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We review the formalisms of the self-consistent GW approximation to many-body perturbation theory and of
the generation of optimally localized Wannier functions from groups of energy bands. We show that the
quasiparticle Bloch wave functions from such GW calculations can be used within this Wannier framework.
These Wannier functions can be used to interpolate the many-body band structure from the coarse mesh of
Brillouin-zone points on which it is known from the initial calculation to the usual symmetry lines, and we
demonstrate that this procedure is accurate and efficient for the self-consistent GW band structure. The resem-
blance of these Wannier functions to the bond orbitals discussed in the chemical community led us to expect
differences between density-functional and many-body functions that could be qualitatively interpreted. How-
ever, the differences proved to be minimal in the cases studied. Detailed results are presented for SrTiO3 and
solid argon.
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I. INTRODUCTION

For several decades, many-body perturbation theory has
been used successfully to describe excited-state electronic
properties of a broad range of solids. The spectra of excited
electrons and holes in solids are properties of the single-
particle Green’s function, which is determined by the elec-
tron kinetic energy, the ionic and Hartree potentials, and the
self-energy operator � which encompasses all the electron-
electron exchange and correlation effects. While � cannot be
calculated exactly, an approximation ��GW, where G is the
Green’s function and W is the dynamically screened Cou-
lomb interaction, was proposed by Hedin in 1965.1 Two de-
cades of development of electronic-structure calculations
within the local-density approximation �LDA� �Ref. 2�
would pass, however, before full-blown ab initio implemen-
tations of this so-called GW approximation would be
realized.3,4

Widespread application of GW calculations to metals,
semiconductors, and insulators gave good agreement with
experimental band structures in many cases. In general, these
calculations followed the pioneering works in using LDA
eigenvalues and Bloch functions to evaluate G and W, and to
find the so-called quasiparticle eigenvalues from the diagonal
expectation value of the � operator and its energy derivative,
also calculated with LDA Bloch functions.3,4 In principle, it
is desirable to evaluate the GW approximation self-
consistently since different results would be expected if a
different mean-field approximation such as Hartree-Fock
were used instead of LDA in this “one-shot” scheme. � is a
non-Hermitian and energy-dependent operator, reflecting the
fact that the spectral weight of G contains a broad continuum
representing many-particle excitations as well as relatively
sharp quasiparticle �QP� peaks. This complicates the issue of
self-consistency within a set of independent-particle-like
quasiparticle wave functions. A recently introduced approxi-
mation to quasiparticle self-consistent GW �QSGW� gener-
ates such wave functions as eigenfunctions of a Hamiltonian
containing a Hermitian time-independent effective exchange-

correlation potential Vxc
eff constructed from �.5,6 This potential

was subsequently shown to approximately minimize a plau-
sibly defined measure of the difference of the time evolution
determined by it and by the full �.7 QSGW band gaps
showed significant improvement over those obtained from
one-shot LDA-GW band gaps for a variety of materials.7

One practical problem presented by QSGW calculations is
that Vxc

eff is not simply a potential but a nonlocal operator.
After the calculations have been iterated to self-consistency,
Vxc

eff is defined only on a uniform mesh of Brillouin-zone
�BZ� k points so there is no straightforward way to calculate
quasiparticle eigenvalues at arbitrary k points such as those
along the symmetry lines used to plot band structures. This
was one of two issues motivating the present study.

The authors introducing the QSGW method have further
argued that the QP wave functions obtained by their method
are physically meaningful representations of the correlated
quasiparticle states envisaged in the Landau quasiparticle
picture, and can be used in the calculation of physical
properties.6 The density calculated from these wave func-
tions, for example, is used to calculate the Hartree potential
in their QSGW procedure. It was recently shown that such
QP Bloch functions can differ substantially from their LDA
counterparts, especially at general points in the Brillouin
zone.8 The shape of individual Bloch functions is not easily
assigned a physical interpretation, however, and it is this
issue which provides the second motivation for the present
study.

An alternative to representing one-particle-like electronic
states of solids as periodic Bloch functions �kn�r� is to rep-
resent them as localized Wannier functions wn�r−R�, where
n is a band index and R is the lattice vector of a unit cell.9

The original concept of Wannier functions associated with
single isolated bands has been generalized to sets of Wannier
functions associated with isolated groups of bands, in the
process introducing an algorithm to minimize their spatial
spread.10 A further generalization permitted these maximally
localized Wannier functions �MLWFs� to be constructed
from entangled bands.11 As we will discuss in more detail
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below, the construction of MLWFs requires a set of Bloch
functions on a uniform mesh of k points, which is precisely
what we have for the QP functions at the end of the QSGW
calculation. MLWFs form a basis set that can be used to
generate a highly accurate interpolated band structure at very
low computational cost,11 thereby solving the basic practical
difficulty of QSGW calculations discussed above.12

