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Accurate values for polarization discontinuities between pyroelectric materials are critical for under-
standing and designing the electronic properties of heterostructures. For wurtzite materials, the zincblende
structure has been used in the literature as a reference to determine the effective spontaneous polarization
constants. We show that, because the zincblende structure has a nonzero formal polarization, this method
results in a spurious contribution to the spontaneous polarization differences between materials. In addition,
we address the correct choice of “improper” versus “proper” piezoelectric constants. For the technologi-
cally important III-nitride materials GaN, AlN, and InN, we determine polarization discontinuities using a
consistent reference based on the layered hexagonal structure and the correct choice of piezoelectric
constants, and discuss the results in light of available experimental data.

DOI: 10.1103/PhysRevX.6.021038 Subject Areas: Condensed Matter Physics,
Materials Science, Optoelectronics

I. INTRODUCTION

Pyroelectric materials have emerged in a variety of
electronic and optoelectronic applications. Because of
the symmetry of their crystal structure, these materials
exhibit spontaneous (SP) and piezoelectric (PZ) dipole
moments [1], which manifest themselves as electric fields
in heterostructure layers and sheet charges at interfaces. In
the technologically important III-nitrides, which have the
wurtzite (WZ) structure (space group P63mc), polarization
differences allow for strong carrier confinement and the
formation of a two-dimensional electron gas (2DEG)
with high density at AlGaN/GaN interfaces, exploited in
high electron mobility transistors (HEMTs). The effect of
polarization can also be detrimental, for example, causing
the quantum-confined Stark effect in quantum wells of
light-emitting diodes (LEDs), which reduces radiative
recombination rates and shifts the emission wavelength.
For both HEMTs and LEDs, accurate values of the SP and
PZ polarization constants are required for a fundamental
understanding as well as for device design.
Since experimental determination of the separate SP and

PZ contributions to the total polarization is very difficult,
calculated values of SP and PZ polarization constants are
widely used in simulations. The PZ polarization constants
are, in principle, fairly straightforward to explicitly measure

or calculate [2]. However, the reported values exhibit a
considerable spread [3]. In addition, the difference between
so-called “proper” and “improper” PZ constants [2,4] is
often overlooked, even though it can give rise to significant
quantitative changes in the resulting polarization fields.
This difference is one issue that is elucidated in the
present paper.
The definition of SP polarization constants is even

more subtle, and they are typically not amenable to explicit
experimental determination, except in special cases [5].
The calculation of SP polarization requires the choice of a
reference structure, which in the case of WZ semiconduc-
tors, has invariably been chosen to be zincblende (ZB)
[6–8]. In this work, we show that, although ZB as a
reference structure is intuitively appealing, the SP polari-
zation constants that result have been misinterpreted,
introducing a source of error into the predicted values
for bound sheet-charge densities (and polarization fields).
We also demonstrate that a proper choice of reference
structure can eliminate these problems, and we provide
revised values that can be directly inserted into current
simulation tools.
While our theoretical considerations are general, we

choose the nitride semiconductors because they provide a
suitable example to illustrate the derivations and because
our findings have a significant impact on this materials
system of high (and still increasing) technological impor-
tance. In Sec. II, we review the underlying theory. In
Sec. III, we address the issues resulting from the choice of
zincblende as a reference structure, and we propose a
solution. Section IV deals with piezoelectric contributions,
specifically the issue of proper versus improper constants.
In Sec. V, we show that our findings have important
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consequences for nitride device structures and compare
with previous implementations and with experiment.
Section VI concludes the paper.

II. CALCULATING POLARIZATION
CONSTANTS IN WURTZITE

For WZ films grown in the [0001] direction (i.e.,
the þc direction), the polarization component P3 is given
by the sum of the SP polarization at the wurtzite material’s
own lattice parameters, PSP, and the z component of the
PZ polarization [1]; for material m,

Pm
3 ¼ Pm

SP þ ðϵm1 þ ϵm2 Þem31 þ ϵm3 e
m
33; ð1Þ

where (in Voigt notation) ϵi (i ¼ 1,2,3) is the strain in the i
direction and e3i are the corresponding piezoelectric con-
stants (specifically, the “improper” ones; see Sec. IV).
Henceforth, we drop the subscript “3” from P for simplic-
ity; all unbolded quantities pertaining to wurtzite are
assumed to be in the c direction.
The goal of this work is to derive the appropriate SP and

PZ constants that allow Eq. (1) to be used in accurately
determining polarization differences at interfaces between
different WZ materials.

