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We derive a multi-band formulation of the orbital magnetization in a normal periodic insulator �i.e., one in
which the Chern invariant, or in two dimensions �2D� the Chern number, vanishes�. Following the approach
used recently to develop the single-band formalism �Thonhauser, Ceresoli, Vanderbilt, and Resta, Phys. Rev.
Lett. 95, 137205 �2005��, we work in the Wannier representation and find that the magnetization is comprised
of two contributions, an obvious one associated with the internal circulation of bulklike Wannier functions in
the interior and an unexpected one arising from net currents carried by Wannier functions near the surface.
Unlike the single-band case, where each of these contributions is separately gauge invariant, in the multi-band
formulation only the sum of both terms is gauge invariant. Our final expression for the orbital magnetization
can be rewritten as a bulk property in terms of Bloch functions, making it simple to implement in modern code
packages. The reciprocal-space expression is evaluated for 2D model systems and the results are verified by
comparing to the magnetization computed for finite samples cut from the bulk. Finally, while our formal proof
is limited to normal insulators, we also present a heuristic extension to Chern insulators �having nonzero Chern
invariant� and to metals. The validity of this extension is again tested by comparing to the magnetization of
finite samples cut from the bulk for 2D model systems. We find excellent agreement, thus providing strong
empirical evidence in favor of the validity of the heuristic formula.
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I. INTRODUCTION

During the last decade, charge and spin transport phenom-
ena in magnetic materials and nanostructures have attracted
much interest due to their important role for spintronic
devices.1 An adequate description of magnetism in these ma-
terials, however, should not only include the spin contribu-
tion, but also should account for effects originating in the
orbital magnetization. In light of this, it is surprising that the
theory of orbital magnetization has long remained underde-
veloped. Earlier attempts to develop such a theory used
linear-response methods, which allow calculations of magne-
tization changes,2–5 but not of the magnetization itself.

Just recently, a new approach using Wannier functions
�WFs� has been proposed,6,7 which nicely parallels the analo-
gous case of the electric polarization. The primary difficulty
in both cases is that the position operator r is not well de-
fined in the Bloch representation. Since WFs are exponen-
tially localized in an insulator, this difficulty disappears if the
problem is reformulated in the Wannier representation. For
the polarization, this approach lead to the development of the
modern theory of polarization in the early 1990s.8,9 Simi-
larly, in the case of the orbital magnetization, where the cir-
culation operator r�v is ill defined in the Bloch representa-
tion, the Wannier representation was used to derive a theory
for the orbital magnetization of periodic insulators.7

While the formalism developed in Ref. 7 lays a firm foun-
dation for the orbital magnetization, its application is limited
to certain systems, such as single-band models and insula-
tors. In this paper we expand the applicability to a much
wider class of systems by developing a corresponding multi-
band formalism, essential for most “real” materials. This ex-
tension is nontrivial and the corresponding proof of gauge

invariance is much more complex than for the single-band
case. We proceed in two steps. First, we carry out a deriva-
tion for the case of an insulator with zero Chern invariant.
Second, we give heuristic arguments for an extension of our
formalism to metals and Chern insulators, i.e., systems with
a nonzero Chern invariant, arriving at a formula identical to
that proposed by Xiao, Shi, and Niu10 on the basis of semi-
classical arguments. Chern insulators have been introduced
into the theoretical literature by means of model Hamilto-
nians in two dimensions �2D� which break time-reversal
�TR� symmetry without breaking translational symmetry,11

i.e., maintaining a vanishing macroscopic magnetic field. De-
spite the absence of a macroscopic field, Chern insulators
share several properties with quantum-Hall systems, most
notably the quantization of the transverse conductivity in
2D.11 To the best of our knowledge, there is no known ex-
perimental realization of a Chern insulator �in zero field� in
either 2D or 3D, and the search for such a system remains a
fascinating challenge.

Our extensions to metals and Chern insulators are heuris-
tic and not based on an analytical proof. The fact that our
final formula is identical to the one derived from the semi-
classical wave packet treatment10 is reassuring, but neither of
these approaches can yet be said to constitute a “derivation”
of the formula in the fully quantum context. Nevertheless,
we provide strong numerical evidence of their validity, thus
posing a theoretical challenge: how to provide an analytic
proof of the heuristic formula, beyond the range of the semi-
classical approximation, for both the metallic and Chern-
insulating cases.

Before proceeding, we emphasize that the present work
only addresses the question of how to compute the orbital
magnetization for a given independent-particle Hamiltonian.
Many interesting questions remain concerning which flavor
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of density-functional theory �DFT� or which exchange-
correlation �XC� functional might give the most accurate or-
bital magnetization. While exact Kohn-Sham �KS� density
�or spin-density� functional theory is guaranteed to yield the
correct charge �or spin� density,12 there is no reason to expect
it to yield the correct orbital currents. The orbital magnetiza-
tion, being defined in terms of surface currents, is not guar-
anteed to be correct either. A prescription that seems more
suited to the present situation is that of Vignale and Rasolt,13

in which the spin-labeled density and current �n��r� , j��r��
are connected to corresponding scalar and vector potentials
�V��r� ,A��r��. However, it is an open question whether
an approximate Vignale-Rasolt XC functional exists that can
give improved values of magnetization in practice. While
time-dependent density functional theory is more devel-
oped,14 this theory only establishes a connection between
n�r , t� and V�r , t�, and a knowledge of n�r , t� is only suf-
ficient to determine the longitudinal part of j�r , t�, not
the transverse part upon which the orbital magnetization
depends. An alternative approach worthy of exploration
is time-dependent current-density functional theory
�TDCDFT�,15 in which �n�r , t� , j�r , t�� is connected to
�V�r , t� ,A�r , t��. However, the present problem is essentially
a static problem, and it is therefore unclear whether TD-
CDFT would provide any practical advantage over the
Vignale-Rasolt theory. Finally, it is worth remembering that
even in standard DFT, the mapping from interacting density
to non-interacting potential is sometimes pathological �e.g., a
KS metal can represent an interacting insulator�. In the
present work, we bypass all these interesting issues, and only
consider how to compute the magnetization for a given
Kohn-Sham Hamiltonian arising from some unspecified ver-
sion of DFT in the context of broken TR symmetry.

We have organized this paper as follows. In Sec. II we
derive the multi-band theory of orbital magnetization in crys-
talline solids. After some definitions and generalities, we
start by considering the orbital magnetization of a finite
sample. The resulting expression is then transformed to re-
ciprocal space and its gauge invariance is demonstrated. We
then give a heuristic extension of our formalism to metals
and Chern insulators. In Sec. III numerical results for the
orbital magnetization are presented for several different sys-
tems. We conclude in Sec. IV. Some details concerning the
finite-difference evaluation of the magnetization and certain
properties of the nonAbelian Berry curvature are deferred to
two appendixes.