MLWFs turn out to be the solid-state equivalent of the
localized molecular orbitals studied in the chemical
literature.13 These linear combinations of delocalized
molecular-orbital eigenfunctions correspond closely to the
“natural bond orbitals,” which form a realization of the
chemists’ picture of localized bonds and lone pairs as basic
units of molecular structure.14 Comparing LDA and QP
MLWFs could potentially offer qualitative insight into the
manner in which an improved treatment of many-body cor-
relations alters individual bonds. In effect, MLWFs could
extract the physical content of changes observed in indi-
vidual Bloch functions.8

A third potentially interesting comparison relates to the
modern theory of electric polarization in solids.15–17 The
theory was originally formulated in terms of a Berry phase,18

but it can be shown to be the equivalent of calculating the
centers of charge of Wannier functions.16 While the Berry
phase formulation has been formally extended to include
many-body wave functions,19 the connection to QP Wannier
centers through the GW approximation and the single-
particle-like QP Bloch functions considered here6 has not
been explored, and is beyond the scope of the present inves-
tigation.

II. FORMALISM AND IMPLEMENTATION

A. Quasiparticle self-consistent GW

In this section we shall briefly review the mathematical
expressions defining QSGW in the approximation of Refs.
5–7 without discussion of the underlying rationale for this or
the overall GW approximation, for which we refer the read-
ers to these and Refs. 1, 3, and 4. The single-particle-like QP
wave functions we have been discussing are solutions of the
effective Schrödinger equation

Heff�ki�r� =� d3r���−
1

2
�2 + VHartree�r����r − r��

+ VExt�r,r�� + Vxc
eff�r,r����ki�r�� = �ki�ki�r� ,

�1�

where k and i are the Bloch vector and band index, where we
have written the external potential as a nonlocal operator
with pseudopotentials in mind, and where the Hartree and
effective exchange-correlation potentials are to be deter-
mined self-consistently. The Hartree potential is calculated
from the density defined in the usual way from the occupied
�ki.

What we will call the effective Green’s function is com-
puted from the solutions of this equation as

Geff�r,r�,�� =
V

�2��3�
BZ

d3k	
i

�ki
� �r��ki�r��

� − �ki + i� sgn��ki�
,

�2�

where V is the unit-cell volume, � is a positive infinitesimal
and the QP energies �ki are measured from the Fermi energy.

The dynamically screened interaction W is calculated
within the random-phase approximation �RPA� starting with
the susceptibility

��r,r�,�� =
V

�2��3�
BZ

d3k	
ij

�nki − nkj�

	
�ki�r��kj

� �r��ki
� �r���kj�r��

�ki − �kj − � − i�
, �3�

where nki and nkj are occupation numbers. The RPA dielec-
tric function is then given as

��r,r�,�� = ��r − r�� −� d3r�Vc�r,r����r�,r�,�� , �4�

where Vc is the Coulomb interaction 1 / 
r−r�
. Finally the
inverse dielectric function �−1 found as the solution of the
integral equation

� d3r���r,r�,���−1�r�,r�,�� = ��r − r�� �5�

yields W�r ,r� ,��=�−1Vc.
The self-energy operator � is given in terms of the above

functions as the convolution

��r,r�,�� =
i

4�
�

−





d��W�r,r�,���Gef f�r,r�,� + ��� .

�6�

The “full” Green’s function G whose spectral weight would
consist of both a quasiparticle pole with weight less than one
and an incoherent continuum could be calculated from this �
by solving the Dyson equation written schematically as G
=Geff+Geff�G, but this is not required in the present QSGW
scheme. Instead, a measure of the “distance” between the
time evolution generated by � and that generated by Vxc

eff is
introduced,5,7

M�Vxc
eff� = �

BZ
d3k	

i
�

−





d�
�ki
��� − Vxc
eff���� − Heff�

	�� − Vxc
eff�† + H.c.�
�ki� . �7�

This positive-definite distance measure is approximately
minimized by setting5,7
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Vxc
eff�r,r�� =

V

4�2��3�
BZ

d3k	
ij

�ki
� �r���kij��ki� + �kji

� ��ki�

+ �kij��kj� + �kji
� ��kj���kj�r�� , �8�

where

�kij��� = 
�ki
��r,r�,��
�kj� . �9�

Equation �8� completes the self-consistency loop. In prac-
tice, Eqs. �1�–�9� are solved iteratively starting with an ap-
proximation such as LDA for Vxc

eff. While we have outlined
the formalism in real space, most of the indicated operations
are in practice carried out in a reciprocal-space representa-
tion, and the indicated k integrals carried out as sums on a
uniform grid.3,4

B. Wannier functions for quasiparticles

A set of N generalized Wannier functions wRi�r� labeled
by index i and lattice vector R is constructed as

wRi�r� =
V

�2��3�
BZ

d3ke−ik·R	
n=1

Nk

Uni
�k��kn�r� �10�

from Bloch functions �kn with energies inside an energy
window including Nk�N bands throughout the BZ, where V
is the volume of the unit cell and the Nk	N matrices Uni