A. Modern theory of polarization

Direct calculation of the polarization constants in Eq. (1)
by first-principles electronic-structure methods was
enabled by the formulation of a rigorous theory of bulk
polarization, known as the modern theory of polarization
(MTP) [9,10]. For a given structure λ, the MTP allows
calculation of the so-called “formal” polarization [9]:

Pf ¼ Pion þ Pel

¼ e
Ω

X
s

Zion
s RðλÞ

s þ ief
8π3

Xocc
j

Z
BZ

dkhuðλÞj;kj∇kjuðλÞj;ki; ð2Þ

where Ω is the cell volume, Zion
s is the charge of the ion s

and RðλÞ
s is its position in the λ structure, f is the spin

degeneracy of the bands, the sum j runs over occupied

bands, and uðλÞj;k are the cell periodic parts of the Bloch wave
functions. In Eq. (2), Pel is the Berry phase taken over the
valence-band manifold [9,10]. The formal polarization is
defined only modulo the “quantum of polarization” eR=Ω,
where R is any lattice constant and e is the electron
charge [9,10].
In the MTP, only differences between formal polar-

izations of appropriate structures, λ ¼ 0 and λ ¼ 1, are well
defined:

ΔP ¼ Pðλ¼1Þ
f − Pðλ¼0Þ

f : ð3Þ
The choice of the “appropriate” structures λ ¼ 0 and λ ¼ 1
rests on one of two possible considerations to ensure

that physical conclusions can be drawn from their formal
polarization differences. First, if the two structures are
connected by an adiabatic, gap-preserving deformation
path [9,10], then their difference in polarization [ΔP in
Eq. (3)] is given by the expression

ΔP ¼
Z

1

0

dλ
∂P
∂λ ; ð4Þ

and it corresponds to the zero-field adiabatic displacement
current. This quantity can, in principle, be determined
experimentally. An obvious application is the calculation of
piezoelectric constants, which involves polarization
differences between structures with slightly different lattice
constants and/or internal structural parameters.

B. Interface theorem

The second consideration, as shown by Vanderbilt and
King-Smith [11], is that if an insulating interface can be
constructed between two structures, the difference in
formal polarization gives the bound charge σb that builds
up at the interface as a result of the continuity of the
displacement field over an interface with no free charge:

σb ¼ ðPðλ¼1Þ
f − Pðλ¼0Þ

f Þ · n̂: ð5Þ

This is often referred to as the “interface theorem.” Since
there is no adiabatic path necessary between the two
structures in this consideration, λ ¼ 0 and λ ¼ 1 can be
different polymorphs of the same material (such as WZ and
ZB structures of GaN) or different materials altogether
(such as GaN and AlN); as long as they form an insulating
interface, Eq. (5) will give the bound charge accumulation
at the interface.
From the interface theorem [Eq. (5)] and Eq. (1), the

bound polarization charge at the interface between different
III-nitride materials (m and n) is

σb ¼ ½Pm
SP þ em31ðϵm1 þ ϵm2 Þ þ em33ϵ

m
3 �

− ½Pn
SP þ en31ðϵn1 þ ϵn2Þ þ en33ϵ

n
3�: ð6Þ

As an example, we take a realistic situation that occurs in
heterostructures, assuming that material n is strained
coherently to m (ϵm1 ¼ ϵm2 ¼ ϵm3 ¼ 0), i.e., under plane
stress (ϵn1 ¼ ϵn2 , ϵn3 ¼ −2Cn

13=C
n
33ϵ

n
1 , where Cij are the

elastic constants). Therefore, we have

σb ¼ ðPm
SP − Pn

SPÞ − 2ϵn1ðen31 − en33C
n
13=C

n
33Þ

¼ ΔPint
SP − 2ϵn1ðen31 − en33C

n
13=C

n
33Þ: ð7Þ

Note that σb is the charge density of electrons at an interface
for which material n has been grown on top of materialm in
the þc direction.
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III. REFERENCE STRUCTURE FOR
SPONTANEOUS POLARIZATION

A. Effective spontaneous polarization constants

We first address the difference in spontaneous polariza-
tion in Eq. (7), ΔPint

SP. Strain effects will be taken into
account separately in the PZ part, so that ΔPint

SP is simply
the difference of formal polarizations of the respective
zero-strain structures,

ΔPint
SP ¼ Pm

f jϵ¼0 − Pn
f jϵ¼0: ð8Þ

For the purposes of Eq. (1), we would like to define a SP
polarization constant that is a property of a single material.
Simply taking Pm

f of Eq. (8) as Pm
SP is problematic since

formal polarization is multivalued, being only well defined
modulo a quantum of polarization eR=Ω. Therefore, in
every situation in which Eq. (1) is applied to determine σb
at an interface, it must be confirmed that formal polar-
izations of the two materials are taken on the same “branch”
of eR=Ω. A better approach is to take Pm

SP in Eq. (1) as a
so-called “effective” SP polarization, Peff , defined by Resta
and Vanderbilt [12] to be the ΔP in Eq. (3) that results as
the system is taken from a high-symmetry “reference”
structure (λ ¼ 0) to the structure of interest (λ ¼ 1):

Peff ¼ Pðλ¼1Þ
f − Pðλ¼0Þ

f ¼ Pf − Pref
f : ð9Þ

Using Peff to define the SP polarization of the material
removes the indeterminacy inherent to the formal
polarization.
The reference structure is often chosen to be centrosym-

metric, but it is important to recognize that the formal
polarization of centrosymmetric crystals is not necessarily
zero. This is because, as stated above, Pf is a multivalued
vector field, so it is possible for a nonzero formal
polarization to be unchanged (modulo eR=Ω) under the
inversion operator. Nevertheless, high symmetry puts

restrictions on the possible values of Pðλ¼0Þ
f [11].