II. THEORY

A. Generalities

Our basic starting point is a single-particle KS
Hamiltonian12 having the translational symmetry of the crys-
tal, but having no TR symmetry: as said above, translational
symmetry of the Hamiltonian implies vanishing of the mac-
roscopic magnetic field. There may, however, be a micro-
scopic magnetic field B that averages to zero over the unit
cell, and we assume that a particular magnetic gauge has
been chosen once and for all to represent this magnetic field.

Wave vector k is a good quantum number under these con-
ditions. This could be realized, for example, in systems in
which the TR breaking comes about through the spontaneous
development of ferromagnetic order or via spin-orbit cou-
pling to a background of ordered local moments.11,16–19 No-
tice that we carefully avoid referring to an externally applied
field; such concept is legitimate only for a finite sample,
free-standing in vacuo. Indeed, for a finite sample, the rela-
tionship between the externally applied field and the “inter-
nal” �or screened� one depends on the sample shape. For an
extended sample in the thermodynamic limit, the only legiti-
mate and measurable field is the screened B field which is
present inside the material. In the present work, the cell-
average of this field is assumed to vanish.

As usual, we let �nk and ��nk� be the Bloch eigenvalues
and eigenvectors of H, respectively, and unk�r�=e−ik·r�nk�r�
be the corresponding eigenfunctions of the effective Hamil-
tonian Hk=e−ik·rHeik·r. We choose to normalize them to one
over the crystal cell of volume �.

The notation is intended to be flexible as regards the spin
character of the electrons. If we deal with spinless electrons,
then n is a simple index labeling the occupied Bloch states;
factors of two may trivially be inserted if one has in mind
degenerate, independent spin channels. In the context of the
local spin-density approximation in which spin-up and spin-
down electronic states are separate eigenstates of spin-up and
spin-down Hamiltonians, one may let n range over both sets
of bands, but with the understanding that inner products or
matrix elements between spin-up and spin-down bands al-
ways vanish. Of more realistic interest here is the case of a
fully noncollinear treatment of the magnetism, as for the case
of a Hamiltonian containing the spin-orbit operator. In this
case, n labels bands that are neither purely spin up nor spin
down, �unk� must be understood to be a spinor wave function,
and the contraction over spin degrees of freedom is under-
stood to be included in the definition of inner products such
as 	unk �un�k� and matrix elements such as 	unk�Hk�un�k�.

A key issue in the present work is the additional “gauge
freedom” in which the occupied Bloch orbitals at fixed k are
allowed to be transformed among themselves by an arbitrary
unitary transformation. In fact, any KS ground-state elec-
tronic property should be uniquely determined by the sub-
space of occupied orbitals as represented by the one-particle
density matrix; the occupied orbitals just provide a conve-
nient orthonormal representation for this subspace. More-
over, when it comes to the formulation of Wannier functions
�WFs� for composite energy bands, the nth WF is generally
not simply the Fourier transform of the nth band of Hamil-
tonian eigenvectors, but instead, of a manifold of states �unk�
which are related to the eigenstates by a k-dependent unitary
transformation.20 Thus, in what follows, we allow �unk� to
refer to this generalized interpretation of the nk labels unless
otherwise specified. In addition, we introduce a generalized
“energy matrix”

Enn�k = 	unk�Hk�un�k� , �1�

which reduces to Enn�k=�nk�nn� in the special case of the
“Hamiltonian gauge” in which the �unk� are eigenstates of
Hk.
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A key quantity characterizing a three-dimensional KS in-
sulator in absence of TR symmetry is the �vector� Chern
invariant21

C =
i

2�



BZ
dk�

n

	�kunk� � ��kunk� , �2�

with the usual meaning of the cross product between three-
component bra and ket states. Here and in the following the
sum is over the occupied n’s only, the integral is over the
Brillouin zone �BZ�, and �k=� /�k. The Chern invariant is
gauge-invariant in the above generalized sense �as will be
shown in Sec. II D� and—for a three-dimensional crystalline
system—is quantized in units of reciprocal-lattice vectors G.
In Secs. II B–II D we assume that we are working with in-
sulators with zero Chern invariant; the more general case will
be discussed only later in Secs. II E and II F.

Owing to the zero-Chern-invariant condition, the Bloch
orbitals can be chosen so as to obey ��nk+G�= ��nk� �the so-
called periodic gauge�, which in turn warrants the existence
of WFs enjoying the usual properties. �For a Chern insulator,
it is not clear whether a Wannier representation exists.� We
shall denote as �nR� the nth WF in cell R. These WFs are
related via

�unk� = �
R

eik·�R−r��nR� ,

�nR� =
�

�2��3

BZ

dkeik·�r−R��unk� , �3�

to the Bloch-like orbitals �unk� defined in the generalized
sense discussed just above Eq. �1�.

B. The magnetization of a finite sample

We start by considering a macroscopic sample of Nc cells
�with Nc very large but finite� cut from a bulk insulator,
having Nb occupied bands, with “open” boundary conditions.
The finite system then has N�NcNb occupied KS orbitals.
Suppose we perform a unitary transformation upon them, by
adopting some localization criterion. By invariance of the
trace the orbital magnetization of the finite system is written
in terms of the localized orbitals �wi� as

M = −
1

2c�Nc
�
i=1

N

	wi�r � v�wi� , �4�

where the velocity is defined as

v = i�H,r� . �5�

In the case of density-functional implementations, it should
be noted that v may differ from p /m because of the presence
of microscopic magnetic fields �which introduce p ·A terms
in the Hamiltonian�, spin-orbit interactions, or semilocal or
nonlocal pseudopotentials. In the case of tight-binding
implementations, the matrix representations of H and r are
assumed to be known �r is normally taken to be diagonal� in
the tight-binding basis and v is then defined through Eq. �5�.

We divide the sample into an “interior” and a “surface”
region, in such a way that the latter occupies a nonextensive

fraction of the total sample volume in the thermodynamic
limit. The orbitals �wi� which are localized in the interior
region converge exponentially to the WFs �nR� of the peri-
odic infinite system; for instance, if the Boys22 localization
criterion is adopted, they become by construction the
Marzari-Vanderbilt20 maximally localized WFs. Therefore
the interior is composed of an integer number Ni of replicas
of a unit cell containing Nb WFs each. Note that this choice
is not unique; there is freedom both to shift all of the R’s by
some constant vector �effectively changing the origin of the
unit cell�, or to shift any one of the WFs by a lattice vector,
or to carry out a unitary remixing of the bands. We insist
only that some consistent choice is made once and for all.

The remaining Ns localized orbitals residing in the surface
region need not resemble bulk WFs; we denote them as �ws�
and continue to refer to them as “WFs” in a generalized
sense. We thus partition the entire set of N WFs of the finite
sample into NiNb ones belonging to the interior and Ns ones
in the surface region. Correspondingly, the contribution to
the orbital magnetization M coming from the interior orbitals
will be denoted as MLC �for “local circulation”�, while that
arising from the surface orbitals will be referred to as MIC
�for “itinerant circulation”�. We will take the thermodynamic
limit in such a way that Ns grows more slowly with sample
size than does Ni, so that Ns /Ni→0. Because of the ambigu-
ities discussed in the previous paragraph, we do not expect
MLC and MIC to be separately gauge invariant. However,
their sum, Eq. �4�, must be gauge invariant.