�k�

are to be determined. For Wannier functions constructed
from an isolated set of bands, Nk=N for all k, and Uni

�k� are
required to be unitary, but this still leaves a great deal of
freedom in their choice. A physically reasonable choice is to
require these generalized Wannier functions to be as local as
possible. A measure of their locality which is the exact ana-
log of a criterion of Boys13 for the molecular-orbital case is
the sum � of second moments of the corresponding Wannier
functions,

� = 	
i=1

N

�
w0i
r2
w0i� − 

w0i
r
w0i�
2� , �11�

where we can specialize to the unit cell at the origin since all
sets of Wannier functions are equivalent within a lattice-
vector translation, wRi�r�=w0i�r−R�.

When Eq. �10� is substituted in Eq. �11�, � becomes a
function of the U matrices and matrix elements of r and r2

between pairs of Bloch functions �kn. These matrix elements
can be re-expressed as matrix elements of gradients and
Laplacians with respect to the Bloch k vector. Since the k
integrations in Eq. �10� are, as usual, approximated by
Brillouin-zone sums on uniform grids, finite-difference ex-
pressions for these gradients and Laplacians can be formu-
lated in terms of matrix elements

Mmn
�k,b� = 
�km
e−ib·r
�k+bn� , �12�

where the set of vectors �b� connect each k-space mesh point
with its nearest neighbors. With � expressed in terms of
Mmn

�k,b� and Uni
�k�, and specializing to the unitary case Nk=N, it

is possible to calculate the derivatives of � with respect to
the Uni

�k�, and use this as the basis of an algorithm to mini-
mize � as discussed in detail in Ref. 10.

It is desirable to start the minimization algorithm from an
initial approximation to Uni

�k�, which is based on some physi-
cally motivated picture of orbitals or bonds that one expects
to be associated with the set of bands being considered. N
guiding functions gi�r� having appropriate centers and orbital
characters �e.g., single-Gaussian atomiclike orbitals with s,
p, or d angular dependence, or hybrid combinations such as
sp3� are introduced. The overlaps with the Bloch functions
are computed,

Ani
�k� = 
�kn
gi� , �13�

and the Ani
�k� matrices used in combination with a symmetric

orthonormalization procedure to form a starting approxima-
tion to Uni

�k�. Since the U’s at each k are coupled to those at
neighboring k’s through the Mmn

�k,b�, the minimization must be
solved self-consistently throughout the Brillouin zone and
this algorithm proceeds iteratively, updating the set of U’s at
each step. When no further significant reduction in � can be
obtained, maximally localized Wannier functions will have
been constructed.10

When the bands possessing the orbital character of inter-
est do not occur as an isolated group, the bands are said to be
entangled and the energy window must be chosen so that
Nk�N for at least some k. For the isolated-group case, �

can be divided into two positive-definite terms, �=�I+�̃.
The so-called invariant term �I can be calculated directly
from the Mmn

�k,b� and is not dependent on the U’s or changed
by the optimization algorithm. This forms the basis for the
extension of the MLWF procedure to the entangled case. For
each k, we generate N orthonormal 
kj as linear combina-
tions of the Nk �kn within the window,


km�r� = 	
n=1

Nk

Dnm
�k��kn�r�, m = 1,N , �14�

where D†D=1. For those k at which Nk=N, the “disen-
tanglement” matrix D is simply the unit matrix. �I is calcu-
lated as for the isolated-group case using the overlap matrix
for neighboring 
’s, M��k,b�= �D�k��†M�k,b�D�k+b�. A new op-
timization algorithm is introduced to minimize �I with re-
spect to the Dnm

�k�. Since the D’s at each k are also coupled to
those at neighboring k’s through the Mnm

�k,b�, this minimiza-
tion must also be solved self-consistently throughout the
Brillouin zone by iteration.11

After this minimization has converged, it is desirable to
diagonalize the set of N	N Hamiltonians H� in the 
 sub-
spaces

Hmn��k� = 	
�=1

Nk

D�m
��k��k�D�n

�k�, �15�

yielding eigenvalues �̃kn, and eigenvectors from which Bloch

functions �̃kn, which are linear combinations of the 
km, and

transformed matrices D̃nm
�k� can be constructed. The Wannier

functions are now expressed as
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wRi�r� =
V

�2��3�
BZ

d3ke−ik·R	
n=1

N

Ũni
�k��̃kn�r� , �16�

and �̃ is calculated from the �̃kn overlaps, M̃�k,b�

= �D̃�k��†M�k,b�D̃�k+b�, and minimized with respect to the ma-

trix elements of the set of unitary Ũ’s using the isolated-
group algorithm. When this minimization has converged, the
original U’s in Eq. �10� are simply the set of matrix products

