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The flexoelectric effect refers to polarization induced in an insulator when a strain gradient is applied. We have
developed a first-principles methodology based on density-functional perturbation theory to calculate the elements
of the bulk clamped-ion flexoelectric tensor. In order to determine the transverse and shear components directly
from a unit-cell calculation, we calculate the current density induced by the adiabatic atomic displacements of
a long-wavelength acoustic phonon. Previous implementations based on the charge-density response required
supercells to capture these components. At the heart of our approach is the development of an expression for the
current-density response to a generic long-wavelength phonon perturbation that is valid for the case of nonlocal
pseudopotentials. We benchmark our methodology on simple systems of isolated noble gas atoms, and apply it
to calculate the clamped-ion flexoelectric constants for a variety of technologically important cubic oxides.
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I. INTRODUCTION

The flexoelectric (FxE) effect, where polarization is induced
by a strain gradient, is universal in all insulators. As devices
shrink to the micro and nanoscale, large strain gradients can
occur, and therefore the FxE effect can play a significant role
in the properties of such devices, influencing the so-called
dielectric dead layer [1], domain walls and domain structure
[2–4], relative permittivity and Curie temperature [5,6], critical
thickness of films to exhibit switchable polarization [7], and
spontaneous polarization in the vicinity of twin and antiphase
boundaries [8]. Also, the FxE effect can be exploited for novel
device design paradigms, such as piezoelectric “metamateri-
als” constructed from nonpiezoelectric constituents [9,10] or
mechanical switching of ferroelectric polarization [11,12].

One of the crucial limitations to understanding and ex-
ploiting the FxE effect is the lack of a clear experimental
and theoretical consensus on the size and sign of the FxE
coefficients, even in commonly studied materials such at
SrTiO3 and BaTiO3 [13,14]. A key element to forming this
understanding is the development of an efficient first-principles
methodology to calculate all of the components of the bulk
FxE tensor. Recently, Stengel [15] and Hong and Vanderbilt
[16,17] (HV), developed the formalism for calculating the full
bulk FxE tensor from first principles [18].

Each element of the FxE tensor has a “clamped-ion” (CI)
contribution, arising from the effect of the strain gradient on the
valence electrons in the crystal, and a “lattice-mediated” (LM)
contribution, arising from internal relaxations induced by the
applied strain and strain gradient [15,17]. In Refs. [16,17], HV
described an implementation for calculating the bulk CI and
LM longitudinal FxE coefficients (i.e., the coefficients relating
the induced polarization in direction α to a gradient of uniaxial
strain εαα , also in direction α). Their methodology involved
using density functional theory (DFT) to calculate the real-
space response of the charge density to atomic displacements

in a simple N × 1 × 1 bulk supercell containing N repitions
of the primitive bulk cell.

In Ref. [19], Stengel developed a strategy that allowed a
calculation of the full FxE response for cubic SrTiO3 based
in part on the charge-density response to a long-wavelength
acoustic phonon, and in part on large slab supercell calculations
(repeated slabs separated by vacuum). The first part of this
methodology allowed the LM contributions to all bulk FxE ten-
sor elements, as well as the CI contributions to the longitudinal
coefficients, to be determined from linear-response calculation
on a single unit cell using density-functional perturbation
theory (DFPT) [20]. However, the “transverse” and “shear”
CI contributions [17,19,21] had to be calculated indirectly by
relating them to the open-circuit electric field appearing across
the slab when a long wavelength acoustic phonon was applied
to the slab supercell as a whole. As a result, this implementation
required DFPT calculations to be performed on large slab
supercells.

The implementation described in Ref. [19] thus provides
a methodology for calculating the full FxE tensor for a given
material. However, the reliance on computationally intensive
slab supercell calculations for the transverse and shear CI
coefficients represents a significant limitation to efficient cal-
culation, especially in complex materials. Therefore it is highly
desirable to develop an approach that allows the full bulk
FxE tensor, including its longitudinal, transverse, and shear
components, to be obtained from DFPT calculations on single
unit cells.

The essential problem is that single-unit-cell DFPT cal-
culations that determine only the charge-density response to
a long-wavelength phonon, as in Ref. [19], are incapable
of revealing the transverse and shear CI contributions, since
the induced charge is proportional to the divergence of the
polarization, which is absent for transverse phonons. To go
further, it is necessary to compute the induced polarization
itself. Unfortunately, the well-known Berry-phase formulation
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[22,23] of the electric polarization is useless here, since it
provides only the total polarization, which averages to zero
over a phonon wavelength. Instead, we need access to the
spatially resolved polarization on the scale of the wavelength.
The only clear path to obtaining this local polarization is via
its relation to the adiabatic current density [15,17,24]. Thus
the desired methodology is one that computes the spatially re-
solved current density induced by a strain gradient perturbation
[15,17,24] in the context of long-wavelength longitudinal and
transverse phonons.

The microscopic current density is, of course, just pro-
portional to the quantum-mechanical probability current,
as discussed in any standard textbook [25]. However, this
standard formula assumes a local Hamiltonian of the form
H = p2/2m + V with a local potential V . Thus it becomes
problematic if the Hamiltonian of interest contains nonlocal
potentials, as the probability current no longer satisfies the
continuity equation [26]. This issue is very relevant in the
context of DFT, since most popular implementations make
use of a plane-wave basis set with a pseudopotential approx-
imation to reduce the size of the basis set by avoiding an
explicit description of the core electrons. Virtually all modern
pseudopotential implementations contain nonlocal potentials
in the form of projectors that operate on the wave functions
[27–30]. Therefore the standard formula for the current density
is not a fit starting point for the current-response theory
that we have in mind (we expand on these considerations in
Sec. III B).

The definition and calculation of the microscopic current
density in a nonlocal pseudopotential context is a rather general
problem that has received considerable previous attention
[26,31–36] in view of its application to the calculation of
magnetic susceptibility [32–36], nuclear magnetic resonance
chemical shifts [37], electron paramagnetic resonance g ten-
sors [38], and so forth. Unfortunately, a general, systematic
solution that is appropriate to our scopes has not emerged yet.
To see why this is challenging, it is important to note that the
continuity equation is only one of the criteria that must be
satisfied by a physically meaningful definition of the current
density. Two other criteria are important. First, the formula
must also reduce to the textbook expression in regions of space
that lie outside the range of the nonlocal operators (pseudopo-
tentials are typically confined to small spheres surrounding the
atoms). Second, it must reduce to the well-known expressions
for the macroscopic current in the long-wavelength limit. The
approaches that have been proposed so far have either been
specialized to a certain physical property (e.g., dielectric [31]
or diamagnetic [34] response), or limited in scope to a subset
of the above criteria. For example, Li et al. [26] proposed a
strategy that guarantees charge continuity by construction but
does not satisfy the two additional criteria, as we shall see in
Sec. III B.

In addition to the technical challenges related to nonlocal
pseudopotentials, there is another complication associated with
the calculation of the flexoelectric coefficients using the current
density in bulk. Namely, the bulk nonlongitudinal responses
contain a contribution coming from the gradients of the local
rotations in the crystal. This “circulating rotation-gradient”
(CRG) contribution, derived in Ref. [24] (where it is referred
to as a “dynamic” or “gauge-field” term), must be treated

carefully when comparing our calculations with previous
results. We will discuss this point in Sec. III D.

In this work, we develop a first-principles methodology
based on DFT to calculate the full bulk CI FxE tensor from
a single unit cell. At the heart of our technique lies the
introduction of a physically sound microscopic current-density
operator in the presence of nonlocal pseudopotentials that
fulfills all criteria that we stated in the above paragraphs:
(i) it satisfies the continuity equation; (ii) the contribution
of the nonlocal pseudopotentials is correctly confined to the
atomic spheres; and (iii) it reduces to the macroscopic velocity
operator in the long-wavelength limit. We will discuss our
approach for calculating the current density in the context of
earlier works, and how it applies to the problem of calculating
bulk FxE coefficients. Finally, we will demonstrate that the
results for the CI FxE coefficients from our current-density
implementation are in excellent agreement with the previous
charge-density-based DFT implementations described above
[17,19], confirming that it is an accurate and efficient method
for calculating the FxE response of materials.

The paper is organized as follows. In Sec. II, we outline the
general approach to determining FxE coefficients; in Sec. III,
we give the formalism used in our calculations of the current
density; in Sec. IV, we provide details of the implementation
of the formalism; Sec. V, presents benchmark tests for the
simple case of isolated noble gas atoms, and results for several
technologically important, cubic oxide compounds; in Sec. VI,
we discuss some technical issues that are associated with the
current density in the presence of nonlocal pseudopotentials;
and we conclude the paper in Sec. VII.

II. APPROACH

The goal of this work is to calculate the bulk CI flexoelectric
tensor elements

μI
αβ,ων = dPα

dηβ,ων

, (1)

where Pα is the polarization in direction α and

ηβ,ων = ∂2uβ

∂rω∂rν

(2)

is the strain gradient tensor, where uβ is the β component of
the displacement field. The superscript “I” indicates that the
tensor elements are defined with respect to the unsymmetrized
displacements [39]; superscripts “II” will be used to indicate
tensor elements defined with respect to symmetrized strain.