Since the interior orbitals are bulklike, we have, following
Eq. �4�,

MLC = −
1

2c�Nc
�
nR

	nR��r − R� � v�nR� , �6�

where the number of R vectors in the sum is smaller than Nc
only by a nonextensive fraction, and we have used that
�n	nR�v�nR�=0. Because of the zero-Chern-invariant condi-
tion the WFs enjoy the usual translational symmetry, and we
finally find that

MLC = −
1

2c�
�

n

	n0�r � v�n0� �7�

in the thermodynamic limit.
We now consider the contribution from the Ns surface

orbitals, whose centers we denote as rs= 	ws�r�ws�:

MIC = −
1

2c�Nc
�
s=1

Ns

�	ws��r − rs� � v�ws� + rs � 	ws�v�ws�� .

�8�

The first term in parenthesis clearly vanishes in the thermo-
dynamic limit, while the second term—owing to the pres-
ence of the “absolute” coordinate rs—does not. At first sight,
this second term in MIC appears to depend on surface details;
instead, we are going to prove that even this term can be
recast in terms of bulk Wannier functions. Remarkably, both
MLC and MIC are genuine bulk properties in the thermody-
namic limit, and can eventually be evaluated as BZ integrals.
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We consider a surface facing in the +x̂ direction, and iden-
tify a surface region given by x	x0 as in Fig. 1. There is
then a contribution to the macroscopic surface current K
flowing at the surface that is given by

K = −
1

A
�
s�

�	ws��v�ws�� , �9�

where the primed sum is taken over the surface WFs whose
yz coordinates are within one surface unit cell of area A.
Because 	ws��v�ws�� decays exponentially to zero with dis-
tance from the surface, it is straightforward to capture the
entire surface current by letting the width of the surface re-
gion diverge slowly �say, as the 1/4 power of linear dimen-
sion� in the thermodynamic limit, so that x0 is moved arbi-
trarily deep into the bulk.

It is now expedient to use the identity

	wi�v�wi� = �
j

v	j,i�, �10�

where

v	j,i� = 2 Im	wi�r�wj�	wj�H�wi� �11�

has the interpretation of a current “donated from WF �wj� to
WF �wi�,” and exploit the fact that the total current carried by
any subset of WFs can be computed as the sum of all v	j,i� for
which i is inside and j is outside the subset. Applying this to
the piece of surface region considered above, we get

K = −
1

A
�
s�

� �
s�s�

v	s,s��. �12�

Setting the boundary deep enough below the surface to be in
a bulklike region and invoking the exponential localization
of the WFs and of related matrix elements, we can identify
�ws� and �ws�� with the bulk WFs �mR� and �nR��, re-
spectively. Exploiting translational symmetry, v	mR,nR��

=v	m0,n�R�−R��, Eq. �12� becomes

K = −
1

A
�

Rx
x0

�
Rx�	x0

��
mn

v	m0,n�R�−R��, �13�

where the lattice sum is still restricted to the R� vectors
whose yz coordinates are within the surface unit cell. The
number of terms in the lattice sum of Eq. �13� having a given
value of R�−R is just �Rx�−Rx�A /� if �Rx�−Rx�	0 and zero
otherwise. With a change of summation index, Eq. �13� be-
comes

K = −
1

2�
�
R

Rx�
mn

v	m0,nR�, �14�

where the factor of 2 enters because the sum has been ex-
tended to all R. Notice that the surface-cell size has eventu-
ally disappeared.

Evidently the corresponding surface current on a surface
with unit normal n̂ is then

K��n̂� = �
�

G��n�, �15�

where

G�� = −
1

2�
�
R

�
mn

v	m0,nR�,�R�. �16�

Now for a sample of size Lx�Ly �Lz, the left and right faces
carry currents of ±LyLzGyx separated by a distance Lx, and
thus contribute to the magnetic moment per unit volume as
Gyx /2c; similarly, the front and back faces contribute as
−Gxy /2c. Together they contribute to Mz as −Gxy

A /c, where

G��
A =

1

2
�G�� − G��� , �17�

is the antisymmetric part of the G tensor. Deriving corre-
sponding expressions for Mx and My by permutation of indi-
ces, the contribution of the surface current in Eq. �14� to the
magnetization can thus be cast in a coordinate-independent
form and evaluated for the whole sample surface in the ther-
modynamic limit as

MIC = −
1

4c�
�
mnR

R � v	m0,nR�. �18�

Note that Eq. �18� describes the current circulating in the
surface WFs, while the expression on its right-hand side in-
volves only bulk WFs.

This is quite remarkable, and indeed it is one of the cen-
tral results of this paper, as well as of Ref. 7. It implies that
even MIC is a bulk property, as anticipated above. This may
appear counterintuitive, but indeed closely parallels a well-
known �and equally counterintuitive� feature of the quantum-
Hall effect, where the Hall current is accomodated by chiral
edge states.23,24 Nevertheless, these edge currents are com-
pletely determined by bulk properties of the system, and can
be evaluated by adopting toroidal boundary conditions in
which the sample has no edges. Such a finding, in fact, is one
of the most remarkable results of the quantum-Hall theoret-
ical literature.21,25–27 We also notice that the bulk nature of
MIC guarantees that our general expressions, valid in the
thermodynamic limit, apply regardless of whether surface
states are present in bounded samples, and if they are
present, regardless of their character.

It might be thought that the surface currents K must flow
parallel to the surface, and thus that the diagonal elements
Gxx and Gyy must vanish, or more generally, that the sym-
metric component

G��
S =

1

2
�G�� + G��� �19�

FIG. 1. Horizontal slice from a sample that extends indefinitely
in the vertical direction. Vertical dashed lines delimit bulk and sur-
face regions in which WFs are labeled by s and s�, respectively.
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of the G tensor should vanish. This turns out not to be true.
In some of our tight-binding model calculations, we have
explicitly computed the right-hand side of Eq. �9� and con-
firmed the existence of a surface-normal component of K.

The explanation is that K, as defined by Eq. �9�, is only
one contribution to the physical macroscopic surface current.
There is an additional contribution arising from the fact that,
when TR symmetry is broken, the second-moment spreads20

of the WFs are not generally stationary with respect to time.
For example, if the WFs are in the process of expanding,
then electron charge is in the process of spilling out of the
surface. To formalize this notion, we introduce a symmetric
Cartesian tensor

W�� = −
1

2�Nc
�

i

	wi�r�v� + v�r��wi� �20�

that is a kind of symmetric analog of the antisymmetric ex-
pression for M given in Eq. �4�. If W�� is nonzero, then we
would expect surface currents of the form K��n̂�=��W��n�.
If present, these would violate continuity. However, they are
not present, because we can write

W�� = −
1

2�Nc

d

dt�i

	wi�r�r��wi� . �21�

Noting that the trace of any operator �here r�r�� must be
independent of time in any stationary state �here the ground
state of the finite sample�, it follows that W��=0. Neverthe-
less, if we were to follow a route parallel to that used for the
treatment of M earlier in this section, we could decompose
W into a “local spread” part WLS and an “itinerant spread”
part WIS. The former is

WLS,�� = −
1

2�
�

n

	n0�r�v� + v�r��n0�

= −
1

2�

d

dt�n

	n0�r�r��n0� , �22�

which is just related to the rate of spread of the bulk WFs in
one bulk unit cell, while the latter is just WIS,��=G��

S of Eq.
�19�. Because the total W�� must vanish, we conclude that
the nonphysical current that we were concerned about, aris-
ing from G��

S in Eq. �19�, is exacly cancelled by another
non-physical one arising from the spreading of the bulk WFs.
Thus, in the end, the physical edge current has pure circulat-
ing character and is related only to antisymmetric Cartesian
tensors.