U= D̃Ũ.
It is often desirable to limit the mixing of Bloch functions

in Eq. �14� so that the �kn belonging to some bands �e.g.,
low-lying conduction bands� can be exactly reproduced by
linear combinations of wRi. In this case, we introduce another
energy window within the overall outer window which we
will call the frozen window, and constrain the D’s so that
Dnm

�k�=�nm for �km within this window.
Band interpolation based on Wannier functions is a form

of Slater-Koster tight-binding interpolation,20 but with
Hamiltonian matrix elements calculated directly from the ei-
genvalues and eigenfunctions of the underlying ab initio cal-
culation rather than through a fitting procedure. The first step

is to rotate the diagonal Hamiltonian H̃mn
�k�= �̃m�mn at each k

mesh point into the linear combination needed to form the
MLWFs,

H̃ij
�k,rot� = 	

n=1

N

Ũni
��k�Ũnj

�k��̃kn. �17�

We have used the quantities with tildes introduced for the
disentangling case without loss of generality since they re-
duce to their “untilded” counterparts for an isolated group of
bands. The next step is to form the matrix elements of the
Hamiltonian between origin-based MLWFs and those at a set
of lattice vectors R within a Wigner-Seitz supercell centered
at the origin and chosen so that the number of R’s equals the
number of points in the k mesh, Nkp. This is carried out by
the discrete Fourier transform

H̃ij
�R,0� = 
wRi
H̃
w0j� =

1

Nkp
	

k mesh
e−ik·RH̃ij

�k,rot�. �18�

Finally, for any arbitrary point k� we find and diagonalize the
N	N Hamiltonian

H̃ij
�k�,rot� = 	

R
eik�·RH̃ij

�R,0�, �19�

thereby obtaining the interpolated energies �̃k�n by an ex-
ceedingly fast computation. We note that the energies ob-
tained in this manner must be identical to the input �̃kn when
k� lies on a mesh point k, and equal to �kn within a frozen
window or for an isolated set of bands. Very accurate inter-
polated band structures have been demonstrated by this
method for the LDA case, where the complete ab initio band
structure is easily calculated for comparison.10,11

We note that good interpolation requires Wannier func-
tions whose individual spreads, given by the square roots of
each term in the sum in Eq. �11�, are small compared to the

size of the supercell. H̃ij
�R,0� as calculated by Eq. �18� is ac-

tually the sum of matrix elements 
w�R+RSC�i
H̃
w0j� over the
Bravais vectors RSC defining the superlattice. If contributions
from RSC�0 are significant spurious oscillations of the
bands along lines in k space could be generated by the in-
verse discrete Fourier transform in Eq. �19�. In some cases,
this problem may only be solved by choosing a denser k
mesh for the calculation, and hence a larger supercell.

Throughout this section, we have made no distinction be-
tween LDA and QSGW Bloch functions and energies. There
is none since the MLWF construction algorithms are driven
solely by overlaps, guiding functions, eigenvalues, and
choice of energy windows without regard to the physical
approximations or mathematical forms leading to the Bloch
functions �such as local vs nonlocal Vxc operators�.

C. Implementation

The computation of MLWFs for QSGW quasiparticles
had been implemented utilizing two existing publicly avail-
able computer codes. The ABINIT package is a full-featured
implementation of density-functional theory and density-
functional perturbation theory based primarily on pseudopo-
tentials and a plane-wave basis set.21 It has been extended to
include self-consistent GW capabilities8,22 within the QSGW
framework.5–7 The Wannier-function algorithms described in
Refs. 10 and 11 are implemented in the WANNIER90

package.23 This package includes both a stand-alone program
which needs a set of files produced by an ab initio program,
and a library whose routines can be called from within an-
other program.

At the time the present project was undertaken, an inter-
face of ABINIT and the WANNIER90 library was partially com-
pleted for density-functional wave functions. We have sub-
stantially extended the capabilities of this interface, a
principal addition being the implementation of a set of guid-
ing functions and generation of the corresponding A matrices
of Eq. �13� with the full set of features specified in Tables 3.1
and 3.2 of the WANNIER90 User Guide,23,24 allowing atomic-
like orbitals and hybrids to be centered at arbitrary sites and
oriented along arbitrary axes.

For reasons of efficiency, the implementation of QSGW in
ABINIT uses LDA Bloch functions as a basis set for the ex-
pansion of the quasiparticle Bloch functions rather than cal-
culating these directly in the underlying plane-wave basis.8

To avoid duplication and dealing with detailed differences in
wave-function storage in the density-functional and GW sec-
tions of ABINIT, the density-functional-Wannier interface was
retained for the quasiparticle MLWF calculations. The qua-
siparticle eigenvectors in the LDA basis form a unitary trans-
formation which is updated and saved after each iteration of
a QSGW calculation. To adapt the interface to GW quasipar-
ticles, it is merely necessary to apply this unitary matrix to
the LDA Bloch basis functions prior to generating the M and
A matrices of Eqs. �12� and �13�, and to generating data for
plotting the Wannier functions.24

III. RESULTS AND DISCUSSION

LDA and QSGW calculations were carried out for several
systems to test the methods reported here and to explore the
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differences of the MLWFs in the two approximations. A one-
sentence summary that will satisfy the disinterested reader is
that the differences are extremely small and that band inter-
polation works as well for GW as for LDA bands.

