have included in Eq.s60d both the explicit strain depen-
dence of the zero-order densities and the first-order density
for the strain perturbation,nsabd, which must be evaluated
self-consistently through Eqs.s8d and s10d. All the terms in
Eqs.s60d ands61d are functions of the real or reduced spatial
coordinate, these arguments having been omitted for clarity.

The model core charge in reduced coordinates,ncsr̃ d, is a
nontrivial function of strain through the arguments of therkc.
Introducing the notation for the magnitudes“size”d of a
reduced-coordinate real-space vector

ssr̃ d = So
i j

Ji j r̃ i r̃ jD1/2
, s62d

and its strain derivative

ssabdsr̃ d ;
]ssr̃ d
]hab

=
1

2ssr̃ doi j Ji j
sabdr̃ i r̃ j , s63d

we have

]ncsr̃ d
]hab

= o
R̃

o
k

cell

rkc8 fssr̃ − t̃k − R̃dgssabdsr̃ − t̃k − R̃d,

s64d

whererkc8 are the first derivatives of each model core func-
tion with respect to its argument.

Second-order xc terms in Eq.s15d for the strain-strain
derivatives require corresponding derivatives of the “size”
function,
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ssabgddsr̃ d ;
]2ssr̃ d

]hab]hgd

= −
1

4s3sr̃ doi j Ji j
sabdr̃ i r̃ jo

k,

Jk,
sgddr̃kr̃,

+
1

2ssr̃ doi j Ji j
sabgddr̃ i r̃ j , s65d

in terms of which the core charge second derivatives can be
evaluated as

]2ncsr̃ d
]hab]hgd

= o
R̃

o
k

cell

hrkc8 fssr̃ − t̃k − R̃dgssabgddsr̃ − t̃k − R̃d

+ rkc9 fssr̃ − t̃k − R̃dgssabdsr̃ − t̃k − R̃d

3ssgddsr̃ − t̃k − R̃dj. s66d

The second derivatives of the xc energy are

]2Exc

]hab]hgd

= dabdgdExc
s0d + VE FsKxcne

s0d − Vxc
s0dd

3Sdabdgdne
s0d − dab

]nc

]hgd

− dgd

]nc

]hab
D

+ Vxc
s0d ]2nc

]hab]hgd

+ Kxc
]nc

]hab

]nc

]hgd
Gd3r̃ . s67d

Finally, second-order derivatives with respect to a strain
component and a reduced-atomic-displacement component
are required. The required “size” derivatives are

ssidsr̃ d ;
]ssr̃ d
]r̃ i

= o
j

s−1sr̃ dJi j r̃ j , s68d

and

ssabidsr̃ d ;
]2ssr̃ d

]hab]r̃ i

= o
j

fs−1sr̃ dJi j
sabd + s−3sr̃ dssabdsr̃ dJi jgr̃ j .

s69d

The corresponding equations for thenc derivatives are found
by straightforward substitutionsgd→ i andhgd→ t̃ki in Eqs.
s64d and s66d. The xc energy second derivative is

]2Exc

]hab]t̃ki

= VE FdabsVxc
s0d − Kxcne

s0dd
]nc

]t̃ki

+ Vxc
s0d ]2nc

]hab]t̃ki

+ Kxc
]nc

]hab

]nc

]t̃ki
Gd3r̃ . s70d

H. Ion-ion interactions

While not part ofEel, the ion-ion interactions contribute a
strain-dependent part of the total energy of a solid. Since the
ion-ion energyEII does not involve the electrons, its first
derivatives do not enter into the self-consistent Sternheimer
equation of DFPT, Eq.s10d, and need not be considered here.
EII is conventionally evaluated as a sum of three terms using
the Ewald summation formula,31

EII
G =

1

2pV
o

GÞ0

e−spG/jd2

G2 o
kk8

cell

ZkZk8e
iG·stk−tk8d, s71d

EII
R =

1

2o
R

o
kk8

cell

ZkZk8

erfcsjutk − tk8 − Rud

utk − tk8 − Ru
, s72d

EII
0 =

− j

Îp
o
k

cell

Zk
2, s73d

whereZk are the ion charges andj is a convergence param-
eter. In Eq.s72d and similar equations below, thek=k8 term
in the sum is to be omitted whenR=0. The strain second
derivative of the reciprocal space sum is similar to Eq.s58d,
the Hartree term in Sec. III E,