While, in principle, effective polarization constants are
still differences in formal polarization between λ ¼ 1 and
λ ¼ 0 (reference) structures, in practice they can be used to
compare spontaneous polarizations of different materials to
obtain ΔPSP if such materials share a reference structure
with the same formal polarization. Such a comparison then
correctly yields the interface charge density according to
the interface theorem of Ref. [11]. In such cases, ΔPSP is
just given by the difference in effective SP polarization of
the materials,

Δ ~Pint
SP ¼ Pm

eff − Pn
eff : ð10Þ

In the more general case that the reference formal
polarizations do not match, the correct change in SP
polarization following from Eqs. (8) and (9) is

ΔPint
SP ¼ Δ ~Pint

SP þ ðPm;ref
f − Pn;ref

f Þ: ð11Þ
Therefore, a correction term of the form

ΔPref
corr ≡ Pm;ref

f − Pn;ref
f ð12Þ

has to be added to Eq. (10). Unfortunately, this correction
term is not typically implemented in device simulation
packages (e.g., Ref. [13]) or used in the interpretation of
experimental data (e.g., Ref. [14], which is considered a
standard reference in the field).
When the PZ terms are included as well, the total

interface charge given by Eq. (7) becomes

σb ¼ Δ ~Pint
SP þ ΔPref

corr − 2ϵn1ðen31 − en33C
n
13=C

n
33Þ: ð13Þ

Equation (13) is a central result of the present work.

B. Correction term for the effective spontaneous
polarization with the zincblende reference structure

As mentioned before, previous studies [6–8] have
exclusively used ZB (space group F4̄3m) as a reference
structure for calculating the SP polarization of theWZ. This
structure is not centrosymmetric, although it has sufficient
symmetry to preclude any SP polarization [1]. The fact that
an insulating (111) interface can be constructed between
the WZ and ZB polytypes [8] makes it an appropriate
reference structure. In fact, experimental measurements
have deduced the relative polarization between the WZ and
ZB phases of GaN [5], which were found to be consistent
with the theoretical values in Refs. [6–8].
However, there is a subtlety with using ZB as a reference

structure: It has a nonzero formal polarization in the [111]
direction, PZB

f (modulo eR=Ω). Again, this is consistent
with the symmetry considerations because Pf is a multi-
valued vector quantity and can be nonzero while still
remaining unchanged (modulo eR=Ω) under the F4̄3m
symmetry operations. These symmetry operations dictate
the possible values of PZB

f , and therefore the resulting value
depends only on the lattice constant, not on the chemical
species of the atoms [11] (see Sec. S1 of Ref. [15] for more
details on the formal polarization of ZB). The ZB reference
structures for the reported effective SP polarization values
for the III-nitrides were those with lattice constants equal to
the in-plane lattice constant of the corresponding wurtzite
material [6–8] (as confirmed by our calculations), so PZB

f
will be different for GaN, AlN, and InN, and does not
simply constitute a constant shift of PWZ

f for all the
materials. Therefore, for the effective SP polarization
constants with the ZB reference to be implemented in
Eq. (7) to determine the polarization difference between
different WZ materials, the correction term of Eq. (12) is
required, as in Eq. (13).
Consider the example of the interface charge between

InN and GaN. Although, as mentioned above, the formal
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polarization of zincblende does not necessarily vanish,
the symmetry of the structure severely limits the possible
values. Specifically, there are two possible values of the
formal polarization in the [111] direction that are consistent
with the symmetry: Either Pf vanishes, or it is equal to
e

ffiffiffi
3

p
=2a2n (both modulo e

ffiffiffi
2

p
an=Ωn), where an is the WZ

in-plane lattice constant of material n and Ωn is the volume
of the ZB primitive cell (see Ref. [11] or Sec. S1 of
Ref. [15]). For the III-nitrides, it is the latter, giving a
correction term for GaN/InN:

ΔPðZB refÞ
corr ¼ PGaN;ZB

f − PInN;ZB
f

¼ e
ffiffiffi
3

p

2

�
1

ðaGaNÞ2
−

1

ðaInNÞ2
�

¼ 0.28 C=m2: ð14Þ
When considering the SP polarization differences between
WZ nitrides, this represents a significant correction. In fact,
as we show in Sec. III C, the correction is an order of
magnitude larger than the effective polarizations when they
are calculated with the zincblende reference [6,7]. As we
see later in Sec. V E, this error is substantially reduced in
practice by an approximate error cancellation that occurs in
connection with the treatment of the PZ response.
There is nothing intrinsically wrong with the using

ZB as the reference structure for defining WZ effective
SP polarization; however, if these values are to be used
to obtain polarization differences between different WZ
materials, the ΔPref

corr term [Eq. (12), or Eq. (14) for the
example of GaN/InN] must be explicitly included in
expressions such as Eq. (11) or Eq. (13). To our knowledge,
however, this has not been properly implemented in the
numerous previous evaluations of SP polarization for
nitride interfaces, and it would require changes in the
software for the many simulation tools that include model-
ing of polarization fields in heterostructures.