C. Reciprocal-space expressions

The above two final expressions �7� and �18� are given in
terms of bulk WFs. Therefore the total orbital magnetization
M=MLC+MIC of the finite sample converges in the thermo-
dynamic limit to a bulk, boundary-insensitive, material prop-
erty. Next, using the WF definition, Eq. �3�, we are going to
transform MLC and MIC into equivalent expressions involv-
ing BZ integrals of Bloch orbitals. Specifically, we are going
to prove the two identities

MLC =
1

2c�2��3 Im �
n



BZ
dk	�kunk� � Hk��kunk� ,

�23�

MIC =
1

2c�2��3 Im �
nn�



BZ
dkEn�nk	�kunk� � ��kun�k� .

�24�

These two expressions generalize to the multi-band case our
previous finding for the case of a single occupied band.7

There is an important difference, however; while in the
single-band case Eqs. �23� and �24� are separately gauge
invariant, only their sum is gauge invariant in the multi-band
case, as we shall see in Sec. II D.

We carry the derivation in reverse, starting from Eqs. �23�
and �24� and showing that they reduce to Eqs. �7� and �18�.
First, using Eq. �3�, we get

��kunk� = − i�
R

eik·�R−r��r − R��nR� ,

Hk��kunk� = − i�
R

eik·�R−r�H�r − R��nR� . �25�

Since the velocity operator is v= i�H ,r�= i�H , �r−R��, and
exploiting �r−R�� �r−R�=0, we may express Eq. �23� as

MLC = −
1

2c�Nc
�
nR

	nR��r − R� � v�nR� , �26�

where the number of cell Nc here is formally infinite, and
appears because the �unk� are normalized differently from the
WFs. Since we limit ourselves to the case of an insulator
with zero Chern invariant, the WFs enjoy the usual transla-
tional symmetry, and Eq. �26� is indeed identical to Eq. �7�.

Next, we address Eq. �24�, whose second factor in the
integral is

	�kunk� � ��kun�k�

=
1

Nc
�

R·R�

eik·�R�−R�	nR��r − R� � �r − R���n�R��

=
1

Nc
�

R·R�

eik·�R�−R��R� − R� � 	nR�r�n�R�� , �27�

where the last line follows because only the cross terms sur-
vive from the product �r−R�� �r−R��. We then exploit

	n�R��H�nR� =
�

�2��3

BZ

dkeik·�R�−R�En�nk �28�

in order to rewrite Eq. �24� as
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MIC =
Im

2c�Nc
�

R·R�
mn

�R� − R� � 	mR�r�nR��	nR��H�mR� .

�29�

Since the matrix elements only depend on the relative WF
coordinate R�−R, Eq. �29� is transformed into

MIC =
1

2c�
Im �

mnR
R � 	m0�r�nR�	nR�H�m0� . �30�

Using Eq. �11�, it is then easy to check that Eq. �30� is indeed
identical to Eq. �18�.

This completes our proof. Our final expression for the
macroscopic orbital magnetization of a crystalline insulator
is

M =
1

2c�2��3 Im �
nn�



BZ
dk	�kun�k� � �Hk�nn� + En�nk�

���kunk� . �31�

Owing to the occurrence of Hk and Enn�k with the same sign
�in contrast to the magnetization of an individual wave
packet discussed in Ref. 28�, Eq. �31� does not appear at first
sight to be invariant with respect to translation of the energy
zero. However, the zero-Chern-invariant condition—com-
pare Eq. �31� to Eq. �2�—enforces such invariance. As for
the gauge invariance of Eq. �31�, this will be demonstrated in
the next subsection.

D. Proof of gauge invariance

Here we prove the gauge invariance in the multi-band
sense of the Chern invariant �2� and of our main expression
for the macroscopic magnetization �31�. While these expres-
sions are BZ integrals, we will actually prove that even their
integrands are gauge invariant. To this end, we will show
that both integrands can be expressed as traces of gauge-
invariant one-body operators acting on the Hilbert space of
lattice-periodical functions.

Our key ingredients are the effective Hamiltonian Hk, the
ground-state projector

Pk = �
n

�unk�	unk� , �32�

and its orthogonal complement Qk=1− Pk. These three op-
erators are obviously unaffected by any unitary mixing of the
�unk� among themselves at a given k, and therefore any ex-
pression built only from these ingredients will be a mani-
festly multi-band gauge-invariant quantity. In particular, we
define the three quantities

fk,�� = tr����Pk�Qk���Pk�� , �33�

gk,�� = tr����Pk�QkHkQk���Pk�� , �34�

hk,�� = tr�Hk���Pk�Qk���Pk�� , �35�

where ��=� /�k� and the trace is over electronic states. We
are going to show that the Chern invariant and the magneti-

zation can be expressed as integrals of fk and of gk+hk,
respectively.

From Eq. �32� it follows that

��Pk = �
n

����unk�	unk� + �unk�	��unk�� �36�

so that

���Pk�Qk���Pk� = �
nn�

�unk�	��unk�Qk���un�k�	un�k� .

�37�

We now specialize to the “Hamiltonian gauge” in which the
Bloch functions 	unk� are eigenstates of Hk with eigenvalues
�nk. Inserting Eq. �37� into Eqs. �33� and �35� and using a
similar approach for Eq. �34�, the three quantities can be
written as

fk,�� = �
n

	��unk���unk� − �
nn�

	��unk�un�k�	un�k���unk� ,

�38�

gk,�� = �
n

	��unk�Hk���unk� − �
nn�

�n�k	��unk�un�k�

�	un�k���unk� , �39�

and

hk,�� = �
n

�nk	��unk���unk� − �
nn�

�nk	��unk�un�k�	un�k���unk� .