All calculations were carried out using norm-conserving
pseudopotentials generated from LDA atomic calculations.25

The GW calculations utilized dielectric matrices, Eq. �4�,
represented in the generalized-plasma-pole approximation.3

There are many choices of Brillouin-zone meshes, wave-
vector cutoffs, and numbers of bands to be utilized in various
portions of the GW calculations, and we explored the con-
vergence of our results in sufficient detail to believe that our
GW band energies were converged to within ~0.1 eV. Four
iterations of the self-consistency loop generally sufficed at
this level.

The first system explored was Si in the usual diamond
structure. MLWFs were generated for both LDA and GW
results with guiding functions to select either four bonding
MLWFs for the valence bands and four antibonding ones for
the low-lying conduction bands, or eight sp3-like MLWFs for
all these bands. Isosurface plots of these functions were very
similar to those of Fig. 9 of Ref. 11, and LDA and GW
MLWFs were virtually indistinguishable for any reasonable
choice of isosurface amplitude. Band interpolation results for
LDA were similar in their ability to reproduce full ab initio
bands to the comparison shown in Fig. 8 of Ref. 11. The GW
valence bands were very similar to those of the LDA, and the
GW conduction bands closely approximated a rigid upward
shift of the LDA bands. Our minimum gap increased from
0.49 to 1.36 eV, compared to 1.15 eV �experiment26�, 1.47
eV �plane-wave pseudopotential QSGW �Refs. 8 and 27��,
and 1.25 eV �linear muffin-tin orbital �LMTO� QSGW �Refs.
6 and 27��.

Speculating that the increased GW gap might shift the
character of a polar semiconductor’s wave functions to ap-
pear less covalent and more ionic, we next explored AlP,
which has the zinc-blende structure. Once again, isosurface
plots were essentially indistinguishable. Counterintuitively,
the center of the bonding MLWFs shifted 0.007 Å toward the
Al, and an isosurface plot constructed to greatly exaggerate
the GW-LDA difference showed a very slightly more cova-
lent character for GW. Band interpolation results were as
described for Si, with the minimum gap raised from 1.49 to
2.76 eV, compared to 2.51 eV �experiment28� and 2.61 eV
�LMTO QSGW29�.

Another system we explored was a cubic perovskite ver-
sion of SrZrS3 �whose real structure is a distorted
perovskite30�. This was chosen as a computationally less de-
manding analog of SrTiO3, whose highly localized orbitals
require high plane-wave cutoff energies. Once again, our ex-
pectation was reduced covalency between the S 3p and Zr 4d
orbitals, and once again our MLWF results showed ex-
tremely small differences. While we expected to generate
MLWFs for the low-lying conduction bands based on just the
Zr 4d’s, these bands were sufficiently entangled that the al-
gorithms failed to converge to satisfactory results, and we
didn’t pursue this further by introducing more bands and
more Wannier functions.

In attempting to find more significant differences in LDA
and GW MLWFs, we turned to SrTiO3 itself, and finally to

solid Ar, whose conduction-band Bloch functions were re-
ported to display large differences in Ref. 8. These results
will be discussed in detail in the following subsections.

A. SrTiO3

We studied cubic SrTiO3 using the experimental lattice
constant of 3.905 Å.31 The plane-wave energy cutoffs em-
ployed were 60 Ry for the wave functions and 25 Ry for the
dielectric function. A basis of LDA Bloch functions for 80
bands on a �-centered 8	8	8 k mesh was used for the
QSGW calculation, with 27 bands treated self-consistently.32

25 unoccupied bands were used in the dielectric function
calculation. In constructing norm-conserving pseudopoten-
tials for this calculation, the only semicore states treated as
valence were the Sr 4p, which are nearly degenerate with the
O 2s.33

The MLWFs were constructed in two groups. The first
group was generated from s and p guiding functions on the
three O’s, and p’s on the Sr. The energy window included all
the valence bands, which formed an isolated group. Isosur-
face plots of the predominantly O pz and px GW MLWFs are
shown in Fig. 1. They show some covalent sigma �pz� and
pi�px� bonding with Ti eg and t2g d orbitals, respectively, as
seen in earlier LDA MLWFs for similar perovskites.34

MLWFs for the low-lying conduction bands were generated
from Ti d guiding functions, and the LDA and “enhanced”
�see below� GW dz2 functions are compared in Fig. 2, which
show a small sigma antibonding admixture of O pz.