C. P63=mmc hexagonal layered structure
as an alternative reference

In order to avoid extensive changes in the simulation
software, and to enhance physical insight, we advocate
another approach, namely, to determine effective SP
polarization constants with respect to a reference structure
for which the formal polarization is explicitly zero (so that
ΔPint

SP ¼ Δ ~Pint
SP). A straightforward choice for this reference

structure is the layered hexagonal (H) structure (space
group P63=mmc), as was used for hexagonal P63mc ABC
materials [16]. This structure is centrosymmetric, and we
show below with explicit first-principles calculations that it
remains insulating and its formal polarization vanishes. The
layered hexagonal structure can be obtained by an adiabatic
(gap-preserving) increase of the internal structural u
parameter from u ≈ 0.37–0.38 of the WZ structure to
u ¼ 0.5. All that is required to avoid correction terms like

Eq. (14) is to replace the effective SP polarization constants
currently used in the field (the ones referenced to ZB [6,7])
with those referenced to the H reference structure. We have
explicitly verified that this leads to expressions that are
identical to those that would be obtained for the ZB
reference, provided the second term in Eq. (11) or Eq. (13)
is included.
The first-principles calculations of Pf for the H, WZ, and

ZB structures of the III-nitrides were performed using
density functional theory with the screened hybrid func-
tional of Heyd, Scuseria, and Ernzerhof (HSE) [17] as
implemented in the VASP code [18]. Hartree-Fock mixing
parameters of 31% for AlN and GaN, and 25% for InN
were used to correctly describe the band gaps and structural
parameters of each material. Conventional functionals
based on the local density approximation (LDA) or
generalized gradient approximation (GGA) predict InN
to be a metal, precluding the calculation of the polarization
constants if the Γ point is included in the k-point mesh
(which is required in Vasp). Projector augmented wave
potentials (PAW) [19], with the In and Ga d electrons
frozen in the core, were used. All calculations were
performed on bulk primitive cells, with a 6 × 6 × 8
Monkhorst-Pack [20] k-point mesh to sample the
Brillouin zone, and a large energy cutoff of 600 eV for
the plane-wave basis set, chosen to ensure convergence of
the internal structural parameter u. The calculated lattice
parameters and band gaps, listed in Sec. S2 of Ref. [15],
show good agreement with experimental data.
We have calculated the electronic structure for structures

with increasing u, ranging from u ≈ 0.37 to u ¼ 0.5
(Fig. 1), and confirmed that this path between WZ and
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FIG. 1. Formal polarization of InN, GaN, and AlN for struc-
tures as a function of the internal structural parameter u, varying
between fully relaxed WZ (circled symbols, labeled with the
relaxed u value) and H (u ¼ 0.5), as shown schematically by ball
and stick models, where smaller balls represent N atoms and
larger ones represent the cations. All other lattice parameters were
fixed at their relaxed WZ values.
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H is gap preserving. These calculations also show that the
formal polarization of the H structure is zero (modulo
eR=Ω) for the III-nitrides (Fig. 1). We remind the reader
that this was not guaranteed since Pf can be nonzero and
still consistent with inversion symmetry, if the inversion
operator changes Pf by a multiple of eR=Ω. We have
therefore verified that the hexagonal phase is a reference
structure for which there is no spurious term in Eq. (11).
In addition, by correcting for any discontinuities (in the

amount of a multiple of eR=Ω) that may occur in the
calculations of formal polarizations along the path between
WZ and H, we have ensured that we are comparing formal
polarizations of WZ GaN, AlN, and InN on the same
branch of eR=Ω [12].
The calculated spontaneous polarization coefficients for

the WZ structure using either H or ZB as a reference are
given in Table I. The results obtained by Bernardini et al.
[6,7] are listed for comparison. The GGA functional used in
that work provides results that are very close to those we
obtained with HSE; the discrepancy is the largest for InN,
which is probably related to the fact, mentioned above, that
GGA predicts InN to be a metal. Table I also shows,
however, that the choice of reference structure makes a
significant difference. The magnitudes of the coefficients
are much larger, and their signs are different when H is used
as the reference. We observe that it is not just the absolute
values but also the relative differences between the calcu-
lated polarization constants of the three materials that differ
from the previously reported values [6,7].

The difference in sign of PðH refÞ
eff compared to PðZB refÞ

eff
demonstrates that the conventional wisdom that the SP
polarization in WZ points in the −c direction is misleading.
The formal polarization of WZ has no definite sign as this
would depend on the chosen branch. The effective SP
depends on the polarization difference, and therefore, the
sign will depend on the sign and magnitude of the formal
polarization of the reference structure.
Even though the values reported in Table I for PðH refÞ

eff and

PðZB refÞ
eff clearly differ in sign, absolute magnitude, and

relative differences between materials, we show in Sec. V
that the final predictions based on both formulations are
actually rather similar because of the way the PZ contri-
butions have been included in the previous work
(cf. Sec. IV).