�40�

Regarded as 3�3 Cartesian matrices, Eqs. �33�–�35� are
clearly Hermitian, so that the antisymmetric parts of Eqs.
�38�–�40� are all pure imaginary. Thus, the information con-
tent of the antisymmetric part of fk,�� is contained in the
gauge-invariant real vector quantity

f̃k,� = − Im ���fk,��, �41�

where ��� is the antisymmetric tensor. We define g̃k,� and

h̃k,� in the corresponding way in terms of gk,�� and hk,��,
respectively. Looking at the second term in Eq. �38� and
using ��	unk �un�k�=���nn�=0, we find that its antisymmetric

part vanishes, and in fact f̃k is nothing other than the Berry
curvature. We thus recover the Chern invariant of Eq. �2� in
the form

C =
1

2�



BZ
dkf̃k. �42�

Next, inspecting the second terms of Eqs. �39� and �40�,
we find that neither of these terms vanishes by itself under
antisymmetrization. However, the sum of these two terms
does vanish under antisymmetrization. Using the sum only,
and comparing with Eq. �31�, we find that the magnetization
may be written in the manifestly gauge-invariant form
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M =
− 1

2c�2��3

BZ

dk�g̃k + h̃k� . �43�

�The sign reflects the fact that the electron has negative
charge.� This completes the proof that the integrand in Eq.
�31� is multi-band gauge invariant.

Notice that if we take the first term only in Eq. �39� and
antisymmetrize, we get the integrand in MLC �times a multi-
plicative constant�; the same holds for Eq. �40� and MIC.
However, the second terms in Eqs. �39� and �40� have non-
zero antisymmetric parts which are essential to their gauge
invariance. Therefore, MLC and MIC as defined above are not
separately gauge invariant, except in the single-band case.7

On the other hand, it is possible to regroup terms and

write M=M̃LC+M̃IC, where

M̃LC =
− 1

2c�2��3

BZ

dkg̃k �44�

and

M̃IC =
− 1

2c�2��3

BZ

dkh̃k �45�

are individually gauge invariant, even in the multiband case.
This raises the fascinating question as to whether these two
contributions to the orbital magnetization are, in principle,
independently measurable. On the one hand, Berry has em-
phasized in his milestone paper29 that any gauge-invariant
property should be potentially observable. On the other hand,
any measurement of orbital magnetization—or, equivalently,
of dissipationless macroscopic surface currents—will only
be sensitive to their sum. At the present time we have no
insight into how to propose an experiment that could distin-
guish them, and we therefore leave this as an open question.

In Appendix A, we show how to compute f̃k, g̃k, and h̃k on a
3D k mesh using finite-difference methods to approximate
the derivatives in Eqs. �33�–�35�.

E. Heuristic extension to metals and Chern insulators

All of the above results are derived under the hypothesis
that the crystalline system is a KS insulator in which the
Chern invariant, Eq. �2�, is zero. These conditions, in fact,
are essential for expressing any ground-state property in
terms of WFs. Nonetheless the integrand in our final
reciprocal-space expression �31� is gauge invariant. This sug-
gests a possible generalization to Chern insulators �defined
as insulators with nonzero Chern invariant� and even to KS
metals.

We notice that Eq. �31� is somehow reminiscent of the
Berry-phase formula appearing in the modern theory of elec-
trical polarization.8,9 There is an important difference, how-
ever. In the electrical case, the integrand is not gauge invari-
ant, and the formula corresponding to our Eq. �31� only
makes sense when integrated over the whole BZ, i.e., for a
KS insulator. Indeed, macroscopic polarization is a well-
defined bulk property only for insulating materials.30 Instead,
orbital magnetization is a phenomenologically well-defined

bulk property for both insulating and metallic materials.
Therefore, it is worthwhile to investigate heuristically the
validity of an extension of Eq. �31� to the metallic case, even
though we cannot yet provide any formal proof. Additionally,
we also heuristically investigate Chern insulators. Metals and
Chern insulators share the property that their magnetization
has a nontrivial dependence on the chemical potential �.

We already observed that Eq. �31� is invariant by transla-
tion of the energy zero, but this owes to the facts that the
integration therein is performed over the whole BZ, and that
the Chern invariant is zero. If we abandon either of these
conditions, the formula has to be modified in order to restore
the invariance. To this end, we first need to restrict our for-
mulation to the “Hamiltonian gauge,” where the energy ma-
trix is diagonal: Enn�k=�nk�nn�. The 	unk� are therefore eigen-
states of Hk, and the only gauge freedom allowed is now the
arbitrary choice of their phase.

In the general case, including metals and Chern insulators,
we propose to generalize Eq. �31� to

M =
1

2c�2��3 Im �
n



�nk��

dk	�kunk� � �Hk + �nk − 2��

���kunk� , �46�

where � is the chemical potential �Fermi energy�. Equation
�46� has the desirable invariance property addressed above.
Furthermore, in the metallic case, Eq. �46� provides a mag-
netization dependent on �, as it should. In the insulating
case, when � is varied in the gap, M changes linearly only if
the Chern invariant is nonzero, and remains constant other-
wise. In fact, Eqs. �2� and �46� imply that

dM

d�
= −

1

c�2��2C �47�

for any insulator and � in the gap.
The modification from Eq. �31� to Eq. �46� is the minimal

one enjoying the desired properties. Furthermore, in the
single-band case it is essentially identical to a formula re-
cently proposed by Niu and co-workers,10 whose derivation
rests upon semiclassical wave packet dynamics. We provide
strong numerical evidence that this formula retains its valid-
ity well beyond the semiclassical regime, and is in fact the
exact quantum-mechanical expression for the orbital magne-
tization �in a vanishing macroscopic B field�.

An expression related—though not identical—to Eq. �46�
occurs in the theory of the Hall effect. Upon replacement of
the quantity in parenthesis with the identity, one obtains
something proportional to the integral of the Berry curvature
over occupied portions of the BZ. This quantity corresponds
to the entire Hall conductivity in quantum-Hall systems25,26

�which are in fact two-dimensional Chern insulators31� and
the so-called “anomalous” Hall term in metals with broken
TR symmetry. The theory of the anomalous Hall effect has
attracted much attention in the recent literature.17,19,32

F. The two-dimensional case

In two dimensions, the magnetization is a pseudoscalar
M, and the Chern invariant is the Chern number C �a dimen-
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sionless integer�.21 Our heuristic formula �46�, then becomes

M =
1

2c�2��2 Im �
n



�nk��

dk	�kunk� � �Hk + �nk − 2��

���kunk� . �48�

The two-dimensional analogue of Eq. �47� is

dM

d�
= −

C

2�c
. �49�

The physical interpretation of this equation is best under-
stood in terms of the chiral edge states of a finite sample cut
from a Chern insulator. Owing to the main equation ��M
= j /c, a macroscopic current of intensity I=cM circulates at
the edge of any two-dimensional uniformly magnetized
sample, hence Eq. �49� yields

dI

d�
= −

C

2�
. �50�

This is just what is to be expected: raising the chemical po-
tential by d� fills dk /2� states per unit length, i.e., dI
=−vdk /2�; but the group velocity is just v=d� /dk. Thus,
Eq. �50� follows with the interpretation that C is the excess
number of chiral edge channels of positive circulation over
those with negative circulation. Remarkably, the above equa-
tions state that the contribution of edge states is indeed a
bulk quantity, and can be evaluted in the thermodynamic
limit by adopting periodic boundary conditions where the
system has no edges. As already observed, this feature may
look counterintutitive, but a similar behavior has been known
for more than 20 years in the theory of the quantum-Hall
effect.23–26