]2EII
G

]hab]hgd

=
1

2pV
o

G̃Þ0

e−spG/jd2

G2 o
kk8

cell

ZkZk8e
2piG̃·st̃k−t̃k8dFdabdgd

+ sG−2 + p2j−2do
i j

sdabYi j
sgdd + dgdYi j

sabd

− Yi j
sabgdddG̃iG̃j + sp4j−4 + 2p2j−2G−2

+ 2G−4do
i j

Yi j
sabdG̃iG̃jo

kl

Ykl
sgddG̃kG̃lG . s74d

The strain–reduced-atomic-coordinate second derivative is

]2EII
G

]hab]t̃kk

=
iZk

V
o

G̃Þ0

espG/jd2

G2 e2piG̃·t̃kG̃ko
k8

cell

Zk8e
−2piG̃·t̃k8Fdab

+ sG−2 + p2j−2do
i j

Yi j
sabdG̃iG̃jG . s75d

The derivatives of the real-space sum involve much of the
same analysis as was applied to the model core charge in
Sec. III G. Let us introduce the compact notation

skk8R̃ = sst̃k − t̃k8 − R̃d s76d

with a similar subscript notation for the several derivatives of
s defined in Eqs.s63d, s65d, s68d, ands69d. The strain-strain
derivative of the real-space sum is then

]2EII
R

]hab]hgd

=
2

Îp
o
R̃

o
kk8

cell

ZkZk8hfsj
3 + j/skk8R̃de−sjskk8R̃d2

+ Îp erfcsjskk8R̃d/2s
kk8R̃

3 gs
kk8R̃

sabd
s

kk8R̃

sgdd

− fj/2skk8R̃ + Îp erfcsjskk8R̃d/4s
kk8R̃

2 gs
kk8R̃

sabgddj.

s77d

The corresponding strain–reduced-atomic-coordinate expres-
sion is obtained from the analogs of Eqs.s68d ands69d, and
the substitutionsgd→ i andhgd→ t̃ki in Eq. s77d.

The Ewald result for the ion-ion interaction represents the
energy of an array of point charges interacting with a uni-
form neutralizing background. In fact, the proper reference is
the local pseudopotentials, which differ from Coulombic po-
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tentials in their core region, interacting with the uniform
background. This energy correction is given by

Epsp-core=
1

VSo
k8

Zk8DSo
k

4pE
0

`

fvklocsrd + Zk/rgr2drD .

s78d

The only strain dependence is through theV−1 factor, so the
second strain derivative of this term is simplydabdgdEpsp-core.

IV. IMPLEMENTATION AND RESULTS

A. Clamped-atom perturbations

The metric tensor formulation of strain perturbations in
DFPT was developed and tested in stages within the open-
sourceABINIT software package.32 As anticipated, it could be
merged cleanly into the existing DFPT structure of this code
which had previously been developed to treat atomic-
displacement and electric-field perturbations. The ground-
state portions of this code already calculated relevant first
derivatives of the DFT total energy, in particular atomic
forces, stresses using the Nielsen-Martin analysis,1 and po-
larization using the Berry-phase method.7,17 The availability
of first derivatives calculated in a context completely consis-
tent with the strain second derivatives permitted critical com-
parisons to verify our formalism and its computational real-
ization.

Numerical strain derivatives of the various first deriva-
tives were carried out using the five-point formula,33 and
strain increments sufficiently small to ensure an invariant set

of K̃ within the specified energy cutoffs. These comparisons
required consistency between the ground-state DFT and
DFPT calculations with regard to cutoffs, Brillouin-zone
sampling, etc., but not necessarily complete convergence
with respect to these parameters. What was required for ac-
curate comparisons was an exceedingly high level of conver-
gence of the self-consistent potentials and wave functions,

for both the ground-state numerical derivatives and the
DFPT results. This was necessitated by the fact that the ex-
pressions used for the mixed second derivatives, Eqs.s15d
ands16d, are nonstationary, and such convergence errors ap-
pear in first order.

The level of agreement that can be obtained for the elastic
and piezoelectric tensors is illustrated in Tables I and II, re-
spectively. The system chosen for this example was AlP, but
with the two-atom unit cell of the zinc-blende structure ran-
domly distorted in the range ±5% for both the primitive lat-
tice vectors and the relative atomic positions. This was nec-
essary to obtain a full set of tensor elements for comparison,
since most would otherwise be zero or identical because of
symmetry. Stresses in the referencesnominally “unstrained”d
configuration were not relaxed, so the elastic tensor second-
derivatives needed to be compared toV−1]sVsabd /]hgd

rather than]sab /]hgd, following Eq. s32d. This also en-
hanced the completeness of these tests, since a subset of the
terms derived in Sec. III would mutually cancel for a truly
unstrained reference structure.