IV. IMPROPER VERSUS PROPER
PIEZOELECTRIC CONSTANTS

We now address the specifics of the PZ terms in Eqs. (7)
and (13). A complication that must be addressed is the
choice between improper and proper e31 (e33 has no such
complication) [2,4].
As we have done above, we consider a thin layer of aWZ

material grown in the c direction. If the layer is strained
perpendicular to the c direction, the total bound charge on
the þc and −c surfaces will change as a result of the
polarization current, or redistribution of charge, in the layer.
If metallic contacts on the þc and −c surfaces are short-
circuited when the strain occurs, the current flow can be
measured directly and will give the proper PZ constant,
denoted eprop31 [2,4].
If the þc and −c faces are in open-circuit boundary

conditions, the layer will have a field across it due to the SP
polarization, which will be modified by the strain via two
mechanisms. The first is the same as in the proper case, as
the strain will cause a flow of polarization current. But in
addition, since the field depends on the charge density, the
change in the area of the c plane as a result of ϵ1 will dilute
or concentrate the “pre-strain” bound charge. For small
strains, the latter is given by the zero-strain formal
polarization [2,4]. Taking both of these mechanisms into
account gives the improper PZ constant, eimp

31 .
In the case of, e.g., Eq. (13), the PZ constants correspond

to the improper case since their role in the equation is to
take into account the change in formal polarization of
material n with strain, so that σb corresponds to the bound
charge at the coherent interface with the in-plane lattice
constant of material m. The change in formal polarization
with strain is an alternative definition of the improper PZ
constants [4].
From Refs. [2] and [4], the improper PZ constant en;imp

31 is
related to the proper constant by

en;imp
31 ¼ en;prop31 − Pn

f jϵ¼0; ð15Þ

where Pn
f jϵ¼0 is the zero-strain formal polarization of

material n. There is no change to the e33 PZ constant. The
proper PZ constant is a well-defined bulk quantity, as it is
related to the polarization current; however, the improper
PZ constant is branch dependent [4]. Here, also, defining
polarization with respect to the H reference proves useful.
Since the formal polarization of the H structure vanishes

(Fig. 1), Pn;ðH refÞ
eff ¼ Pn;WZ

f jϵ¼0; this also ensures that
improper PZ constants for the different materials are

TABLE I. Effective spontaneous polarization constants in units
of C=m2 of WZ GaN, AlN, and InN calculated using either the
hexagonal (H, space group P63=mmc) or ZB (space group
F4̄3m) reference structures. The lattice constant of the ZB
structure is chosen to match the in-plane lattice constant of the
WZ structure for the same material. Results from previous
calculations [7] that used the ZB reference are listed for
comparison.

PðH refÞ
eff PðZB refÞ

eff PðZB refÞ
eff , previously reporteda

GaN 1.312 −0.035 −0.034
AlN 1.351 −0.090 −0.090
InN 1.026 −0.053 −0.042

aFrom Ref. [7].
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taken on the same branch, in the same way as this is
confirmed for the SP polarization constants. Therefore,
consistent use of the H reference structure allows us to
write Eq. (7) as

σb ¼ Δ ~Pint;ðH refÞ
SP

− 2ϵn1ðen;prop31 − Pn;ðH refÞ
eff − en;prop33 Cn

13=C
n
33Þ; ð16Þ

where Pn;ðH refÞ
eff can be taken from Table I.

Calculated proper PZ constants are given in the “proper”
column of Table II. Since the HSE hybrid functional was
used (and therefore density functional perturbation theory
was not implemented), finite differences were used to
calculate the derivatives with strain, following the pro-
cedure outlined in Eqs. (4)–(6) in Ref. [6]. Specifically,
improper PZ constants were calculated and converted to
proper constants by adding Pn

f jϵ¼0 [see Eq. (15)] as
determined in the calculation. This removes any depend-
ence on the branch choice used in finite-difference calcu-
lations [4]. We then convert back to improper constants

using Pn;ðH refÞ
eff as discussed above, in order to ensure that

the constants are reported for the same branch for each
material (“improper” column in Table II).
The WZ structure does have another nonzero piezo-

electric constant e15, which couples a shear deformation in
a plane perpendicular to the c plane (ϵ13 or ϵ31) to the
polarization in the c plane. In this case, there are two
improper PZ constants since a correction must be included
in the case of ϵ13 but not for ϵ31 [4]. These elements do not
enter in the situation we consider in this work (plane stress
conditions with the c plane as the growth plane) but may be
important for growth on nonpolar or semipolar planes [21].
It is important to comment on the PZ constants reported

in the literature [3]. When PZ polarization constants have
been implemented in simulations (e.g., Refs. [3,13,14]), it
has never been specified which PZ constants are used
for WZ III-nitrides. However, by comparing our calcula-
tions of proper and improper PZ constants (“Proper”
and “Improper” columns of Table II) with the reported
PZ constants in the literature (“Previously reported” of
Table II), we have found that the reported constants are
more likely to be the proper PZ constants.