In contrast to our case, a magnetic field is usually present
in the standard theory of the quantum-Hall effect, although it
is not strictly needed.11 The role of chiral edge states is elu-
cidated, for example,23,24 by considering a vertical strip of
width l, where the currents at the right and left boundaries
are ±I. The net current vanishes insofar as � is constant
throughout the sample. When an electric field E is applied
across the sample, the right and left chemical potentials dif-
fer by ��=El and the two edge currents no longer cancel.
Our Eq. �50� is consistent with the known quantum-Hall re-
sults. In fact, according to Eq. �50�, the net current is �I
�−C�� /2�, while the transverse conductivity is defined by
�I=�TEl. We thus arrive at �T=−C /2� �or, in ordinary
units, �T=−Ce2 /h�, which is indeed a celebrated re-
sult.21,25–27 We stress that the Chern number C is a bulk
property of the system, and can be evaluated by adopting
toroidal boundary conditions, where the edges appear to play
no role.

III. NUMERICAL TESTS

In a previous paper7 we tested Eq. �48� for the insulating
C=0 single-band case on the Haldane model Hamiltonian,11

described below �Sec. III C�. In this special case, Eq. �48� is
not heuristic, since we provided an analytical proof. We ad-
dressed finite-size realizations of the Haldane model, cut

from the bulk; our analysis confirmed that MLC arises en-
tirely from the magnetization of bulk WFs in the thermody-
namic limit, whereas MIC arises from current-carrying sur-
face WFs. Both terms have also been evaluated in terms of
bulk Bloch orbitals, by means of Eq. �48�, confirming that
the orbital magnetization is indeed a genuine bulk quantity.

Here we extend this program of checking the correctness
of our analytic formulas by carrying out numerical tests on
our new multi-band formula �31�, derived for the C=0 insu-
lating case. This is done using a four-band model Hamil-
tonian on a square lattice as described below �Sec. III A�.
Furthermore, we perform computer experiments to assess
whether our hypothetical Eq. �48�, proposed to cover also the
metallic and the C�0 insulating cases, is consistent with
calculations on finite samples. We do this for metals in Sec.
III B using the same square lattice as in Sec. III A, but at
fractional band filling. We then do this in Sec. III C for
Chern insulators using the Haldane model11 in a range of
parameters for which C�0.

Numerical implementation of Eqs. �31�, �46�, and �48� is
quite straightforward once one has in hand an efficient
method for evaluating the k derivatives of the Bloch orbitals.
There are several possible approaches to doing this. One pos-
sibility is to evaluate 	��unk� by summation over states as

���unk� = �
m�n

�umk�
	umk�v��unk�

�mk − �nk
. �51�

This is very practical in the context of tight-binding calcula-
tions, where the sum over conduction bands runs only over a
small number of terms, and we adopted this for the test-case
calculations reported below. However, in first-principles cal-
culations the sums over conduction states can be quite te-
dious, and one has to be careful to use the correct form for
the velocity operator in the matrix elements �see discussion
following Eq. �5��. Alternatively, the needed derivatives of
	unk� can be obtained from finite difference methods by mak-
ing use of the discretized covariant derivative33,34 as dis-
cussed in Appendix A. It may also be possible to use stan-
dard linear-response methods35 to compute 	��unk�, as this is
an operation which is already implemented as part of com-
puting the electric-field response in several modern code
packages.

A. Normal insulating case

We present in this section numerical tests using a nearest-
neighbor tight-binding Hamiltonian on a 2�2 square lattice
in which the primitive cell comprises four plaquettes, as
shown in Fig. 2. This results in a four-band model. The
modulus t of the �complex� nearest-neighbor hopping ampli-
tude is set to 1, thus fixing the energy scale. TR breaking is
achieved by endowing some of the hopping amplitudes with
a complex phase factor ei�. This amounts to threading a pat-
tern of magnetic fluxes through the interiors of the four
plaquettes, as shown in Fig. 2, in such a way that the thread-
ing flux �i is just the sum of the phase factors associated
with the four bonds delineating plaquette i, counted with
positive signs for counterclockwise-pointing bonds and mi-
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nus signs for clockwise ones. The constraint of vanishing
macroscopic magnetic field corresponds to �1+�2+�3

+�4=2��integer. We found that not all flux patterns break
TR symmetry. For instance, for the flux patterns
��1 ,�2 ,�3 ,�4�= �+� , +� ,−� ,−�� and �+� ,−� , +� ,−��,
TR symmetry is restored by some spatial symmetry �an ad-
ditional translational symmetry and a mirror symmetry, re-
spectively�; the orbital magnetization then vanishes for any
value of the parameter �. On the other hand, the flux pattern
�2� ,−� ,0 ,−�� violates inversion and mirror symmetry, and
therefore realizes TR symmetry breaking.

The on-site energies �EA ,EB ,EC ,ED� have been set to the
values �−3,0 ,−3 ,0�. This choice results in an insulator with
two groups of two entangled bands as shown in Fig. 3.
Switching on the fluxes splits the bands along the X-L line,
which are otherwise twofold degenerate. The k derivative of
Bloch orbitals was computed by the sum-over-states formula
�51�. We treated the two lowest bands as filled and we veri-
fied that the multiband Chern number is zero.

We built square finite samples, cut from the bulk, made of
L�L four-site unit cells and having 2L+1 sites on each
edge. Their orbital magnetization �dipole per unit area� M�L�
is straightforwardly computed as in Eq. �4�. We expect the
L→� asymptotic behavior

M�L� = M + a/L + b/L2, �52�

where M is the bulk magnetization according to Eq. �48�.
The terms a /L and b /L2 account for edge and corner correc-
tions, respectively.

We performed calculations up to L=14 �841 lattice sites�.
The resulting orbital magnetization as a function of the pa-
rameter � is shown in Fig. 4. We independently computed
the bulk orbital magnetization M from a discretization of the
reciprocal-space formula �48�. We get well converged results
�to within 0.1%� for a 50�50 k-point mesh in the full BZ.

So far, we have studied a model multi-band insulator, hav-
ing zero Chern number. For this specific case we provided
above a solid analytic proof of our reciprocal-space formula,
which holds in the thermodynamic limit. Indeed, the numeri-
cal results confirm the correctness of the k-space formula,
while also providing some information about actual finite-
size effects and numerical convergence.

B. Metallic case

In the previous section we addressed the case of a TR-
broken multiband insulator, by treating the two lowest bands
as occupied. Here we are going to extend our analysis to the
metallic case. We are using the same model Hamiltonian as
in the previous section, but we allow the Fermi level to span
the energy range roughly from −5.45 to 2.45 energy units,
namely, from the bottom of the lowest band to the top of the
highest one. In order to smooth Fermi-surface singularities,
and to obtain well converged results, we adopt the simple
Fermi-Dirac smearing technique, widely used in first-
principle electronic-structure calculations. This amounts to
replace, the �integer� Fermi occupation factor ���−�nk�
with a suitable smooth function f���nk�. We therefore replace
in Eq. �48�:

�
n,�nk
�

→ �
n

f���nk� . �53�

Reasoning in terms of a fictitious temperature, one may
choose a Fermi-Dirac distribution

FIG. 2. 2�2 four-site square lattice used in the numerical tests.
The absolute value of the hopping parameter t is set to 1. �1¯4 are
the threading fluxes through the four plaquettes.