Calculating the polarization in Eq. (1) is tricky from a
quantum-mechanical standpoint, as it does not correspond to
the expectation value of a well-defined operator. As mentioned
above, the Berry-phase method [22,23] can be used to obtain
the formal macroscopic polarization averaged over the cell.
However, we require access to the local polarization density
Pα (r). Although the static microscopic polarization density is
not well defined in a quantum mechanical context, at the linear-
response level, the induced polarization Pα,λ(r) = ∂Pα (r)/∂λ

resulting from a small change in parameter λ can be equated to
the local current flow via ∂Pα (r)/∂λ = ∂Jα (r)/∂λ̇, where λ̇ is
the rate of change of the adiabatic parameter, λ. Following
the approach of Ref. [15], we now consider an adiabatic
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displacement of sublattice κ (i.e., a given atom in the unit cell
along with all of its periodic images) of a crystal in direction
β as given by

uκβ (l, t ) = λκβq(t )eiq·Rlκ , (3)

where l is the cell index. In this case, the induced local
polarization density Pα,κβq(r) in direction α induced by mode
κβ of wave vector q is

Pα,κβq(r) = ∂Jα (r)

∂λ̇κβq
. (4)

Using the fact that the linearly induced current will be modu-
lated by a phase with the same wave vector as the perturbation
in Eq. (3), we can define

P
q
α,κβ (r) = Pα,κβq(r)e−iq·r, (5)

which is therefore a lattice-periodic function. This quantity,
the cell-periodic part of the first-order induced polarization
density, will play a central role in our considerations. It is also
convenient to define

P
q
α,κβ ≡ 1

�

∫
cell

P
q
α,κβ (r)d3r, (6)

where � is the cell volume, as the cell average of this response.
In Ref. [15], it was shown that the CI flexoelectric tensor
elements are given by the second wave-vector derivatives of
P

q
α,κβ via

μI
αβ,ων = −1

2

∑
κ

∂2P
q
α,κβ

∂qω∂qν

∣∣∣∣
q=0

. (7)

This formulation suggests that it may be possible to compute
the polarization responses P

q
α,κβ entirely from a single-unit-

cell calculation, similar to the way that phonon responses are
computed in DFPT. In fact, this is the case. The formalism
necessary to compute these responses at the DFT level will be
presented in the next sections, giving access to an efficient and
robust means to compute the flexoelectric coefficients through
Eq. (7).

III. FORMALISM

Given a time-dependent Hamiltonian with a single-particle
solution �(t ), the current density at a point r in Cartesian
direction α can be written

Jα (r) = 〈�(t )|Ĵα (r)|�(t )〉, (8)

where Ĵα (r) is the current-density operator (a caret symbol
over a quantity will indicate an operator). We will first address
how to treat the time-dependent wave functions (Sec. III A),
and then discuss the form of the current-density operator in
Sec. III B.

A. Adiabatic density-functional perturbation theory

1. Adiabatic response

We write the time-dependent Schrödinger equation as

i
∂

∂t
|�〉 = Ĥ (λ(t ))|�〉, (9)

where Ĥ (λ(t )) is the Hamiltonian, andλparametrizes the time-
dependent atomic motion. Since we are interested in the current
density resulting from adiabatic displacements, we expand the
wave function |�(t )〉 to first order in the velocity, λ̇ [40–42]:

|�(t )〉 � eiγ (t )eiφ(λ(t ))[|ψ (λ(t ))〉 + λ̇(t )|δψ (λ(t ))〉], (10)

where |ψ (λ)〉 is the lowest-energy eigenfunction of the
time-independent Hamiltonian at a given λ, and |δψ (λ)〉
is the first-order adiabatic wave function [defined by
Eq. (10)]; γ (t ) = − ∫ t

0 E(λ(t ′))dt ′ is the dynamic phase,
with E(λ) being the eigenenergy of |ψ (λ)〉; φ(λ(t )) =∫ t

0 〈ψ (λ(t ′))|i∂tψ (λ(t ′))〉dt ′ is the geometric Berry phase [43]
(we have used the shorthand ∂t = ∂/∂t). We work in the
parallel-transport gauge, 〈ψ (λ)|i∂λψ (λ)〉 = 0, so the Berry
phase contribution vanishes.

Equation (10) is written assuming a single occupied band,
but in the multiband case we shall let the evolution be guided by
multiband parallel transport instead. In this case, the first-order
wave functions δψn given by adiabatic perturbation theory
[40–42] are

|δψn〉 = −i

unocc∑
m

|ψm〉 〈ψm|∂λψn〉
εn − εm

, (11)

where εn is the eigenvalue of the nth single particle wave
function, and ∂λ is shorthand for ∂/∂λ. The wave function
|∂λψn〉 is the first-order wave function resulting from the static
perturbation

|∂λψn〉 =
unocc∑

m

|ψm〉 〈ψm|∂λĤ |ψn〉
εn − εm

, (12)

which is the quantity calculated in conventional DFPT imple-
mentations [20,44].

2. Density functional theory

We will implement the calculations of the current density in
the context of plane-wave pseudopotential DFT, so the single-
particle wave functions we will use in Eq. (11) are solutions
to the Kohn-Sham equation for a given band n and wave
vector k:

ĤKS|ψnk〉 = εnk|ψnk〉, (13)

where the Kohn-Sham Hamiltonian is

ĤKS = T̂s + V̂H + V̂XC + V̂ loc
ext + V̂ nl

ext. (14)

Here, T̂s is the single-particle kinetic energy, V̂H is the Hartree
potential, V̂XC is the exchange correlation potential, and the
external potential contains both a local and nonlocal part (last
two terms). We will consider norm-conserving, separable,
Kleinmann-Bylander type [29] pseudopotentials. The form of
the nonlocal potential (henceforth referred to as V̂ nl) is given by
Eq. (C2). We will drop the “KS” subscript from here on. Note
that, although we focus on norm-conserving pseudopotentials
in this work, the issues pertaining to nonlocal potentials that
will be discussed in Sec. III B would apply to ultrasoft [27] and
projector augmented wave (PAW) [30] potentials as well.
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3. Polarization response

Using the expansion in Eq. (10), the first-order one-particle
density matrix is

δρ̂ = λ̇
2

Nk

∑
nk

(|δψnk〉〈ψnk| + |ψnk〉〈δψnk|), (15)

where the factors (2/Nk )
∑

nk take care of the spin degeneracy,
sum over occupied Bloch bands, and average over the Brillouin
zone. A monochromatic perturbation such as that of Eq. (3)
always comes together with its Hermitian conjugate, coupling
states at k with those at k ± q, so that each perturbed wave
function has two components that we refer as δψn,k+q and
δψn,k−q, respectively. We wish to select the cross-gap response
at +q, so we project onto this component of the density matrix
to obtain [45]

δρ̂q = λ̇
2

Nk

∑
nk

(|δψn,k+q〉〈ψnk| + |ψnk〉〈δψn,k−q|). (16)

Specializing now to the perturbation of Eq. (3), the correspond-
ing polarization response is

Pα,κβq(r) = 2

Nk

∑
nk

[〈ψnk|Ĵα (r)
∣∣δψκβ

nk,q

〉
+ 〈

δψ
κβ

nk,−q

∣∣Ĵα (r)|ψnk〉
]
. (17)

Using Eqs. (11) and (12), the needed first-order wave functions
are ∣∣δψκβ

nk,q

〉 = −i

unocc∑
m

|ψmk+q〉
〈ψmk+q|∂λκβqĤ |ψnk〉

(εmk+q − εnk )2
. (18)

For Eq. (7), we require the cell-average of the q-dependent
polarization response [Eq. (6)]. Defining the operator

Ĵα (q) = 1

�

∫
cell

d3r e−iq·r Ĵα (r), (19)

Eq. (6) can be written as

P
q
α,κβ = 2

Nk

∑
nk

[〈ψnk|Ĵα (q)
∣∣δψκβ

nk,q

〉
+ 〈

δψ
κβ

nk,−q

∣∣Ĵα (q)|ψnk〉
]
. (20)

The ground-state and first-order wave functions can be
expressed in terms of cell-periodic Bloch functions in the
normal way:

〈s|ψnk〉 = unk(s)eik·s,
〈
s
∣∣δψκβ

nk,q

〉 = δu
κβ

nk,q(s)ei(k+q)·s. (21)

(Indices s and s′ are not to be confused with the point r at which
the current density is evaluated.) Using this notation, the cell-
periodic first-order static wave function is written |∂λu

κβ

nk,q〉,
which is equivalent to |uτκβ

nk,q〉 in the notation of Gonze and

Lee [44] and |�u
k+q
n 〉 in the notation of Baroni et al. [20].