From an experimental perspective, most of the exper-
imental techniques have measured total polarization and
then deduced the PZ constants in the nitrides using the SP
constants from, e.g., Ref. [6] using Eq. (1). As we show in
Sec. V, observation of the effects of total polarization can be
misleading with regards to the differentiation between
proper and improper PZ constants because of the error
cancellation from the use of the ZB reference in defining
the SP polarization (discussed in Sec. III B).
There have been direct measurements of the PZ con-

stants, either by probing the electromechanical coupling
constants via surface acoustic waves [22,23] or by using
interferometry to determine the strain caused by the
application of a voltage [24–27]. Both of these techniques
measure the proper constants since neither is sensitive to
the change in surface charge density resulting from the
deformation. These reported values indeed agree well with
our calculated values for the proper PZ constants, both in
sign and in magnitude.
In previous work [7], Pn;ðZB refÞ

eff was used instead of
Pn
f jϵ¼0 in Eq. (15) to convert improper to proper e31 PZ

constants (cf. Tables VI and V of Ref. [7]). Because of
the nonvanishing formal polarization of the ZB reference

structure, Pn;ðZB refÞ
eff ≠ Pn;WZ

f jϵ¼0; instead, we see from the
discussion resulting in Eq. (14) that Eq. (15) can be
expressed as

en;imp
31 ¼ en;prop31 −

�
Pn;ðZB refÞ
eff þ e

ffiffiffi
3

p

2a2n

�
; ð17Þ

where an is the equilibrium, in-plane lattice constant of the
WZ material n. To our knowledge, the inclusion of the last
term in Eq. (17) has not been discussed in the literature.

Because of the small magnitude of Pn;ðZB refÞ
eff , neglecting the

last term in Eq. (17) led to the conclusion in Ref. [7] that the
difference between the proper and improper PZ constants is
small, seemingly rendering the distinction of no conse-

quence. Instead, because of the large magnitude of Pn;ðH refÞ
eff

[and e
ffiffiffi
3

p
=2a2n in Eq. (17)], the distinction between proper

and improper PZ constants is actually very significant.

V. COMPARISON WITH REPORTED
EXPERIMENTAL RESULTS

A. Correct expressions for total polarization
for wurtzite materials

Before discussing specific quantitative results for nitride
semiconductors, we briefly summarize the main points of
the previous sections and rigorously express the polariza-
tion of a given WZ material [Eq. (1)]. Spontaneous
polarization constants must be defined with respect to a
reference structure, and this choice of reference structure
must be taken into account when evaluating polarization
discontinuities at interfaces. We determined a correction

TABLE II. Calculated piezoelectric polarization constants in
units of C=m2 compared with reported values from the literature.

Proper Improper Previously reporteda

GaN e31 −0.551 −1.863 −0.22 to −0.55
e33 1.020 1.020 0.43 to 1.12

AlN e31 −0.676 −2.027 −0.38 to −0.81
e33 1.569 1.569 1.29 to 1.94

InN e31 −0.604 −1.63 −0.23 to −0.59
e33 1.238 1.238 0.39 to 1.09

aFrom Ref. [3] and references therein.
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term [Eq. (12)] that is necessary when effective SP
polarization constants are used to determine the SP polari-
zation difference between materials at an interface. This
correction term is significant when the ZB reference
structure is used [e.g., Eq. (14)] but is zero for the
H reference. Using H as a reference is therefore more
straightforward and is the approach we advocate, with the

SP constants PðH refÞ
eff listed in Table II.

In addition, the improper PZ constants should be used to
determine interface bound charge and fields in hetero-
structure layers. These can be obtained from the proper

constant eprop31 by subtracting PðH refÞ
eff (Table II). Therefore,

in the notation of this paper, Eq. (1) is written rigorously as

P ¼ PðH refÞ
eff þ ðϵ1 þ ϵ2Þðeprop31 − PðH refÞ

eff Þ þ ϵ3e
prop
33 : ð18Þ

B. Calculation of sheet charges for III-nitrides

Because of the important impact of polarization on
device performance and design, a plethora of experi-
mental studies have been aimed at determining the
effects of polarization at GaN/InGaN and GaN/AlGaN
heterostructures. We have plotted these reported results
in Fig. 2, expressed as the magnitude of polarization
bound charge at the interface, as a function of alloy
content (a full list of references is provided in Sec. S3
of Ref. [15]).
For GaN grown in the þc direction with the InGaN

(AlGaN) grown on top, the sign of the bound charge at the
interface will be negative (positive) [28].
In Fig. 2, the black dashed curves correspond to the

current practice in the field: Sheet charges are predicted
based on (i) SP constants referenced to the ZB structure

(PðZB refÞ
eff in Table I) and Eq. (13) without the correction

term ΔPðZB refÞ
corr , and (ii) proper PZ constants (“Proper”

column in Table II). Quantities for alloys were obtained
using linear interpolation. For an explicit expression in
terms of alloy content, see Eq. (3) in Sec. S4 of Ref. [15].
Elastic constants were taken from Ref. [29].
The red solid line in Fig. 2 corresponds to the imple-

mentation recommended in this work, i.e., using the H
reference structure and the improper PZ constants, as in
Eqs. (16) and (18) [and Eq. (5) in Sec. S4 of Ref. [15]].
In view of the arguments given above, it may seem

surprising that the dashed black and solid red curves agree
as well as they do; we return to this point in Sec. V E.