FIG. 3. Band structure of the square lattice for �=� /10. The
flux pattern is ��1 ,�2 ,�3 ,�4�= �2� ,−� ,0 ,−��, and the on-site
energies are �EA ,EB ,EC ,ED�= �−3,0 ,−3 ,0� �see also Fig. 2�. The
two lower bands are treated as occupied.

FIG. 4. Orbital magnetization of the square-lattice model as a
function of the parameter �. The two lower bands are treated as
occupied. Open circles: extrapolation from finite-size samples.
Solid line: discretized k-space formula �31�.
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f���� =
1

1 + exp��� − ��/��
. �54�

In all subsequent calculations, we set �=0.05 a.u., which
provides good convergence.

We compute the orbital magnetization as a function of the
chemical potential � with � fixed at � /3. Using the same
procedure as in the previous section, we compute the orbital
magnetization by the means of the heuristic k-space formula
�48� and we compare it to the extrapolated value from finite
samples, from L=8 �289 sites� to L=16 �1089 sites�. We
verified that a k-point mesh of 100�100 gives well con-
verged results for the bulk formula �48�.

The orbital magnetization as a function of the chemical
potential for �=� /3 is shown in Fig. 5. The resulting values
agree to a good level, and provide solid numerical evidence
in favor of Eq. �48�, whose analytical proof is still lacking.
The orbital magnetization initially increases as the filling of
the lowest band increases, and rises to a maximum at a �
value of about −4.1. Then, as the filling increases, the first
�lowest� band crosses the second band and the orbital mag-
netization decreases, meaning that the two bands carry
opposite-circulating currents giving rise to opposite contribu-
tions to the orbital magnetization. The orbital magnetization
remains constant when � is scanned through the insulating
gap. Upon further increase of the chemical potential, the or-
bital magnetization shows a symmetrical behavior as a func-
tion of �, the two upper bands having equal but opposite
dispersion with respect to the two lowest bands �see Fig. 3�.

C. Chern insulating case

In order to check the validity of our heuristic Eq. �48� for
a Chern insulator, we switch to the Haldane model
Hamiltonian11 that we used in a previous paper7 to address
the C=0 insulating case. In fact, depending on the parameter
choice, the Chern number C within the model can be either
zero or nonzero �actually, ±1�.

The Haldane model is comprised of a honeycomb lattice
with two tight-binding sites per cell with site energies ±�,
real first-neighbor hoppings t1, and complex second-neighbor
hoppings t2e±i�, as shown in Fig. 6. The resulting Hamil-

tonian breaks TR symmetry and was proposed �for C= ±1�
as a realization of the quantum Hall effect in the absence of
a macroscopic magnetic field. Within this two-band model,
one deals with insulators by taking the lowest band as occu-
pied.

In our previous paper7 we restricted ourselves to C=0 to
demonstrate the validity of Eq. �48�, which was also analyti-
cally proved. In the present work we address the C�0 insu-
lating case, where instead we have no proof of Eq. �48� yet.
We are thus performing computer experiments in order to
explore uncharted territory.

Following the notation of Ref. 11, we choose the param-
eters �=1, t1=1, and �t2�=1/3. As a function of the flux
parameter �, this system undergoes a transition from zero
Chern number to �C�=1 when �sin ��	1/3.

First we checked the validity of Eq. �48� in the Chern
insulating case by treating the lowest band as occupied. We
computed the orbital magnetization as a function of � by Eq.
�48� at a fixed � value, and we compared it to the magneti-
zation of finite samples cut from the bulk. For the periodic
system, we fix � in the middle of the gap; for consistency,
the finite-size calculations are performed at the same �
value, using the Fermi-Dirac distribution of Eq. �54�. The
finite systems have therefore fractional orbital occupancy
and a noninteger number of electrons. The biggest sample
size was made up of 20�20 unit cells �800 sites�. The com-
parison between the finite-size extrapolations and the dis-
cretized k-space formula is displayed in Fig. 7. This heuris-
tically demonstrates the validity of our main results, Eqs.
�46� and �48�, in the Chern-insulating case.

Next, we checked the validity of Eq. �48� for the most
general case, following the transition from the metallic phase
to the Chern insulating phase as a function of the chemical
potential �. To this aim we keep the model Hamiltonian
fixed, choosing �=0.7�; for � in the gap this yields a Chern
insulator. The behavior of the magnetization while � varies
from the lowest-band region, to the gap region, and then to
the highest-band region is displayed in Fig. 8, as obtained
from both the finite-size extrapolations and the discretized
k-space formula. This shows once more the validity of our
heuristic formula. Also notice that in the gap region the mag-
netization is perfectly linear in �, the slope being determined
by the lowest-band Chern number according to Eq. �49�.

FIG. 5. Orbital magnetization of the square-lattice model as a
function of the chemical potential � for �=� /3. The shaded areas
correspond to the two groups of bands. Open circles: extrapolation
from finite-size samples. Solid line: discretized k-space formula
�48�.

FIG. 6. Four unit cells of the Haldane model. Filled �open�
circles denote sites with E0=−� �+��. Solid lines connecting near-
est neighbors indicate a real hopping amplitude t1; dashed arrows
pointing to a second-neighbor site indicates a complex hopping am-
plitude t2ei�. Arrows indicate sign of the phase � for second-
neighbor hopping.
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IV. CONCLUSIONS

We present here a formalism for the calculation of the
orbital magnetization in extended systems with broken TR
symmetry, in the case of vanishing �or commensurate� mac-
roscopic B field. This extends our previous work of Ref. 7 to
the multiband case, essential for realistic calculations.

First, we consider the case of zero Chern invariant, where
we provide an an analytic proof, based upon the Wannier
representation. Our main result �31� takes the form of a BZ
integral of a gauge-invariant quantity, which can easily be
computed using reciprocal-space discretization. We provide
numerical tests for a two-dimensional model, where our dis-
cretized formula is checked against calculations performed
for finite samples cut from the bulk, with “open” boundary
conditions. Our numerical tests appear to confirm that indeed
Eq. �31� is the correct expression for the orbital magnetiza-
tion in a periodic system.