For the piezoelectric tensor comparisons, there are two

caveats. Equations16d requires first-order wave functionsca
k̃j

for thed/dk perturbation, which are best found from DFPT.9

However, the ground-state calculations of the polarization
perform Berry-phase integrations on a discrete grid ofk
points in the Brillouin zone.7,17 For optimum consistency, a

finite-difference approximation to theca
k̃j based on the

ground-state grid was used.34 In the limit of a largek sample,
both approaches give the same result, as they must. Results

with the DFPTca
k̃j in fact converge much more rapidly with

zone sample size. The second issue concerns the effects on
the strain numerical derivatives of the polarization of the
reference configuration. The straight numerical derivatives
yield the so-called “improper” piezoelectric tensorea,gd
=]Pa /]hgd, while DFPT yields the “proper” tensorẽa,gd.
Knowing the reference configuration polarization, the proper
tensor can be calculated from the improper one in a straight-
forward manner,35 and this has been done for the compari-
sons in Table II.

TABLE I. Comparison of a sample of numerical and DFPT clamped-atom elastic tensor components
Cab,gd

* sGPad for distorted AlP. The strain increment for numerical differentiation is 2310−5. The overall
root-mean-squaredsrmsd difference is 5310−6 GPa.

ab gd Numerical DFPT Difference

xx xx 1.24999903102 1.24999903102 2.400310−5

yy xx 6.69903603101 6.69903603101 −3.900310−6

zz xx 6.83968403101 6.83968403101 −1.500310−6

yz xx 8.837339310−2 8.8373500310−2 1.054310−7

xz xx −1.1173330 −1.1173330 −4.300310−7

xy xx −4.1892180310−1 −4.1892170310−1 5.700310−8

xx yz 8.8374160310−2 8.8373500310−2 −6.607310−7

yy yz 5.1544700 5.1544690 −1.030310−6

zz yz −5.5782700 −5.5782700 −2.900310−7

yz yz 9.03157303101 9.03157303101 4.500310−6

xz yz −4.0474890310−1 −4.0474890310−1 5.000310−8

xy yz 6.4472760310−1 6.4472770310−1 6.400310−8
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B. Relaxed-atom calculations

While homogeneous strain as defined in Eq.s17d moves
all atoms proportionally, in a real experimental situation
macroscopic strain only deforms the unit cells, and the
atomic positions readjust. The effects of this relaxation on
the elastic and piezoelectric tensors can be calculated ana-
lytically as corrections to the clamped-atom quantities. These
corrections can be computed from the set of mixed second
derivatives with respect to one strain component and one
component of each internal atomic coordinate, the “internal
strain.”36 The expressions needed to compute the frozen-
wave-function contributions to internal strain have been
given in Sec. III for each term in the DFT energy. We have
used the nonstationary expression for mixed second deriva-
tives, Eq.s15d, with the strain-perturbation wave function for
csl2d and the atomic-coordinate component first-order Hamil-
tonian forHsl1d, whose terms have been given previously.9

The relaxation corrections also require mixed second de-
rivatives with respect to pairs of internal-atomic-coordinate
components, known as the interatomic force constant matrix,

and with respect to one atomic-coordinate component and
one electric-field component, known as the Born effective
charges.36 The DFPT expressions needed to evaluate these
quantities have also been given,9 and were previously imple-
mented in theABINIT package.32 The expressions combining
all these mixed derivatives to obtain the atomic-relaxation
corrections are straightforward, and will not be detailed
here.36

Numerical-derivative comparisons including the relax-
ations are especially challenging. In addition to the consid-
erations discussed above for consistency and convergence of
the clamped-atom quantities, the atomic positions in the in-
crementally strained unit cells must be relaxed in the ground-
state DFT calculations until the forces are far smaller than
typically considered necessary for structural optimization.
Tables III and IV give the relaxed-atom results for the elastic
and piezoelectric tensors for the distorted AlP example dis-
cussed above. The agreement between the numerical deriva-
tives and the DPFT results is excellent, but respectively one
and two orders of magnitude worse on the average than for
the clamped-atom quantities. This level of agreement re-

TABLE II. Comparison of a sample of numerical and DFPT clamped-atom proper piezo-electric tensor
componentsẽa,gd sC/m2d for distorted AlP. The strain increment for numerical differentiation is 2310−5. The
overall rms difference is 2310−8 C/m2.