35

As was the case for our earlier examples, the SrTiO3 va-
lence and conduction MLWFs show no visually apparent dif-
ferences between LDA and QSGW for any choice of isosur-
face value which reasonably displays the shape of the
functions. As a quantitative measure of their similarities, we
calculated their overlaps by numerical integration on a real-
space grid within a 3	3	3 supercell. The overlaps were
0.9995, 0.9997, 0.9983, and 0.9991 for the O px, O py, Ti eg,
and Ti t2g-like functions, respectively, bearing out the quali-
tative observations from the plots. Picking the “best case”

FIG. 1. �Color online� Isosurface plots of SrTiO3 valence-band
maximally localized Wannier functions for GW quasiparticles, at
isosurface values �1 /�V, where V is the unit-cell volume, positive
values red/light gray, and negative blue/dark gray. �a� is an
O-centered pz-like function showing sigma bonding with the Ti dz2

orbital, and �b� an O px-like function showing pi bonding with
Ti dxz.
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Ti dz2, we artificially exaggerated the difference by plotting
the isosurface for 10wGW�r�−9wLDA�r� labeled “enhanced”
GW in Fig. 2. The antibonding O pz contribution is seen to
be slightly smaller, and while we can speculate that this is
related to the increase in the gap, it is obviously a very small
effect. The MLWFs of the deep-lying O 2s and Sr 3p bands
are compact and atomiclike, and we did not undertake any
detailed comparisons of these.

Turning to band interpolation, we display the accuracy
with which MLWF interpolation can reproduce the upper
valence bands �O 2p� and lower conduction bands �Ti 3d� in
Fig. 3. The solid interpolated bands completely obscure the
gray dashed lines representing a direct fine-grained LDA cal-
culation on the Brillouin-zone symmetry lines except for the
uppermost portions of the conduction bands at M and R. The
conduction bands are entangled, and the limits of the outer
window �OW� and frozen window �FW� are indicated on the
band plot. The OW just includes all the Ti 3d-like bands, and
the FW was chosen just below the sixth band at �.

Figure 4 compares the interpolated LDA and GW bands in
this same energy range. The dashed GW band lines are in
essentially exact agreement with the directly computed GW
energies on the symmetry points which were a part of the k
mesh, shown as open circles. Choices of energy windows for
the GW conduction bands were based on similar criteria to

those described above. The gap is essentially doubled from
1.61 to 3.32 eV, is indirect from R to � in both cases, and can
be compared with the experimental gap of 3.16 eV.36 The
GW conduction bands are quite well represented by a rigid
upward shift of the LDA bands, the total width of the Ti 3d
manifold only increasing by 0.37 eV. As is clear from Fig. 4,
the O 3p valence bands are more significantly broadened, by
0.87 eV.

B. Solid argon

The final example we shall report on is solid Ar. Refer-
ence 8 reported significant differences between LDA and
QSGW Bloch functions for the Ar conduction bands at gen-
eral k points, as well as a substantial self-consistency correc-
tion to the gap. Given the minor differences we have dis-
cussed in the other systems, it seemed worthwhile to
examine the corresponding Wannier functions, despite the
fact that we couldn’t expect to say much about bonding, etc.
for such states.

Ar has an fcc crystal structure, and we used the experi-
mental lattice constant of 5.31 Å.37 The plane-wave energy
cutoffs employed were 40 Ry for the wave functions and 32
Ry for the dielectric function. A basis of LDA Bloch func-
tions for 30 bands on a �-centered 8	8	8 k mesh was
used for the QSGW calculation, with 27 bands treated
self-consistently,32 and 26 unoccupied bands used for the di-
electric calculation.

Our first task was to verify that we reproduced the large
Bloch function differences. Figure 5 is modeled on Fig. 9 of
Ref. 8, and shows comparably large changes in the second
conduction-band Bloch function at k= �−1 /8,−3 /8,1 /4�.
The small differences in the absolute values of our Bloch
functions relative to theirs at the “shoulders” near the Ar
atoms are likely due to differences in the pseudopotentials.
The fact that we used the generalized-plasma-pole
approximation3 for the dielectric function while energy
integration4 was used in Ref. 8 might have some small effect
on the GW functions.

The full LDA and Wannier-interpolated LDA conduction-
band structures are compared in Fig. 6, which follows the