By factoring out the phases with wave vector k and q, we
can ensure that we only consider cell-periodic quantities, and
therefore all calculations can be performed on a unit cell [20].
To this end, we define a cell-periodic operator [46]

Ĵ k,q
α = e−ik·r̂Ĵα (q)ei(k+q)·r̂. (22)

Using the fact that Ĵα (q) = Ĵ †
α (−q) it follows that (Ĵ k,−q

α )
† =

e−i(k−q)·r̂Ĵα (q)eik·r̂ so that Eq. (20) can be written as

P
q
α,κβ = 2

Nk

∑
nk

[〈unk|Ĵ k,q
α

∣∣δuκβ

nk,q

〉
+ 〈

δu
κβ

nk,−q

∣∣(Ĵ k,−q
α

)†|unk〉
]
. (23)

In this work, we shall limit our focus to materials with time-
reversal symmetry (TRS); then we have

〈s|unk〉 = 〈un−k|s〉,
〈
s
∣∣δuκβ

nk,q

〉 = −〈
δu

κβ

n −k,−q

∣∣s〉, (24)

where the negative sign in the second expression is a result of
the −i in the first-order adiabatic wave function [see Eq. (11)].
Assuming that the current operator has the correct “TRS
odd” nature, i.e., (〈s|Ĵ k,−q

α |s′〉)
∗ = −〈s|Ĵ −k,q

α |s′〉, Eq. (23)
simplifies to

P
q
α,κβ = 4

Nk

∑
nk

〈unk|Ĵ k,q
α

∣∣δuκβ

nk,q

〉
. (25)

B. Current-density operator

We now consider the form of the current-density operator.
If particle density is conserved, any physically meaningful def-
inition of current density must satisfy the continuity condition

∇ · J(r) = −∂ρ(r)

∂t
, (26)

where ρ is the particle density. In a quantum mechanical
treatment [25], ρ(r) = |�(r)|2, where � is the solution to the
time-dependent Schrödinger equation. Combining Eq. (9) with
its complex conjugate gives

∂

∂t
ρ(r) = −i〈�|[|r〉〈r|, Ĥ ]|�〉 = −i〈�|[ρ̂(r), Ĥ ]|�〉,

(27)

where ρ̂(r) is the particle density operator. (We use atomic
units throughout with an electron charge of −1.) In terms of the
first-order adiabatic expansion of Eq. (10), we can use Eq. (27)
to write the induced density from an adiabatic perturbation
parameterized by λ as

ρλ(r) = −i(〈ψ |[ρ̂(r), Ĥ ]|δψ〉 + 〈δψ |[ρ̂(r), Ĥ ]|ψ〉). (28)

1. Local potentials

Consider the simplest case of a Hamiltonian of the form
Ĥ loc = p̂2/2 + V̂ loc where p̂ is the momentum operator and
V̂ loc = ∫

ρ̂(r)V (r)d3r is a local scalar potential. The local
potential commutes with the density operator, so the only
contribution to the current is from the momentum operator.
Comparing Eqs. (26) and (27) results in the textbook form of
the current-density operator

Ĵ loc
α (r) = − 1

2 (|r〉〈r|p̂α + p̂α|r〉〈r|)
= − 1

2 {ρ̂(r), p̂α}. (29)

Using Eq. (19), we have

Ĵ loc
α (q) = − 1

2 (e−iq·r̂p̂α + p̂αe−iq·r̂ ), (30)
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which gives the cell-periodic operator (Appendices A and B)

Ĵ k,q,loc
α = −

(
p̂k

α + qα

2

)
, (31)

where p̂k
α = −i∇̂α + k̂α is the cell-periodic momentum opera-

tor (∇̂α is a spatial derivative in the α direction, and the overall
minus sign is from the electron charge).

2. Continuity condition and nonlocal potentials

As mentioned above, nonlocal potentials are ubiquitous
in modern pseudopotential implementations of DFT [27–30].
When nonlocal potentials are present in the Hamiltonian, the
current density in Eq. (29) does not satisfy the continuity
equation.

To see this, consider a Hamiltonian with a
nonlocal potential: Ĥ nl = p̂2/2 + V̂ loc + V̂ nl with
V̂ nl = ∫

d3r
∫

d3r ′ρ̂(r, r′)V (r, r′) where ρ̂(r, r′) = |r〉〈r′|.
In this case, there is a term in the induced density [Eq. (28)]
resulting from the nonlocal potential:

ρnl
λ (r) = −i(〈ψ |[ρ̂(r), V̂ nl]|δψ + 〈δψ |[ρ̂(r), V̂ nl]|ψ〉).

(32)

If we write the total induced current as the sum of contributions
from the local and nonlocal parts, J = Jloc + Jnl, then we have

∇ · Jnl(r) = −ρnl
λ (r). (33)

This “nonlocal charge” ρnl
λ measures the degree to which the

continuity equation, Eq. (26), breaks down if Eq. (29) is used
in a nonlocal pseudopotential context.

Li et al. [26] argued that such nonlocal charge could be used
to reconstruct the nonlocal contribution to the current density
via a Poisson equation. Indeed, Eq. (33) indicates that the irro-
tational part of Jnl can be determined by calculating Eq. (32).
Their approach yields a conserved current by construction,
but there are two additional requirements that a physically
meaningful definition of the quantum-mechanical electronic
current should satisfy.

(1) The nonlocality of the Hamiltonian should be confined
to small spheres surrounding the ionic cores. In the interstitial
regions, the nonlocal part of the pseudopotentials vanish, and
the Hamiltonian operator is local therein. Thus the current-
density operator should reduce to the simple textbook formula
outside the atomic spheres. The corollary is that Jnl(r) must
vanish in the interstitial regions.

(2) The macroscopic average of the microscopic current
should reduce to the well-known expression v̂α = −i[r̂α, Ĥ ]
for the electronic velocity operator [47–50]. This is routinely
used in the context of DFPT, e.g., to calculate the polarization
response to ionic displacements needed for the Born effective
charge tensor.

The strategy proposed by Li et al. [26] falls short of fulfilling
either condition. Regarding the first (spatial confinement),
note that the nonlocal charge associated to individual spheres
generally has a nonzero dipole (and higher multipole) mo-
ments. Therefore, even if the nonlocal charge is confined to the
sphere, an irrotational field whose divergence results in such
a charge density will generally have a long-ranged character
and propagate over all space.

Regarding the relation to the macroscopic particle velocity,
note that the construction proposed by Li et al. [26] in practice
discards the solenoidal part of the nonlocal current and hence
fails at describing its contribution to the transverse polarization
response. This is precisely the quantity in which we are
interested in the context of flexoelectricity, and is also crucial
for obtaining other important quantities, such as the Born
charge tensor, that are part of standard DFPT implementations.

Therefore a calculation of Eqs. (32) does not contain the
necessary information to determine Jnl, and an alternative
derivation to the textbook one outlined in Sec. III B 1 is
required.

3. Current-density operator generalized for nonlocal potentials

In light of the previous section, we will now focus on
determining an expression for Ĵα that is applicable when
nonlocal potentials are present in the Hamiltonian. For the case
of a perturbation that is uniform over the crystal, corresponding
to the long wavelength q = 0 limit of Eq. (3), it is well
known that the momentum operator should be replaced with the
canonical velocity operator v̂α [47–50] in order to determine
the macroscopic current.

In Ref. [31], the expression for the microscopic current
operator that was used to calculate the current induced by a
uniform electric field was Eq. (29) with p̂α replaced by v̂α .
Although this treatment will result in the correct current when
averaged over a unit cell, this operator does not satisfy the
continuity condition in Eq. (26) except in the special case of
a Hamiltonian with only local potentials, where it reduces to
Eq. (29).

Since we shall be treating a long wavelength acoustic
phonon in this study, and we require the polarization response
be correct at least to second order in q [cf. Eq. (7)], we
require a version of Ĵα that is designed to handle spatially
varying perturbations. Therefore, for our purposes, we need an
alternative starting point for the derivation of a current-density
expression, different from the one based on the continuity
condition that led to, e.g., Eq. (29).

In general, for an arbitrary electronic Hamiltonian Ĥ A

coupled to a vector potential A(r), the most general form for
the current-density operator is

Ĵα (r) = − ∂Ĥ A

∂Aα (r)
. (34)

Our strategy will be to use a vector potential to probe the
response to the strain gradient, which will give us the current
density via Eq. (34). Since we are treating the strain gradient
in terms of a long-wavelength acoustic phonon of wave vector
q, and we are interested in the response occurring at the same
wave vector q, it is useful to define

Ĵα (r) =
∑

G

Ĵα (G + q)ei(G+q)·r, (35)

Aα (r) =
∑

G

Aα (G + q)ei(G+q)·r, (36)

Pα,κβq(r) =
∑

G

Pα,κβq(G + q)ei(G+q)·r. (37)
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With these definitions, Eq. (34) becomes

Ĵα (G + q) = − ∂Ĥ A

∂A∗
α (G + q)

(38)

and the desired operator for Eq. (20) is

Ĵα (q) = − ∂Ĥ A

∂A∗
α (q)

. (39)

Again, if the Hamiltonian of interest had the form of H loc =
(p̂ + Â)2/2 + V̂ loc, where the scalar potential is local and
Â = ∫

ρ̂(r)A(r)d3r is a local vector potential, then Ĵ loc
α (r) =

− 1
2 {ρ̂(r), (p̂α + Âα )}. However, for our implementation, we

are considering the case where the potential V̂ is nonlocal,
so we must determine how to couple a generally nonlocal
Hamiltonian to a spatially nonuniform vector potential field
(which will be the case for a finite q perturbation).

The standard strategy for describing the coupling to the
vector potential is to multiply the nonlocal operator by a
complex phase containing the line integral of the vector
potential A[33,34,51]; in the real-space representation,

OA(s, s′) = O(s, s′)e−i
∫

s′→s A·d�. (40)

The different methods that have been proposed for coupling
A to a nonlocal Hamiltonian amount to applying the complex
phase in Eq. (40) to either the entire Hamiltonian [51] or just the
nonlocal potential [33,34], and choosing either a straight-line
path [33,51] or a path that passes through the centers of the
atoms [34] to perform the line integral.

4. Straight-line path

Using Feynman path integrals, Ismail-Beigi, Chang, and
Louie [33] (ICL) derived the following form of a nonlocal
Hamiltonian coupled to a vector potential field:

Ĥ A
ICL = 1

2
(p̂ + Â)2 + V̂ loc

+
∫

d3s

∫
d3s ′ρ̂(s, s′)V nl(s, s′)e−i

∫ s
s′ A·d�, (41)

where the line integral is taken along a straight path from s
to s′. Since the approach used in Ref. [33] to perform the
minimal substitution p̂ → p̂ + Â is general, applying to both
local and nonlocal Hamiltonians, this approach is equivalent
to the approach of Essin et al., where the coupled Hamiltonian
is written as

H A(s, s′) = H (s, s′)e−i
∫ s

s′ A·d�, (42)

i.e., all of the A dependence is contained in the complex phase,
and the line integral is also taken along a straight path from s
to s′.