C. InGaN/GaN interfaces

For the InGaN/GaN system, most experimental studies
have applied optical techniques to determine the polari-
zation fields in GaN/InGaN/GaN quantum wells (QWs).
This field can be probed by varying the QW width [30]
or external bias [31] and measuring the change in the
optical properties of the QW (labeled “optical” in Fig. 2).

In addition, there have also been studies using time-
resolved PL to measure shifts due to screening of the
polarization field by photoexcited or electrically
injected carriers [32]. Other studies have been based
on capacitance-voltage (CV) profiling of the fields [33],
and on electron holography [34], where cross-sectional
transmission electron microscopy is conducted on
InGaN/GaN heterostructures to determine the depth-
resolved electrostatic potential in the growth direction.
When fields are reported, we convert to the bound charge
for the purposes of Fig. 2(a), assuming GaN/InGaN/GaN
quantum wells (with thick barriers such that the electric
field in the barriers is presumed to be zero) using a
simple parallel-plate capacitor model (E ¼ σ=ε0εr, using
a relative dielectric constant for GaN of 10 [35] and for
InN of 15 [36] and a linear interpolation for the dielectric
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FIG. 2. Absolute values for polarization sheet charges at the
(a) InGaN/GaN and (b) AlGaN/GaN interfaces as a function
of alloy content predicted from the spontaneous polarization
constants calculated using either the ZB reference structure
[without a correction term, Eq. (14)] and the proper piezoelectric
constants (black dashed curve), or the H reference structure and
improper piezoelectric constants (red solid curve). Points are
experimental values from the literature (see Sec. S3 of Ref. [15]
for references and values).
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constant of InGaN). For specific values of the points in
Fig. 2, see Sec. S3 of Ref. [15].
The red curve in Fig. 2(a) is indeed in reasonable

agreement with the experimental observations, appearing
to be an upper bound of the data. The optical experiments
usually rely on Schrödinger-Poisson simulations to deter-
mine the field magnitude from the measured optical
properties. Uncertainties in input parameters to these
models such as well widths, compositions, and composi-
tion profiles can result in quantitative differences. It has
been shown recently that taking into account the deviations
from an ideal QW structure when interpreting experimental
observations can account for the apparent discrepancy
between the measurements and theoretical prediction of
polarization fields [37,38]. Such deviations are expected to
be significant for InGaN/GaN because of the large lattice
mismatch and the large difference in optimal growth
temperatures for GaN and InGaN.

D. AlGaN/GaN interfaces

For the AlGaN/GaN system, there are two basic strat-
egies for experimentally determining polarization effects.
The first is to directly measure the polarization field in an
AlGaN/GaN/AlGaN (QW) structure with the same meth-
ods as used in the InGaN/GaN case [39,40]. For the
purposes of Fig. 2(b), we have converted these fields into
bound sheet-charge densities in an AlGaN/GaN/AlGaN
quantum well (using a relative dielectric constant for GaN
of 10 [35]).
The other strategy is to measure the density of the

2DEG at the AlGaN/GaN interface in a HEMT structure
(GaN channel, AlGaN barrier); from this, the bound
interface charge σb can be derived [41]. The 2DEG density
can be determined either by Hall effect [14] or CV [41]
measurements.
The significant scatter in the experimental data in

Fig. 2(b) may have several origins. There are experimental
uncertainties that can influence fields, such as incomplete
strain relaxation in buffer layers [42] and differences in
background doping [43–45].
As in the case of InGaN/GaN, the predicted sheet

charges appear to be an overestimation compared to the
experimental observations. In the case of optical measure-
ments, Schrödinger-Poisson modeling is again typically
used to interpret the measured properties, and the same
uncertainties and systematic errors may arise as discussed
in the case of InGaN/GaN [46,47]. For the cases where the
compensating 2DEG density is measured, the thickness of
the AlGaN layer and Schottky barrier height at the AlGaN
surface will determine whether the entire bound charge is
compensated, which could be a reason that the observations
are slightly lower than predicted theoretically [48]. Also,
interface roughness and electron traps due to dislocations
and/or surface states have been proposed to explain the
reduced 2DEG density [14].