FIG. 2. �Color online� Isosurface plots for SrTiO3 conduction-
band MLWFs at isosurface values �2 /�V, showing Ti dz2 character
with a small O pz antibonding contribution, for LDA and for an
“enhanced” GW function which exaggerates the difference as ex-
plained in the text.
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FIG. 3. �Color online� SrTiO3 LDA band structure for the O 2p
upper valence bands and the low-lying conduction bands. The gray
dashed lines are full LDA calculations, and the solid red lines are
the Wannier interpolation. The dash-dotted OW and FW lines indi-
cate the range of the outer and frozen energy windows used in the
conduction-band MLWF construction.
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FIG. 4. �Color online� SrTiO3 band structure comparing
Wannier-interpolated LDA �solid red� and QSGW �dashed blue�
upper valence and lower conduction bands. The open circles at the
symmetry points denote the exact QSGW results on k-mesh points.
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conventions of Fig. 3. They are generally consistent with an
early augmented-plane-wave calculation.38 We initially
hoped to disentangle and construct MLWFs for the lowest
four conduction bands, trying a set of four sp3 guiding func-
tions centered at the octahedral interstitial site, which seemed
a plausible empty site for conduction-band functions whose
main characteristic is to be repelled from the Ar by orthogo-
nalization to the corelike valence bands. Experiments with
various OW and FW windows typically failed to converge,
tended to break the symmetry set by the guiding functions,
and occasionally collapsed to quite different functions. Suc-
cess in obtaining a symmetric, well-localized set of MLWFs
was finally achieved by introducing nine Ar-centered guiding
functions, six hybrids of s, p, and eg d functions, and 3t2g d
functions. The frozen-window limit FW was chosen to lie
just below the �1 band emanating from the second �1 band
since the guiding functions select a Wannier basis which con-
tains only one s function and could not be expected to fit this
band. Fits within the frozen window are seen to be excellent,
whereas only portions of the band structure in the entangled
region above are fit well. In the Wannier fit, bands emanating

from �25� are predominantly composed of the t2g functions,
crossing over in most cases to various linear combinations of
the hybrids toward other symmetry points.

The QSGW conduction-band MLWFs are shown in Fig.
7. The function �a� was generated from the guiding hybrid
1
�6

s+ 1
�2

px− 1
�12

dz2 + 1
2dx2−y2, while �b� was generated from dxz.

The six hybrids clearly concentrate much of the weight of
the lower bands in an octahedral interstitial site, consistent
with our initial speculation. However, the purely t2g d char-
acter of the second through fourth bands at �25� with its
dominant weight along nearest-neighbor “bonds” is the prob-
able reason for our lack of success with four interstitial-
centered functions. We do not show the LDA counterparts of
the GW MLWFs because once again, despite the Bloch func-
tion differences observed in Ref. 8 and reproduced by our
calculations as shown in Fig. 5, the differences are too small
to see with any choice of isosurface level which shows the
shape of the MLWFs. Quantitatively, the LDA-GW overlaps
are 0.9973 for the hybrids and 0.9975 for the t2g’s. There
seemed little point in showing an “enhanced” function as in
Fig. 2 for SrTiO3 since there would be little to say in the way
of physical interpretation.

The LDA and QSGW interpolated conduction bands are
compared in Fig. 8. As was the case for SrTiO3, the interpo-
lated QSGW bands are in excellent agreement with the di-
rectly calculated ones at the symmetry points contained in
the k mesh. The energy windows for the MLWF were chosen
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FIG. 5. Second conduction band of solid Ar: squared modulus of
the Bloch function along the direction �110� at k= �−1 /8,
−3 /8,1 /4�. White circles represent the location of the argon atoms.
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FIG. 6. �Color online� Full and interpolated solid Ar LDA con-
duction bands following the conventions of Fig. 3. The lower limits
of the energy windows can be anywhere in the gap.

FIG. 7. �Color online� Isosurface plots of QSGW MLWFs for
solid Ar conduction bands at isosurface values �0.75 /�V. �a� One
of six s-p-d hybridlike functions pointing along the positive and
negative Cartesian axes; �b� one of three t2g d-like functions.
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FIG. 8. �Color online� Comparison of Wannier-interpolated
LDA and QSGW conduction bands for solid Ar, following the con-
ventions of Fig. 4.
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to parallel the LDA case as closely as possible. Our LDA and
QSGW band gaps, 8.13 and 14.49 eV, respectively, are in
good agreement with the values 8.20 and 14.84 eV reported
in Ref. 8, and with experiment �14.2 eV �Ref. 39��. While it
is not immediately apparent from Fig. 8, close inspection
shows that the QSGW bands are not rigidly shifted versions
of the LDA bands. Shifts within the fitted region range from
6.5 to 9 eV, and are not monotonic. We can speculate that
this range of shifts could be consistent with the large differ-
ences seen between individual LDA and QSGW Bloch func-
tions. However, since the LDA Bloch functions form a very
efficient basis for the expansion of the quasiparticle Bloch
functions,8 the individual differences could largely disappear
in the sums over the Bloch manifolds forming the Wannier
functions.

The valence bands, while wider than previously
reported,38 are quite narrow, and the MLWFs are almost en-
tirely atomic sp-like as expected. We find the 3s band width
for LDA and QSGW to be 0.27 and 0.32 eV, respectively,
and the 3p widths to be 1.33 and 1.53 eV. The valence inter-
band splitting increases from 12.98 in LDA to 13.33 in
QSGW.