Expanding Eq. (42) to first order gives

H A(s, s′) = H (s, s′) − iH (s, s′)
∫ s

s′
A · d� + · · · . (43)

We would like to evaluate Eq. (39) for this form of the
Hamiltonian. Since A(r) is real, we can write Eq. (36) as
Aα (r) = A∗

α (r) = A∗
α (q)e−iq·r so that the integral over A for

the ICL [33] path is∫ s

s′
A · d� =

∫ 1

0
dτA[s′ + τ (s − s′)] · (s − s′)

= A∗(q) · (s − s′)
∫ 1

0
dτe−iq·[s′+τ (s−s′ )]

= −A∗(q) · (s − s′)
e−iq·s − e−iq·s′

iq · (s − s′)
. (44)

Therefore, from Eqs. (43) and (39),

〈s|Ĵ ICL
α (q)|s′〉 = −iH (s, s′)(sα − s ′

α )
e−iq·s − e−iq·s′

iq · (s − s′)
. (45)

In practice, we shall normally work in terms of the cell-periodic
current operator of Eq. (22), whose position representation
follows as

〈s|Ĵ k,q,ICL
α |s′〉 = −iH k(s, s′)(sα − s ′

α )
e−iq·(s−s′ ) − 1

iq · (s − s′)
. (46)

We can see that the current operator of Eq. (45) satisfies the
continuity condition of Eq. (26) as follows. In reciprocal space
the continuity equation becomes iq · [−Ĵ ICL(q)] = −∂ρ̂q/∂t ,
where ρ̂q = e−iq·r̂ is the G = 0 particle density operator for a
given q, and the negative sign in front of the current operator
reflects the sign of the electron charge. However, from Eq. (45),
it quickly follows that

−iq · 〈s|Ĵ ICL
α (q)|s′〉 = i〈s|[ρ̂q, Ĥ ]|s′〉, (47)

which, using the Ehrenfest theorem, is nothing other than
−∂ρ̂q/∂t in the position representation.

In the case that only local potentials are present, only the
kinetic term in the Hamiltonian contributes to Ĵ ICL

α (q). We
show in Appendix A that the current operator then reduces to
the form of Eq. (30). The fact that the local and nonlocal parts
can be separated confirms the equivalence of the ICL [Eq. (41)]
and Essin et al. [Eq. (42)] approaches.

In the case that nonlocal potentials are present, we show
in Appendix A that, for q = 0, Eq. (45) reduces to the well-
known expression for the canonical velocity operator [47–50]
Ĵ ICL

α (q = 0) = −v̂α = i[r̂α, Ĥ ], where the −1 comes from
the electron charge. We discuss the case of nonlocal potentials
and finite q perturbations in Sec. III C.

5. Path through atom center

Subsequently, Pickard and Mauri [34] (PM) proposed using
a path from s to the atom center R and then to s′, which was
constructed explicitly to give better agreement for magnetic
susceptibility between pseudopotential and all-electron calcu-
lations. This approach can be regarded as a generalization to
spatially nonuniform fields of the gauge-including projector
augmented-wave (GIPAW) method [34,37], where the PAW
transformation is modified with a complex phase in order to
ensure that the pseudo-wave-function has the correct magnetic
translational symmetry.
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The coupled Hamiltonian used in Ref. [34] is of the form

Ĥ A
PM = 1

2
(p̂ + Â)2 + V̂ loc +

N∑
ζ=1

∫
d3s

∫
d3s ′

×ρ̂(s, s′)V nl
ζ (s, s′)e−i

∫
s′→Rζ →s A·d�

, (48)

where N is the number of atoms in the cell, Rζ is the position
of atom ζ , and V nl

ζ is the nonlocal potential for that atom. The
PM approach explicitly splits the nonlocal contribution from
A into contributions from each atomic sphere centered at Rζ

[52]. Therefore the total current operator is

Ĵ k,q,PM
α = −

(
p̂k

α + qα

2

)
+

N∑
ζ=1

Ĵ k,q,PM,nl
α,ζ , (49)

where the superscript “nl” and the subscript ζ emphasize that
each item in the summation describes the contribution to the
current from the nonlocal potential of the atom ζ ; it is obvious
from Eqs. (48) and (49) that Ĵ loc

α will be recovered in the case
of a local potential.

For an atom at position Rζ , the line integral in Eq. (48) is∫
s′→Rζ →s

A·d� = −A∗(q) · (Rζ − s′)
e−iq·Rζ −e−iq·s′

iq · (Rζ −s′)
−A∗(q)

·(s − Rζ )
e−iq·s − e−iq·Rζ

iq · (s − Rζ )
. (50)

Therefore we have

〈s|Ĵ PM,nl
α,ζ (q)|s′〉 = −iV nl

ζ (s, s′)
[

(Rα,ζ − s ′
α )

e−iq·Rζ − e−iq·s′

iq · (Rζ − s′)

+ (sα − Rα,ζ )
e−iq·s − e−iq·Rζ

iq · (s − Rζ )

]
, (51)

so the cell-periodic operator is

〈s|Ĵ k,q,PM,nl
α,ζ |s′〉 = −iV nl

ζ (s, s′)
[

(Rα,ζ − s ′
α )

e−iq·(Rζ −s′ ) − 1

iq · (Rζ − s′)

+ (sα − Rα,ζ )
e−iq·(s−s′ ) − e−iq·(Rζ −s′ )

iq · (s − Rζ )

]
.

(52)

From Eqs. (51) and (32), we see that iq · [−Ĵ PM,nl(q)] =
i[e−iq·r̂, V̂ nl] = −ρ̂nl

λ . Therefore Eq. (49) satisfies the conti-
nuity condition. Also, in the case of a q = 0 perturbation,
Ĵ PM,nl

α (q = 0) = i[r̂α, V̂ nl], which is the nonlocal contribution
to −v̂α , as expected. We discuss the case of nonlocal potentials
and finite q perturbations in the next section.

Finally, we see that for the longitudinal response (where
q = qαα̂), the ICL and PM approaches produce identical op-
erators. This is expected, since they both satisfy the continuity
equation. Only circulating currents (e.g., transverse or shear
FxE components) may exhibit path dependence.

C. Long-wavelength expansion

Recall that only the induced polarization up to second order
in q is required for the FxE coefficients [cf. Eq. (7)]. Therefore,
instead of attempting to calculate Eq. (25) with either Eq. (46)

or (49) directly, we will expand these expressions for the
current-density operator to second order in q.

Considering the Hamiltonian in Eq. (14), there are contri-
butions to Ĵ q

α from the kinetic energy and nonlocal part of the
pseudopotential. We show in Appendix A [Eq. (A4)] that the
kinetic energy only contributes up to first order in q, and for a
local Hamiltonian, the current operator reduces to the form of
Eq. (31).

The nonlocal potential will, however, contribute at all
orders. As mentioned in Secs. III B 4 and III B 5, for q =
0, both the ICL and PM approaches give Ĵ k,q=0

α = −v̂k
α =

i[r̂α, Ĥ k] = −p̂k
α + Ĵ k,nl(0)

α , where we have defined Ĵ k,nl(0)
α ≡

i[r̂α, V̂ k,nl]. At higher orders in q and for nonlongitudinal
response, the ICL and PM approaches may no longer agree.

Up to second order in q, the current operator can be written
as

Ĵ k,q
α � −

(
p̂k

α + qα

2

)
+ Ĵ k,nl(0)

α + qγ

2
Ĵ k,nl(1)

α,γ

+ qγ qξ

6
Ĵ k,nl(2)

α,γ ξ , (53)

where the higher-order terms in q (Ĵ k,q,nl(1)
α,γ and Ĵ k,q,nl(2)

α,γ ξ ) are
the result of the nonlocal part of the Hamiltonian and the fact
that the monochromatic perturbation is nonuniform (i.e., finite
q). Expressions for these last two terms in Eq. (53) are derived
in Appendix C for the ICL path [Eqs. (C9) and (C10)] and PM
path [Eqs. (C12) and (C13)].

Plugging the current operator from Eq. (53) into Eq. (25),
readily yields the induced polarization,

P
q
α,κβ = P

q,loc
α,κβ + P

q,nl
α,κβ, (54)

where we have separated the contribution of the local current
operator (loc) from the nonlocal (nl) part. The exact expression

for P
q,loc
α,κβ is derived in Appendix B, yielding Eq. (B8); the

approximate (exact only up to second order in q) expression

for P
q,nl
α,κβ is derived in Appendix C [see Eq. (C1)].

D. Circulating rotation-gradient contribution
and diamagnetic susceptibility

Transverse or shear strain gradients result in rigid rotations
of unit cells which must be treated carefully in order to calculate
physically meaningful values of the flexoelectric tensor. This
issue can be loosely compared to the well-known distinction
between the proper and improper piezoelectric tensor [53,54]
but, in the case of strain gradients, it is complicated by the fact
that different parts of the sample typically rotate by different
amounts. The reader is referred to Ref. [24] for a complete
discussion; only the results of that work necessary for our
purposes will be reproduced here.