E. Comparison of theoretical implementations

The degree of agreement between results obtained based
on the current practice in the field (ZB reference, no
correction term, proper PZ) and our revised implementation
(H reference, improper PZ constants) merits some discus-
sion. It is clear from Table I that the SP polarization values
determined with the H reference structure are very different
from those determined with the ZB reference; also, from
Table II, the improper and proper e31 coefficients are very
different. However, the similarity between the red solid and
black dashed curves in Fig. 2 demonstrates that these two
large corrections cancel when we evaluate Eq. (18). In other
words, the correct implementation (H reference, improper
PZ constants) results in values that are only slightly
different from the current (incorrect) practice in the field
(ZB reference, no correction term, proper PZ). We now
demonstrate analytically how this accidental agreement
comes about.
If we take the difference between our revised imple-

mentation (solid red curve in Fig. 2) and the current practice
in the field (dashed black curve in Fig. 2) for a given x, we
obtain the total error in using the current practice in the
field:

ΔPerror ¼ xΔPðZB refÞ
corr þ 2ϵ1ðxÞPn;ðH refÞ

eff ðxÞ: ð19Þ

A derivation of this expression is given in Sec. S5 of
Ref. [15]. For both AlGaN/GaN and InGaN/GaN, the two
terms on the right-hand side of Eq. (19) have opposite signs
and a tendency to cancel. To understand why, first note that
ϵ1ðxÞ is approximately linear in x, so that both terms can
be regarded as being roughly proportional to ϵ1ðxÞ. In

particular, linearizing Eq. (14) in ϵ1, we find xΔPðZB refÞ
corr ≃

−2ϵ1ðxÞPm;ZB
f [see also Eq. (8) of Ref. [15]]. Thus,

ΔPerror ≃ 2ϵ1ðxÞðPn;ðH refÞ
eff − Pm;ZB

f Þ
¼ 2ϵ1ðxÞðPn;WZ

f − Pm;ZB
f Þ

¼ 2ϵ1ðxÞ½Pn;ðZB refÞ
eff þ ðPn;ZB

f − Pm;ZB
f Þ�; ð20Þ

where in the second step we used the fact that the
formal polarization of the H structure vanishes. For the
III-nitrides, jϵ1j < 0.1, and we see from Table I that
jPn;ZB

eff j < 0.1 C=m2. The second term in the last line of
Eq. (20), Pn;ZB

f − Pm;ZB
f , is related to the difference in in-

plane lattice constants between material n and material m
(Sec. III B). The largest value it will take for the materials
considered in this study is 0.28 C=m2 for InN on GaN, as
calculated in Eq. (14), and it will be significantly smaller
for lower alloy content and for the case of AlGaN on GaN.
The error is therefore the product of small factors, and thus
small in practice, significantly smaller than the errors in the
SP and PZ parts individually.
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The small magnitude of Pn;ZB
eff (Table I) demonstrates that

PWZ
f ∼ PZB

f in these materials (see Sec. S1 of Ref. [15]).
The similarity between PZB

f and PWZ
f is not unexpected.

Although ZB has sufficient symmetry to preclude SP
polarization, in the [111] direction the structure only differs
from the WZ c direction by the stacking of the cation/anion
planes and a small deviation from the ideal WZ u parameter
and c=a lattice constants. In WZ materials other than the
III-nitrides, such deviations could, in principle, be larger,
and in that case, PZB ref

eff will be larger, resulting in ΔPerror
being more significant.
For AlGaN/GaN, the relatively modest difference in

lattice constants between AlN and GaN (and therefore
modest ϵ1 values for coherently strained alloy layers),
and an almost exact cancellation between PGaN;ZB

f and

PAlGaN;ðH refÞ
eff means that the difference between implemen-

tations is small over the whole composition range
(cf. Sec. S5 of Ref. [15]). For InGaN/GaN, the large lattice
mismatch of InN and GaN and a less complete cancellation

of PGaN;ZB
f and PInGaN;ðH refÞ

eff results in a significant deviation
at higher In content; this will be important for the prediction
of polarization fields in applications such as tunnel
field-effect transistors based on thin, high In-content
interlayers [49].
The two implementations differ significantly in the

relative contributions of SP and PZ polarization. An effect
of this is illustrated by the case where there is strain
relaxation in the alloy layer. In Fig. 3, the predicted
polarization bound charges for In0.2Ga0.8N=GaN (blue
curves) and Al0.2Ga0.8N=GaN (green curves) are shown

as a function of strain relaxation of the layer, modeled by
simply scaling ϵ1. For both InGaN/GaN and AlGaN/GaN,
the revised implementation of this work predicts a much
faster decrease in bound charge at the interface than the
current practice in the field. Of course, strain relaxation is
associated with the presence of edge dislocations at the
interface, which may themselves influence the interface
bound charge; this effect has not been taken into account in
either version of the implementation.

VI. CONCLUSIONS

We have derived a rigorously correct implementation of
polarization constants in wurtzite materials, focusing on the
example of the III-nitrides. Our derivation has demon-
strated the impact of the choice of reference structure when
calculating spontaneous polarization constants using the
modern theory of polarization. Insufficient care in using the
values can result in spurious contributions to the polariza-
tion discontinuities at heterostructure interfaces. We have
provided new values calculated with a consistent hexagonal
(rather than zincblende) reference structure. In addition, we
have demonstrated the importance of choosing the correct
piezoelectric constants (improper) and provided values
for these improper constants. These revised values of the
spontaneous and piezoelectric constants can be directly
used in simulations and to interpret experimental observa-
tions. The revised implementation predicts a more rapid
decrease of polarization charge with strain relaxation for an
alloy layer on GaN.
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