C. Analysis of band overlaps

As a step toward an explanation of the small differences
we found between LDA and SCGW MLWFs, we have ap-
plied an analysis which puts the “Bloch manifold” issue sug-
gested above on a more quantitative footing. In Sec. II C we
discussed the unitary matrix that transforms the LDA Bloch
function basis of our QSGW formulation into the quasiparti-
cle eigenfunctions. For the case of an isolated group of N
bands, an N	N submatrix corresponding to these bands re-
lates the manifolds they represent in the LDA and QSGW
calculations for each k. The sum of the absolute squares of
the elements of this submatrix, divided by N and averaged
over the Brillouin zone, measures the overlap of these mani-
folds, with unity representing exact overlap. If the overlap
were unity, the MLWF algorithm would converge to exactly
the same Wannier functions regardless of how intermixed
these LDA basis states were in the QSGW eigenfunctions.

For the case of overlapping bands, where Nk varies and
the disentanglement procedure forms a part of the MLWF
construction, we have adopted a heuristic generalization of
this measure. For each k, we sum the squares of each row for
Nk columns falling within the energy window determined by
the QSGW eigenvalues, normalized by 1 /Nk, and track the
maximum and minimum band indices. We average these col-

umn vectors over the BZ, and average Nk to form N̄. The

sum of the appropriate N̄ �rounded up� elements of the aver-
aged vector then constitutes a manifold-overlap measure that
progressively reduces to the isolated-group case with de-
creasing band entanglement.

We find overlaps of 0.9993 for the SrTiO3 O 2p valence-
band manifolds, 0.9918 for the SrTiO3 Ti 3d conduction-
band manifolds, and 0.9899 for the Ar conduction-band
manifolds. The SrTiO3 valence result is numerically close to
the overlaps we found for the Wannier functions themselves.
The conduction-band manifold overlap “deficits” are smaller

by roughly an order of magnitude than those of the corre-
sponding Wannier overlaps, suggesting that in promoting lo-
calization, disentanglement creates N	N submanifolds with
greater overlap. Significantly stronger mixing between va-
lence and conduction bands, or between either and higher-
lying conduction bands in the quasiparticle eigenfunctions,
would appear to be necessary to reduce the overlaps.

We note that even if the Wannier functions were identical,
the matrix elements of the LDA and QP Hamiltonians given
in Eq. �18� should be substantially different because of the
differences of the �̃kn in Eq. �17�. For the SrTiO3 bands,
where the expanded width of the valence band and upward
shifts in the conduction band are relatively uniform, these
changes should mainly occur in the Wannier-diagonal ele-
ments. However, the changes in the dispersions of the Ar
conduction bands suggest significant changes in off-diagonal
elements as well.

IV. CONCLUSIONS

We have demonstrated that maximally localized Wannier
functions can be formed from quasiparticle wave functions
generated using the quasiparticle self-consistent GW ap-
proximation to a full many-body treatment of the electronic
structure of solids. This was accomplished through relative
minor modifications24 to create the appropriate interface be-
tween two publicly available electronic structure codes,
ABINIT21,22 and WANNIER90.23

We have shown through several examples that MLWF
interpolation can produce an accurate band structure on the
symmetry lines of the Brillouin zone, even though band en-
ergies are directly computed only at few symmetry points
through the QSGW calculation itself. While we did not con-
sider any metals as examples, data for accurate Fermi-
surface plots can be produced by using the WANNIER90 stand-
along program to postprocess the ABINIT output. Changes in
Fermi-surface shape and topology should be expected in
comparing LDA and QSGW results.

MLWFs closely correspond to the bond orbitals in terms
of which chemists understand bonding in molecules and sol-
ids, and we anticipated that changes in the treatment of ex-
change and correlation would be manifest in the bonding.
However, the changes we found in comparing LDA and
QSGW functions in fact turned out to be minimal in the
examples we studied, even for conduction-band �“antibond-
ing”� MLWFs. This was true despite the fact that density-
functional theory is formally a ground-state theory, that only
densities and not Kohn-Sham wave functions have formal
physical significance,2 and that the QSGW eigenvalues differ
significantly from those of the LDA, especially for
conduction-band wave functions. Furthermore, large changes
had been observed in individual conduction-band Bloch
functions,8 but failed to materialize when many of these were
combined to form the Wannier functions. The large overlaps
of the LDA and QSGW Bloch manifolds of corresponding
groups of bands provide an explanation of this behavior.
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We encourage others to continue this search in hope of
finding systems where greater admixtures of different groups
of bands reduce the manifold overlaps, and MLWF differ-
ences are large enough to suggest qualitative physical differ-
ences found through the many-body approach. While it is
tempting to consider materials regarded as “strongly interact-
ing,” this classification generally implies a breakdown of the
quasiparticle picture itself so the applicability of QSGW
would be in question. Finally, while we have confined out
attention to solids, molecules can be treated using the same
computational tools by the supercell method, and may prove

a more fertile ground for discovering correlation effects not
well represented by density-functional theory.
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