Larmor’s theorem states that the effects of a uniform rotation
and those of a uniform magnetic field are the same to first
order in the field/angular velocity. Therefore the local rotations
of the sample dynamically produce circulating diamagnetic
currents that will contribute to the bulk flexoelectric coeffi-
cients as defined in Eq. (7). As was shown in Ref. [24] (see
also Appendix D for an abridged derivation), this circulat-
ing rotation-gradient (CRG) [55] contribution only concerns
the nonlongitudinal components and is proportional to the
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diamagnetic susceptibility of the material, χγλ = ∂Mγ /∂Hλ,
where M is the magnetization and H the magnetic field.
Specifically,

P
(2,ων),CRG
α,β =

∑
γ λ

(εαωγ εβλν + εανγ εβλω )χγλ, (55)

where ε’s are the Levi-Civita symbols.
The CRG contribution represents a physical response of the

bulk material to the rotations resulting from such nonlongitu-
dinal strain gradients. However, in the context of calculating
FxE coefficients, it is useful to remove this contribution. The
reasoning for doing this is based on the fact that, as shown in
Ref. [24], the diamagnetic circulating currents from the CRG
contribution are divergentless, and therefore do not result in a
build up of charge density anywhere in the crystal. Therefore,
for the experimentally relevant case of a finite crystal, where
the polarization response is completely determined by the
induced charge density, the CRG contribution will not produce
an electrically measurable response.

The fact that the CRG does contribute to the bulk FxE coef-
ficients, but not to the measurable response of a finite sample,
highlights the fact that, for flexoelectricity, the bulk and surface
response are intertwined [19,24,56]. Indeed, it was determined
in Ref. [24] that there is a surface CRG contribution that will
exactly cancel the bulk one [Eq. (55)]. Thus removing the CRG
contribution from the bulk coefficients simply corresponds to
a different way of partitioning the response between the bulk
and the surface. In this work, we are focused on the bulk
response, and are free to choose a convention for this partition.
In order to make a more direct connection with experiments,
and to be able to directly compare with charge-density-based
calculations [19], we choose to remove the CRG contribution
from our calculated P

(2,ων)
α,κβ .

To calculate χγλ, there is again a subtlety involved in the
use of nonlocal pseudopotentials. Conventional calculations
of the diamagnetic susceptibility involve applying a vector
potential perturbation and calculating the current response
[32–35,37]. In the case of a local Hamiltonian, the aforemen-
tioned rotational field is indistinguishable from an electromag-
netic vector potential, and the expression for χγλ is identical
to the diamagnetic susceptibility. However, in the case of a
nonlocal Hamiltonian this is no longer true. In that case, the
perturbation remains the local current operator Ĵ loc, while
the current response is evaluated using the total (local plus
nonlocal) Ĵ (cf. Appendix D). This difference indicates that
Larmor’s theorem may break down for nonlocal potentials.
This is discussed further in Sec. VI.

IV. IMPLEMENTATION

The procedure for calculating the FxE coefficients using
the formalism in Sec. III is as follows. We first perform
conventional DFPT phonon calculations [displacing sublattice
κ in direction β, as in Eq. (3)] at small but finite wave vectors
q to obtain the static first-order wave functions |∂λu

κβ

nk,q〉. We
choose |q| < 0.04, where here and henceforth we express q

in reduced units of 2π/a (a is the cubic lattice constant). To
avoid the sum over empty states in Eq. (11), we determine the
first-order adiabatic wave functions by solving the Sternheimer

equation

(Hk − εnk )
∣∣δuκβ

nk,q

〉 = −iQc,k+q
∣∣∂λu

κβ

nk,q

〉
, (56)

where εnk is the eigenvalue of band n and k-point k and Qc,k+q
is the projector over conduction band states (implemented as
one minus the projector over valence states). Then we apply
the current operator in Eq. (53) to obtain P

q
α,κβ from Eq. (25)

(see Appendices B and C for details).
As will be discussed in Sec. V A, we will use the ICL path for

most of the calculations in this study, so the explicit expression
for this case is provided in this section. The local contribution
to P

q
α,κβ is derived in Appendix B, leading to Eq. (B8). The

three terms in the small-q expansion of the nonlocal part are
determined in Appendix C 1 by combining Eqs. (46) and (25),
and expanding in powers of q, leading to Eq. (C1). Combining
Eq. (C1) with Eqs. (C8)–(C10) and adding Eq. (B8), we have

P
q,ICL
α,κβ

= − 4

Nk

∑
nk

[
〈unk|p̂k

α + qα

2

∣∣δuκβ

nk,q

〉 + 〈unk|∂V̂ k,nl

∂kα

∣∣δuκβ

nk,q

〉
+1

2

3∑
γ=1

qγ 〈unk| ∂
2V̂ k,nl

∂kα∂kγ

∣∣δuκβ

nk,q

〉

+1

6

3∑
γ=1

3∑
ξ=1

qγ qξ 〈unk| ∂3V̂ k,nl

∂kα∂kγ ∂kξ

∣∣δuκβ

nk,q

〉⎤⎦, (57)

where we have again assumed TRS [cf. Eq. 25]. A similar
equation can be obtained for the PM path using the first-
and second-order current operators derived in Appendix C 2
[Eqs. (C12) and (C13)].

In order to obtain P
(2,ων)
α,κβ , we calculate numerical second

derivatives with respect to qω and qν yielding the needed
flexoelectric coefficients μI

αβ,ων via Eq. (7). Note that, in
addition to the explicit factors of q multiplying the last two
terms, each term has an implicit q dependence through δu

κβ

nk,q
so all terms may contribute to the second derivative.

Since we will consider cubic materials there are three
independent FxE coefficients [15,17]:

μL = μII
11,11 = μI

11,11,

μS = μII
12,12 = μI

11,22,

μT = μII
11,22 = 2μI

12,12 − μI
11,22, (58)

where L stands for longitudinal, S for shear, and T for
transverse.

A. Electrostatic boundary conditions

The current response to a phonon perturbation, just like
other response properties, displays a strongly nonanalytic
behavior in a vicinity of the � point (q = 0), so some care is re-
quired when taking the long-wavelength expansions described
in the previous sections. A long-wavelength phonon naturally
imposes “mixed” electrical (ME) boundary conditions: [17]
along the longitudinal direction (q̂) the electric displacement
field, D, must vanish (D · q̂ = 0); conversely, periodicity is
preserved in the planes that are normal to q̂, resulting in a
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vanishing electric field therein. In general, the bulk FxE tensor
needs to be defined under isotropic “short-circuit” (SC) bound-
ary conditions, which implies that the problematic longitudinal
E fields must be suppressed. In our calculations, this goal can
be achieved using the procedure of Refs. [15,19], where the
G = 0 component of the self-consistent first-order potential
is removed in the DFPT calculation of ∂λu

κβ

nk,q [Eq. (56)]. We
will use this procedure for the calculations of cubic oxides in
Sec. V B.

For several reasons, one may sometimes be interested in
calculating the flexoelectric coefficients under mixed electrical
boundary conditions; in such a case, of course, the G = 0
component of the self-consistent first-order potential should
not be removed. Then, however, one must keep in mind that
the long-wavelength expansion of the polarization response
is only allowed along a fixed direction in reciprocal space.
(This implies performing the calculations at points q = qq̂,
and subsequently operating the Taylor expansion as a function
of the one-dimensional parameter q.) In crystals where the
macroscopic dielectric tensor is isotropic and q̂ corresponds
to a high-symmetry direction, the longitudinal coefficients for
mixed electrical boundary conditions are simply related to the
short circuit ones by the dielectric constant ε,

μSC
L = εμME

L . (59)

We will use mixed electrical boundary conditions for our
benchmark calculations of noble gas atoms in Sec. V A since,
in this particular system, μME

L , rather than μSC
L , can be directly

compared to the moments of the real-space charge density [17],
as discussed in Sec. V A 1.

B. Magnetic susceptibility contribution

In Sec. III D, we explained that the diamagnetic susceptibil-
ity is required in order to correct for the CRG contribution to
the FxE coefficients. To avoid the sum over states in Eq. (D3),
we solve the Sternheimer equation

(Ĥk − εnk )
∣∣∂α̇uα

nk,q

〉 = Qc,k+q

(
p̂k

α + qα

2

)
|unk〉. (60)

Recall that −(p̂k
α + q̂α/2) is the cell-averaged current operator

in the case of a local potential. We then apply the full current
operator [Eq. (53)] to obtain Eq. (D4) at several small but finite
q (as above, |q| < 0.04) in order to perform a numerical second

derivative and obtain P
(2,ων), CRG
α,β from Eq. (55).

For the case of a material with cubic symmetry, whereχαβ =
χmagδαβ , we see from Eq. (55) that there will be two nonzero

elements of the CRG contribution: P
(2,22), CRG
1,1 = 2χmag and

P
(2,12), CRG
1,2 = −χmag. Therefore the CI FxE constants with the

CRG contribution removed, μ′, are given by [24]

μ′
L = μL, μ′

S = μS − χmag, μ′
T = μT + 2χmag, (61)

for cubic materials.

C. Rigid-core correction

It was demonstrated in Ref. [16] that the CI FxE constants
depend on the treatment of the core density, which will
be different for a different choice of pseudopotential. This

TABLE I. QRCC for the various atoms in the materials in Sec. V B
in units of e Bohr2.

QRCC QRCC

Sr −5.93 Ba −13.39
Ti −0.54 Zr −4.55
O −0.01 Pb −15.16
Mg −4.85

dependence is exactly canceled when the surface contribution
is calculated consistently with the same pseudopotentials
[21,56]. In order to report more “portable” values for the bulk
FxE coefficients, we apply the rigid-core correction (RCC) of
Refs. [16,17]:

QRCC
κ = 4π

∫
drr4[ρAE

κ (r) − ρPS
κ (r)

]
, (62)

where ρAE
κ (r ) is the all-electron density of the free atom of type

κ , and ρPS
κ (r ) is the corresponding pseudocharge density. In

Table I, we list QRCC for the various atoms that we will require
for the cubic oxides reported below (no RCC is included for
the noble gas atoms in Sec. V A). Specifically, for short circuit
boundary conditions, ε

∑
κ QRCC

κ /6� must be added to μL and
μT [56].