a gd Numerical DFPT Difference

x xx 2.0211410310−2 2.0211400310−2 −8.700310−9

y xx 5.2336140310−2 5.2336120310−2 −1.770310−8

z xx 4.0031790310−3 4.0031860310−3 6.720310−9

x yy −8.2697310310−2 −8.2697310310−2 3.000310−10

y yy 2.4712180310−3 2.4712150310−3 −3.280310−9

z yy 7.3837080310−3 7.3837040310−3 −4.260310−9

x yz −6.9263100310−1 −6.9263100310−1 −3.600310−8

y yz −1.4235180310−3 −1.4235300310−3 −1.231310−8

z yz −1.3531730310−2 −1.3531760310−2 −2.880310−8

TABLE III. Comparison of a sample of numerical and DFPT relaxed-atom elastic tensor components
sGPad for distorted AlP. The strain increment for numerical differentiation is 2310−5. The overall rms
difference is 4310−5 GPa.

ab gd Numerical DFPT Difference

xx xx 1.24991503102 1.24991503102 −1.100310−5

yy xx 6.69997503101 6.69997603101 8.200310−6

zz xx 6.83594403101 6.83594403101 7.000310−7

yz xx 2.2844680310−1 2.2846610310−1 1.927310−5

xz xx −1.1398380 −1.1398280 9.560310−6

xy xx −1.5027680310−2 −1.5117250310−2 −8.957310−5

xx yz 2.2847050310−1 2.2846610310−1 −4.380310−6

yy yz 1.9400500 1.9400540 3.720310−6

zz yz −2.0792640 −2.0792750 −1.109310−5

yz yz 6.65933403101 6.65933903101 5.160310−5

xz yz 7.7397220310−1 7.7397730310−1 5.121310−6

xy yz −5.6844590310−1 −5.6844910310−1 −3.170310−6
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quired attaining residual forces less than 10−10 atomic units
shartree/bohrd for the 2310−5 strain increment needed to sat-
isfy the conditions discussed above. The precision of the
required relaxation illustrates the impracticality of obtaining
accurate values for the relaxed-atom quantities for more
complex systems by numerical differentiation. Attempts at
further convergence suggested that the level of agreement
shown here is at the limit of numerical precision for the
overall set of calculations.

Comparing the tables of relaxed and unrelaxed tensors,
we see that the relaxation corrections to the large compo-
nents of the elastic tensor, those which would be present for
the zinc-blende structure without the random distortions, are
rather small. For the piezoelectric tensor however, the only
large componentsx,yzd, is substantially corrected.

V. SUMMARY AND CONCLUSIONS

In conclusion, we have demonstrated the manner in which
strain can be treated within a standard implementation of
density-functional perturbation theory by using reduced co-
ordinates and the subsequent strain dependence of the metric
tensor. Expressions necessary to evaluate all the second-
order derivatives of the density-functional theory energy
have been derived, and it has been established that they are
correct and complete by comparisons with numerical deriva-
tives. Direct calculation of the elastic and piezoelectric ten-
sors, including atomic relaxation, is thereby achieved. The
level of agreement with experimental quantities is, of course,
determined by the fundamental limitations of density-
functional theory, and to a lesser extent by the pseudopoten-
tial approximation and the quality of the pseudopotentials
that are employed.

The expressions given here pertain to norm-conserving
pseudopotentials.11 While the same approach can in principle
be applied to ultrasoft pseudopotentials,37 the closely related
projector-augmented-wave all-electron method,38 and the
linear-augmented-plane-wave method,39 these all pose sig-
nificant additional challenges. The first set of challenges re-
lates to the fact that the nonlocal operators coupling the
plane-wave components of these methods have off-diagonal
terms coupling the,m, ,8m8 spherical harmonic indices
about each atomic site. This precludes the reduction to wave-
vector dot products achieved in Eq.s49d. The second issue
concerns the augmentation components of the wave func-
tions and charge. These functions are not deformed by ho-
mogeneous strain in the manner of the plane waves and
plane-wave charge density. Thus the mapping onto reduced
coordinates and derivatives of that mapping entail issues
similar to those discussed in Sec. III G in connection with
model core charges and the nonlinear core correction.30 Un-
like the core charges, however, the augmentation function are
not spherical, so additional considerations apply. While the
implementation of the strain perturbation within DFPT using
these formalisms poses these challenges and requires signifi-
cant further analysis, the metric tensor approach likely re-
mains the most viable.
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