Second, we propose a heuristic extension of Eq. �31� to
the case of nonzero Chern invariant, based on the observa-
tion that the integrand in Eq. �31� is gauge invariant, con-
trary to the analogous electrical case, where only the BZ
integral is gauge invariant, not the integrand.8,9 On the basis
of general considerations �namely, invariance by translation

of the energy zero�, the minimal modification extending Eq.
�31� to the nonzero-Chern-number case yields Eq. �46�. Re-
markably, Eq. �46� is essentially identical to a recent expres-
sion derived by Xiao et al.10 in the context of a semiclassical
approximation. We check the full quantum-mechanical valid-
ity of Eq. �46� on a two-dimensional model by means of
numerical tests, comparing to finite size calculations as
above. The agreement is excellent, thus providing strong
support for our formula, well beyond the semiclassical re-
gime, even though we cannot yet provide an analytic proof
of it.

Third, since our heuristic Eq. �46� is well-defined for a KS
metal, we also check the validity of Eq. �46� using the same
two-dimensional model as for the metallic case, this time
allowing the chemical potential � to be varied through the
bands. Once more the agreement is excellent, providing a
numerical demonstration of the validity of Eq. �46�.

The electrical analog of the present theory is the modern
theory of polarization,8,9 developed in the 1990s, and valid
for insulators only. When comparing that theory with the
present one, in the insulating case, there is an important dif-
ference which is worth stressing. In the electrical case, the
whole electronic contribution to the macroscopic polariza-
tion can be expressed in terms of the electric dipoles of the
bulk WFs. This has a precise counterpart here, where the
local-circulation contribution can in fact be expressed in
terms of the magnetic dipoles of the bulk WFs. However, we
have shown that in the magnetic case there is an additional
“itinerant-circulation” contribution which has no electrical
analog. When analyzing finite samples, the latter contribu-
tion appears to be due to chiral currents circulating at the
sample boundaries. Nonetheless, one of our major findings is
that even this contribution can be expressed as a bulk,
boundary-insensitive term.

Both our original expression �31� and its heuristic exten-
sion �46� for the orbital magnetization of a crystalline solid
can easily be implemented in existing first-principles elec-
tronic structure codes, making available the computation of
the orbital magnetization in crystals, at surfaces and in re-
duced dimensionality solids such as nanowires.
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APPENDIX A: FINITE DIFFERENCE EVALUATION OF
THE CHERN INVARIANT AND MAGNETIZATION

Using the definition of the covariant derivative33,34

��̃�unk� = Qk���unk� . �A1�

Equations �33�–�35� can be rewritten as

fk,�� = �
n

	�̃�unk��̃�unk� , �A2�

gk,�� = �
n

	�̃�unk�Hk��̃�unk� , �A3�

FIG. 7. Orbital magnetization of the Haldane model as a func-
tion of the parameter �. The lowest band is treated as occupied.
Open circles: extrapolation from finite size samples. Solid line: Eq.
�48�. The system has nonzero Chern number in the region in be-
tween the two vertical lines.

FIG. 8. Orbital magnetization of the Haldane model as a func-
tion of the chemical potential � for �=0.7�. The shaded areas
correspond the position of the two bands. Open circles: extrapola-
tion from finite-size samples. Solid line: discretized k-space for-
mula �48�.
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hk,�� = �
nn�

Enn�k	�̃�un�k��̃�unk� . �A4�

We assume that the occupied wave functions �unk� have been
computed on a regular mesh of k points, and we let b1, b2,
and b3 be the primitive reciprocal vectors that define the k
mesh. Then the covariant derivative in mesh direction i can
be defined as

��̃iunk� = bi���̃�unk� �A5�

�sum over � implied�. Inserting this into Eqs. �A2�–�A4� and
taking the antisymmetric imaginary part as in Eq. �41�, we
obtain

f̃k =
1

v
�ijlbi�

n

Im	�̃ junk��̃lunk� , �A6�

g̃k =
1

v
�ijlbi�

n

Im	�̃ junk�Hk��̃lunk� , �A7�

h̃k =
1

v
�ijlbi�

nn�

Enn�k Im	�̃ jun�k��̃lunk� , �A8�

where a sum over ijk is implied and v is the volume of the
unit cell of the k-space mesh. On this mesh, the BZ integral
in Eq. �42� becomes a summation

C =
1

2�
�
k

�ijlbi�
n

Im	�̃ junk��̃lunk� �A9�

and similarly for the magnetization in Eq. �43�.
The appropriate finite-difference discretization of the co-

variant derivative in mesh direction i is33,34

��̃iunk� =
1

2
��ũn,k+bi

� − �ũn,k−bi
�� , �A10�

where �ũn,k+q� is the “dual” state, constructed as a linear
combination of the occupied �un,k+q� at neighboring mesh
point q, having the property that 	un�k � ũn,k+q�=�n�n. This en-

sures that 	un�k � �̃iunk�=0 consistent with Eq. �A1�, and is
solved by the construction33,34

�ũn,k+q� = �
n�

�Sk,k+q
−1 �n�n�un�,k+q� , �A11�

where

�Sk,k+q�nn� = 	unk�un�,k+q� . �A12�

Equations �A6�–�A12� provide the formulas needed to
calculate the three gauge-invariant quantities f̃k, g̃k, and h̃k on
each point of the k mesh. By summing these as in Eq. �A9� it
is straightforward to obtain C, M̃LC, and M̃IC, respectively.
Since we have derived this finite-difference representation
using gauge-invariant quantities at each step, it is not surpris-
ing that we obtain the gauge-invariant contributions M̃LC and
M̃IC, as opposed to the gauge-dependent MLC and MIC, from
this approach.

APPENDIX B: THE NON-ABELIAN BERRY CURVATURE

It has been noticed in Sec. II D that the vector quantity f̃k
is the Berry curvature. From Eqs. �38� and �41�, this can be
regarded as the trace of the Nb�Nb matrix Fk having vector
elements

Fk,nn� = i	�kunk� � ��kun�k� − i�
m

	�kunk�umk� � 	umk��kun�k� .

�B1�

This quantity is known within the theory of the geometric
phase as the non-Abelian Berry curvature,36 and character-
izes the evolution of an Nb-dimensional manifold �here, the
states �unk�� in a parameter space �here, k space�. The non-
Abelian curvature is gauge covariant, meaning that if the
states are unitarily transformed as

�unk� → �
n�

Unn��k��un�k� , �B2�

then the matrix Fk transforms as

Fk,nn� → �
mm�

Unm
† �k�Fk,mm�Um�n��k� . �B3�

This implies that the invariants of the matrix Fk, such as its
trace f̃k, are gauge invariant. In fact, as discussed in Sec.
II D, f̃k behaves similar to a standard �i.e., Abelian� curva-
ture.

We also notice that the energy matrix Ek, Eq. �1�, is also
gauge covariant in the sense of Eq. �B3�. It is then easy to
verify that the trace �over the band indices� of the matrix
product EkFk is a gauge-invariant quantity. In fact, this trace

is identical to h̃k as defined in Sec. II D, whose gauge-
invariance we proved in a different way. The special Nb=1
case was previously dealt with in Ref. 7, where the analog of

h̃k takes the form of the product of energy times curvature,
both gauge-invariant quantities. The present finding shows
that, in the multi-band case, this must be generalized as the
trace of the �matrix� product Ek times Fk, both gauge-
covariant quantities.
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