D. Computational details

We have implemented the procedure for calculating the FxE
coefficients in the ABINIT code [57]. The PBE generalized
gradient approximation functional [58] is used throughout.
The conventional phonon and dielectric constant calculations
are carried out using the DFPT implementation available
in the code [44,59]. In order to solve the nonselfconsistent
Sternheimer Eqs. (60) and (56), ABINIT’s implementation of
the variational approach of Ref. [44] is used.

The nuclei and core electrons are described with optimized
norm-conserving Vanderbilt pseudopotentials [60] provided
by ABINIT. For the cubic oxides, an 8 × 8 × 8 Monkhorst-Pack
[61] k-point mesh is used to sample the Brillouin zone, and the
plane-wave energy cutoff is set of 60 Ha. For the isolated atoms,
a 2 × 2 × 2 k-point mesh is used, and the plane-wave energy
cutoff is set of 70 Ha.

V. RESULTS

A. Benchmark test: isolated noble gas atoms

1. Isolated rigid charge model

In order to test the implementation described in Sec. IV,
we consider the toy model of a material made of rigid non-
interacting spherical charge distributions arranged in a simple
cubic lattice, as explored in Refs. [21,24,56]. We shall refer
to this henceforth as the “isolated rigid charge” (IRC) model.
Of course, such a material is fictitious, since it would have no
interatomic forces to hold it together; even so, it serves as an
interesting test case since its FxE properties can be determined
analytically and compared to our numerical calculations. In
this section, we will briefly summarize the expectations of the
IRC model (see Refs. [21,24] for a more complete discussion).
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For the IRC “material,” there is only one sublattice per cell.
Each “atom” is represented by a spherically symmetric charge
densityρIRC(r ) that falls to zero beyond a cutoff rc chosen small
enough to ensure that the atomic spheres do not overlap. The
atoms are assumed to be neutral,

∫ rc

0 ρIRC(r ) r2 dr = 0. It was
shown in Ref. [24] that the longitudinal and shear coefficients
for the IRC model calculated from the induced current density
are

μL,IRC = μS,IRC = QIRC

2�
, (63)

where � = a3 is the cell volume and

QIRC =
∫

d3rρIRC(r )x2 (64)

is the quadrupolar moment of the atomic charge density (of
course the direction x is arbitrary since the charge density is
spherically symmetric).

The FxE constants in Eq. (63) include the CRG contribution
to the current discussed in Sec. III D [19,24,56]. Removing this
contribution from our bulk coefficients [see Eq. (61)] results
in the primed coefficients for the IRC model [24]

μ′
L,IRC = QIRC

2�
, μ′

S,IRC = 0, (65)

where the CRG contribution is given by

χmag,IRC = μS,IRC = QIRC

2�
. (66)

If we assume that Larmor’s theorem holds (i.e., that the
CRG contribution is identical to the magnetic susceptibility),
Eq. (66) is just a statement of the Langevin theory of dia-
magnetism, which relates the magnetic susceptibility to the
quadrupole moment of a spherical atomic charge (see Sec. VI).

2. Noble gas atoms

In the following sections (Secs. V A 3, V A 4, V A 5), we
will compare the behavior of this model with the results of DFT
calculations on isolated noble gas atoms. Several points should
be considered when comparing the results of such calculations
to the expectations of the IRC model (relations in Sec. V A 1).

Firstly, the noble gas atoms in our DFT calculations are
slightly polarizable, i.e., not perfectly described by rigid charge
densities. For this reason the longitudinal FxE coefficient will
depend on the choice of electrostatic boundary conditions (see
Sec. IV A). We will use mixed electrical boundary conditions,
where we should find [analogously to Eq. (63)]

μME
L,NG = QNG

2�
, (67)

where the subscript “NG” indicates a DFT calculation on a
noble gas atom, and QNG is the quadropole moment of the
unperturbed, ground-state charge density of the noble gas atom.
If we had used short circuit boundary conditions, there would
have been a factor of ε on the right-hand side of Eq. (67). Of
course, in the IRC model, the “atoms” are neutral, rigid, and
spherical, so ε = 1, and, from Eq. (59), short circuit and mixed
electric boundary conditions give the same FxE coefficients.

Also, since our noble-gas-atom calculations will use nonlo-
cal pseudopotentials, the equality of μS,NG and QNG/2� is not
guaranteed; in fact, we will see in Sec. V A 5 that they are not

equal. This will be discussed further in Sec. VI in the context
of the expected symmetry of the charge response. Similarly,
we will find that χmag does not equal QNG/2� [cf. Eq. (66)],
indicating that Larmor’s theorem breaks down for our form
of the current in the presence of nonlocal pseudopotentials
(discussed in Sec. VI).

Note that, as with the IRC model, we will drop the κ

subscript when discussing the noble gas atoms since the
“crystals” that we are considering have only a single sublattice.
Also, as all calculations will use mixed electrical boundary
condition, we will drop the explicit “ME” labels.

3. Computational strategy: Real-space moments
of the charge density

In addition to the relations in Eqs. (63), (65), and (66)
of Sec. V A 1 and Eq. (67) of Sec. V A 2, we can perform
specific tests of the components of our implementation by
exploiting the correspondence between two methods of calcu-
lating the FxE coefficients: (i) the long-wavelength expansion
in reciprocal space of the polarization induced by a phonon
[i.e., Eq. (7)] that we have described so far in this work,
and (ii) the computation of the real-space moments of the
induced microscopic polarization or charge density from the
displacement of an isolated atom in a crystal [15,17]. For the
case of the isolated noble gas atoms, displacing the entire
sublattice (i.e., applying a q = 0 acoustic phonon perturbation)
is equivalent to displacing a single atom.

It is particularly useful to compare our methodology to the
real-space moments of the induced charge density, since they
can be readily calculated from a conventional, DFPT phonon
calculation (with q = 0). Specifically, the longitudinal noble-
gas response in direction α is [15,17]

μL,NG = −1

2

∂2P
q,NG
α,α

∂q2
α

∣∣∣∣
q=0

= 1

6�

∫
cell

d3rρNG
αq=0(r)r3

α, (68)

where ρNG
αq (r) ≡ ∂ρNG(r)/∂λαq is the first-order induced

charge density from a phonon with wave vector q and noble
gas atoms displaced in the α direction. P

q
α,α is calculated

with mixed electrical boundary conditions. As mentioned in
Sec. V A 2, the right-hand side of Eq. (68) equals QNG/2�.
Recall that, since the charge density is related to the diver-
gence of the polarization, it only gives the longitudinal FxE
coefficient. Therefore we can only use an expression like the
one in Eq. (68) to test our implementation of μL.

In general (i.e., not specific to the case of the isolated
noble gas atoms), the induced charge density can be split
into contributions from the local and nonlocal parts of the
Hamiltonian, as we did for the polarization in Eq. (54). Using
the continuity condition, we can write the first-order charge as

ραq(G + q) = −i(G + q) · Ploc
αq (G + q) + ρnl

αq(G + q).

(69)

Here, Ploc
αq is the “local” part of the induced polarization and

ρnl
αq is the nonlocal charge introduced in Sec. III B 2. Using

the reciprocal-space version of Eq. (29), the local induced
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polarization is (assuming TRS)

P loc
α,αq(G + q) = − 2

Nk

∑
nk

〈ψnk|{e−i(G+q)·r̂, p̂α}∣∣δψα
nk,q

〉
(70)

and the nonlocal charge density from Eq. (32) is given (in
reciprocal space) by

ρnl
αq(G + q) = − 4i

Nk

∑
nk

〈ψnk|[e−i(G+q)·r̂, V̂ nl]
∣∣δψα

nk,q

〉
. (71)

The first-order charge on the left-hand side of Eq. (69) can be
obtained from a conventional DFPT phonon calculation, and
thus Eq. (69) allows for several tests of our methodology.

A simple test of the nonlocal contribution at q = 0 is to

compare the dipole moment of the nonlocal charge with P
q,nl(0)
α,α

[i.e., the second term in Eq. (57)], which should give the
nonlocal contribution to the Born effective charge

Z∗
αβ,nl = P

q=0,nl
α,β =

∫
cell

d3rρnl
βq=0(r)rα. (72)

Again, this relation is generally applicable. For cubic symme-
try, the Born effective charge tensor has only one independent
element, which we write as Z∗ ≡ Z∗NG

αα . Of course, for the case
of the noble gas atom “material,” there is only one sublattice,
so the sum of the nonlocal contribution with the local part
(including the ionic charge) will vanish due to the acoustic
sum rule (ASR) [62].

For the case of the isolated noble gas atoms, we can use
Eqs. (68) and (69) to relate the real-space octupole moment
of ρnl

αq=0(r) [Fourier transform of Eq. (71)] averaged over the

cell, to the second q derivative of P
q,nl
α,α [see Eq. (C1)] evaluated

at q = 0. Specifically, we should find that [15,17]

−1

2

∂2P
q,nl,NG
α,α

∂q2
α

∣∣∣∣
q=0

= 1

6�

∫
cell

d3rρ
nl,NG
αq=0 (r)r3

α, (73)

and similarly for the local part,

−1

2

∂2P
q,loc,NG
α,α

∂q2
α

∣∣∣∣
q=0

= 1

6�

∫
cell

d3r
[−∇ · Ploc,NG

αq=0 (r)
]
r3
α,

(74)

where we again perform the reciprocal space calculations using
mixed electrical boundary conditions. The comparisons in
Eqs. (73) and (74) test both the long-wavelength expansion
of the current operator (local and nonlocal), and the accuracy
of the adiabatic first-order wave function at finite q.

4. Test of implementation: longitudinal response

To test P loc
α,αq=0 and δψα

nk,q=0, we calculate the first-order
charge [the left-hand side of Eq. (69)] from a q = 0 phonon
by conventional DFPT, and compare to what we obtain for
the right-hand side of Eq. (69) calculated using Eqs. (70)
and (71) (with q = 0). We Fourier transform the quantities
in Eq. (69) to real space and plot their planar averages in
Fig. 1 for He, Ne, Ar, and Kr atoms in 16 × 16 × 16 Bohr
cells. Summing the contributions from the nonlocal charge
(blue dashed curves) and the gradients of the local induced

FIG. 1. Planar average of the local [Eq. (70), green dot-dashed
curve], nonlocal [Eq. (71), blue dashed], and total [Eq. (69), red solid]
first-order charge for noble gas atoms displaced in the x direction by a
q = 0 phonon. The black circles correspond to the first-order charge
calculated using a conventional, static, DFPT calculation. The box
size is 16 × 16 × 16 Bohr, but zoomed in to only show ±5 Bohr.

polarization (green dot-dashed) gives the red solid curves in
Fig. 1. As expected from Eq. (69), the red curve lies on top
of the black circles, which correspond to the first-order charge
from the q = 0 DFPT phonon calculations.

Now we can take the real-space moments of the curves in
Fig. 1 and compare them with the results of our reciprocal
space expansion. As discussed in Sec. V A 3, the first moment
of the blue dashed curves gives the nonlocal contribution to

the Born effective charge, which should correspond to P
q=0,nl
α,α

[Eq. (72)]. In Table II, we give the nonlocal contribution to Z∗
for the noble gas atoms in 14 × 14 × 14 Bohr boxes. The ASR
requires that the total Z∗ vanishes; for our noble gas atoms, we
calculate the magnitude of the total Z∗ to be less than 10−4 e,
so the “local” part (including the contribution from the ionic
charge) is the same magnitude but opposite sign as the numbers
in the second and third columns of Table II.

The second column of Table II, labeled P nl, is calculated
using the reciprocal space current and the third column (labeled
ρnl) is from the real-space dipole moment of the charge density.
We see that there is excellent agreement between the two

methods, indicating that P
q=0,nl
α,α is accurately calculated.

TABLE II. Calculation of the Born effective charge and μL using
the moments of the local and nonlocal charge (columns labeled ρ)
compared to the current-density implementation (columns labeled
P ) for atoms in a 14 × 14 × 14 Bohr box. Mixed electrical boundary
conditions are used.

Z∗ (e) μL (pC/m)

P nl ρnl P loc ρ loc P nl ρnl

He −0.027 −0.027 −0.470 −0.470 0.004 0.004
Ne −0.155 −0.155 −1.872 −1.872 0.028 0.028
Ar 1.556 1.556 −4.620 −4.623 0.073 0.072
Kr −0.214 −0.214 −5.878 −5.874 −0.099 −0.099
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TABLE III. Longitudinal and shear (ICL and PM path) FxE
coefficients for noble gas atoms in 14 × 14 × 14 Bohr boxes, as well
as the diamagnetic susceptibility correction, χmag (ICL and PM path),
and the quadrupole moment of the unperturbed charge density divided
by two times the volume [cf. Eqs. (63) and (64)]. All quantities are in
units of pC/m, and mixed electrical boundary conditions used.

μL μICL
S μPM

S χ ICL
mag χPM

mag QNG/2�

He −0.468 −0.467 −0.464 −0.468 −0.464 −0.466
Ne −1.840 −1.693 −1.655 −1.692 −1.655 −1.845
Ar −4.545 −5.008 −5.086 −5.013 −5.081 −4.554
Kr −5.968 −5.901 −5.917 −5.903 −5.921 −5.990

It is also clear from Fig. 1 and Table II that the nonlocal
correction to the Born effective charge can be very large, on
the order of one electron for Ar. We see a similarly large
contribution for atoms with empty 3d shells (but projectors
in this channel) such as a Ca atom or Ti4+ ion (not shown).

Now we would like to test the accuracy of our long-
wavelength expansion of the current operator (Sec. III C) for
calculating μL. In Table II, we give both the local and nonlocal
contributions to μL using the right-hand side of Eqs. (73) and
(74) (labeled as ρ loc and ρnl), compared to those calculated
from our current-density implementation [left-hand side of
Eqs. (73) and (74), labeled as P loc and P nl]. The agreement
between the real-space moments and reciprocal-space deriva-
tives of the expansion in Eq. (57) is excellent. Also, we can see
that even though the nonlocal contribution to the Born effective
charge is large for Ar, the first-order nonlocal charge is almost
purely dipolar, with the third moment being almost two orders
of magnitude smaller than the contribution of the local part.
Also, from Table III and Fig. 2, we see that μL = QNG/2�

[consistent with Eq. (67)] quite accurately for sufficiently large
simulation cells.

FIG. 2. The longitudinal (red squares) and shear (blue diamonds)
FxE coefficients, as well as the diamagnetic susceptibility correction
(black circles) and QNG/2�, for (a) He, (b) Ne, (c) Ar, and (d)
Kr atoms in cells with various lattice constants. All quantities are
multiplied by the cell volume �.

5. Test of implementation: shear response

In Table III, we give the longitudinal and shear FxE
coefficients, as well as χmag and QNG/2�, for noble gas atoms
in 14 × 14 × 14 Bohr boxes. For μS and χmag, we give values
using the ICL and PM paths for the nonlocal correction. In
Fig. 2, we show the dependence of these quantities on the box
size.

From Table III and Fig. 2, we see that μS = χmag (consistent
with the isotropic symmetry of the atoms) for sufficiently large
simulation cells. However, for atoms other than He, χmag is
noticeably different from QNG/2�, even for large box sizes.
This discrepancy demonstrates that either Larmor’s theorem
or the Langevin theory of diamagnetism breaks down when
nonlocal pseudopotentials are present (see Sec. VI for further
discussion).

When we compare the two path choices, PM (Sec. III B 5)
and ICL (Sec. III B 4), we find slight quantitative differences
for the shear component and diamagnetic correction. How-
ever, the differences between the paths vanishes for μ′

S [see
Eq. (61)], indicating that although the CRG contribution is
path-dependent, the “true” shear response (which is vanishing
for spherical symmetry) is not for this system. This result is an
excellent test that our implementation is sound. Indeed, for a
cubic solid, all three components of the electronic flexoelectric
tensor μ′ can be related to the surface charge accumulated via
the mechanical deformation of a finite crystallite; thus, they
should not depend on the aforementioned path choice. As the
path choice is irrelevant in our context, in the next section we
shall perform our calculations on cubic oxides using the ICL
path. In Sec. VI, we shall provide a critical discussion of the
ICL and PM prescriptions from a more general perspective,
and leave a detailed comparison of the two approaches for a
future work.

B. Cubic oxides

We now apply our methodology to calculate the bulk, CI
FxE coefficients for several technologically important cubic
oxides. As mentioned before, we will be using short circuit
boundary conditions and the ICL path for the nonlocal contri-
bution.

As an example of a typical calculation, in Fig. 3, we plot
the induced polarization [Eq. (57)] versus q = (qx, 0, 0) for
cubic SrTiO3, both for the polarization direction and atomic
displacement α = β = x and α = β = y. As expected, the
dependence on q is quadratic (there is no linear term since
cubic SrTiO3 is not piezoelectric [15,17]), and P

q = 0 at
q = 0, which is required by the ASR condition that the sum
of the Born effective charges should vanish [62]. By taking
the second derivative of the black (red) dashed curves in
Fig. 3, we can obtain μI

11,11 (μI
11,22). The remaining coefficient

μI
12,12 is obtained by calculating P

q
12 at various q = (qx, qy, 0),

and performing a numerical mixed derivative ∂2/∂qx∂qy (not
shown).

In Table IV, we give the FxE coefficients corrected for the
CRG contribution [cf. Eq. (61)] and the RCC (Sec. IV C).
As discussed above, the RCC is added to the longitudinal
and transverse coefficients [56]. Note that the reported χmag

is given in pC/m, whereas other quantities are in nC/m, so
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FIG. 3. Induced polarization vs q = (qx, 0, 0) for cubic SrTiO3.
The black (red) points correspond to the x (y) component of the
polarization for atomic displacements of the atoms in the x (y)
direction. Dashed curves are quadratic fits. Units are with respect
to the calculated SrTiO3 lattice constant a = 7.435 Bohr.

this correction is quite small for the materials calculated. The
contribution of the nonlocal potentials to the FxE coefficients
in Table IV, which are computed using the ICL path of
Appendix C 1, represents a more significant correction than
was the case in Sec. V A: they are in the range of 0.03 to
0.12 nC/m for the longitudinal and transverse coefficients, and
in the range of −0.02 to 0.008 nC/m for the shear coefficients.

The only material for which first-principles calculations
of the transverse and shear coefficients are available (in
parentheses in Table IV) is SrTiO3, and our values are in
excellent agreement with those previous calculations [19].

For all of the materials, the longitudinal and transverse
responses are of similar magnitude, and the shear response
is significantly smaller. This is a similar trend to that of
the isolated noble gas atoms and of the IRC model [cf.
Eq. (65)], suggesting that the response is dominated by the
“spherical” contribution. The behavior of the cubic oxides
differ significantly from the IRC model, however, when it
comes to the contribution of the CRG correction χmag. For
isolated atoms, χmag is equal to μIRC,S, and is of the same
order as μ′

IRC,L; therefore, a vanishing value of μ′
IRC,S is only

obtained after removing the CRG contribution [Eq. (61)]. In
the case of the cubic oxides, the CRG correction is only a
minor contribution to μ′

S, and χmag is two orders of magnitude
smaller than μ′

L. In fact, χmag for the cubic oxides is comparable
to that of the isolated atoms, while the FxE coefficients for the

cubic oxides are two orders of magnitude larger. This indicates
that although the bonding of atoms in the cubic compounds
significantly enhances the FxE coefficients, it does not have
a large effect on the CRG correction. It should be noted that
the value of χmag for SrTiO3 (−2.28 × 10−7 cm3/g after unit
conversion) is in fair agreement with the measured diamagnetic
susceptibility of around −1 × 10−7 cm3/g from Ref. [63].

VI. DISCUSSION

Before closing, it is useful to recap the technical issues
that are associated with the calculation of the current density
response in a nonlocal pseudopotential context, and critically
discuss them in light of the result presented in this work.
In particular, it is important to clarify whether our proposed
approach matches the expectations, especially regarding the
known transformation properties of the current density upon
rototranslations, or whether there is any deviation that needs
to be kept in mind when computing flexoelectric coefficients
and other current-related linear-response properties.

As we have already discussed at length in the earlier
sections, our definition of the current density (i) satisfies
the continuity equation by construction, (ii) correctly reduces
to the textbook formula in the region of space where the
Hamiltonian is local, and (iii) is consistent with the known
formula for the macroscopic current operator. However, we
have not yet discussed some additional properties of the current
density that were established in earlier works, that might be
used as “sanity checks” of our implementation.

(1) Translational invariance of the charge-density response.
As established by Martin [53], simultaneous uniform transla-
tion of all atoms in the crystal must yield the same variation
in charge density at every point as if the static charge density
were rigidly shifted. Therefore, if the whole crystal undergoes
a translation with uniform velocity v, the current density in the
laboratory frame must be

J(r) = vρ(r), (75)

where ρ(r) is the static charge density.
(2) Larmor’s theorem. The circulating currents generated

in a crystallite by a uniform rotation with constant angular
velocity ω (as observed in the frame of the rotating material)
are, in the linear limit of small velocities, identical to the
orbital currents that would be generated by an applied (and
constant in time) B field. As a corollary, the rotational g factor

TABLE IV. Lattice constant, CI dielectric constant, rigid-core correction, and longitudinal, transverse, and shear CI FxE coefficients (under
short circuit boundary conditions), as well as the diamagnetic susceptibility in units of nC/m. The FxE constants include the CRG correction
(Sec. III D) and RCC (Sec. IV C).

a (Bohr) ε RCC μ′
L μ′

T μ′
S χmag × 103

SrTiO3 7.435 6.191 −0.049 −0.87 (−0.9a,−0.88b) −0.84 (−0.83b) −0.08(−0.08b) −7.3
BaTiO3 7.601 6.657 −0.107 −1.01 (−1.1a) −0.99 −0.08 −1.7
SrZrO3 7.882 4.558 −0.049 −0.63 −0.58 −0.05 −36.0
PbTiO3 7.496 8.370 −0.158 −1.39 (−1.5a) −1.35 −0.09 −22.4
MgO 8.058 3.148 −0.015 −0.28 (−0.3a) −0.30 −0.07 −66.1

aReference [17].
bReference [19].
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of closed-shell molecules corresponds to their paramagnetic
susceptibility.

(3) Langevin’s diamagnetism. The magnetic susceptibil-
ity of a spherically symmetric atom is proportional to the
quadrupolar moment of its ground-state charge density.

In the following, we shall analyze how our formalism stands
in relationship to these latter “weak” [compared to the “strong”
conditions (i)–(iii) above] criteria of validity. (By “weak” we
mean not required for a physically sound calculation of the
flexoelectric tensor, but possibly necessary for a wider range
of physical properties.)

A. Translational invariance of the charge-density response

Based on our results of Table III, we can safely conclude
that both flavors of the current-density operator (ICL and PM)
break translational invariance, Eq. (75). To see this, consider
the shear flexoelectric coefficient of an isolated atom in a box,
(e.g., μS,NG). This quantity can be defined in real space as the
second moment of the microscopic current-density response
to the displacement of an isolated atom

μS = 1

2�

∫
d3r

∂Jy (r)

∂λ̇y

x2, (76)

where λ̇y stands for the velocity of the atom along y. This
formula, as it stands, is not very practical for calculations:
our implementation does not allow for a fully microscopic
calculation of J(r), and therefore we had to replace Eq. (76)
with computationally more tractable small-q expansions. Still,
Eq. (76) is quite useful for our purposes, as it allows us to draw
general conclusions about J(r) without the need for calculating
it explicitly. In particular, if translational invariance [Eq. (75)]
were satisfied, then we could plug Eq. (75) into Eq. (76) and
use Eq. (64) to obtain μS,NG = 1

2�

∫
d3rρ(r)x2 = QNG/2�.

[This equality is a necessary but not sufficient condition for
the validity of Eq. (75).] As we can see from Table III, μS,NG

is only approximately equal to QNG/2� for both the ICL and
PM flavors of the current-density operator. This implies that
neither approach is able to guarantee translational invariance.

Similarly, the data we have in hand does not allow us to
establish a clear preference between the PM and ICL recipes, as
the discrepancies between the two are typically much smaller
(and devoid of a systematic trend) than their respective failure
at satisfying μS,NG = QNG/2�. Note that the discrepancy
strictly consists of solenoidal (i.e., divergenceless) contribu-
tions to the current response; the longitudinal components are
exactly treated, as one can verify from the excellent match
between the longitudinal coefficient μL and the quadrupolar
estimate in Table III.

B. Langevin diamagetism and Larmor’s theorem

We come now to the assessment of the Larmor and Langevin
results. One of the virtues of the PM recipe resides in its supe-
rior accuracy when comparing the orbital magnetic response
to all-electron data. Indeed, in the context of our discussion,
one can verify that it exactly complies with Langevin’s theory
of diamagnetism in the case of isolated spherical atoms [64].
The situation, however, is not so bright regarding Larmor’s
theorem. If the latter were satisfied, then the “rotational orbital

susceptibility” χmag would match Langevin’s quadrupolar ex-
pression, as we know that Langevin’s result holds in the case of
a “true” B-field. By looking, again, at Table III, we clearly see
that this is not the case—again, there is a discrepancy between
the last column (based on the static quadrupole) and the
calculated values of χmag. Since the deviations in χmag and μS

are essentially identical in the limit of an isolated atom in a box,
it is reasonable to assume that the underlying factors are similar.
It should be noted that our value for Ne (after unit conversion,
ICL path) is χ ICL

mag = −7.29 × 10−6 cm3/mole, which is fairly
close in magnitude to previously calculated values of the
diamagnetic susceptibility of Ne: −7.75 × 10−6 cm3/mole
[33] and −7.79 × 10−6 cm3/mole [35].

C. Unphysical spatial transfer resulting
from nonlocal pseudopotentials

The reason why the current density violates both transla-
tional invariance and Larmor’s theorem has to be sought in the
unphysical transfer of density that can result from the presence
of a nonlocal potential. That is, a nonlocal operator may project
the wavefunction (and therefore the particle amplitude) from
a point r to a distant point r′ in a discontinuous manner, such
that no current flows through a given surface surrounding r
even though the charge density within that surface changes. Of
course, this is just a conceptual way of describing the violation
of the continuity equation, discussed in Sec. III B.

Taking the example of a single atom placed at R = 0 and
using the PM approach, it is shown in Appendix E that the
current density can be written as

Jnl(r) ∼ r̂C(r̂)

r2
, (77)

where C(r̂) is a direction-dependent constant that depends
on the nonlocal charge [Eq. (E5)]. Therefore the current-
density field diverges near the atomic site, r → 0, and such
a divergence can have a different prefactor and sign depending
on the direction.

A diverging J field is problematic to deal with and un-
physical. One can easily realize that this characteristic is
incompatible, for example, with the correct transformation
laws of J under rigid translations. In particular, the electronic
charge density is always finite in a vicinity of the nucleus, even
in the all-electron case where the corresponding potential does,
in fact, diverge. This implies that Eq. (75) cannot be satisfied
by a diverging J field.

For the ICL path, the nonlocal current does not have such a
simple relation to the nonlocal charge as in the case of the PM
path [Eq. (E4)]; therefore a similar derivation as in Appendix E
may not be possible for the ICL case. However, our numerical
results in Table III are sufficient to conclude that the ICL
path violates translational symmetry as well. The extent of
the violation can be quantified by looking at the discrepancy
between μL and μS, which is comparably large in the PM and
ICL cases—recall that these two values should, in principle,
coincide for the isolated spherical atoms model.

At present, it is difficult to predict whether it might be
possible to cure the above drawbacks by simply choosing
a different path for the definition of the current operator,
or whether these difficulties may require a deeper revision
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of the nonlocal pseudopotential theory in contexts where
the microscopic current density is needed. In any case, the
flexoelectric coefficients we calculated in this work for cubic
materials are unaffected by these issues: once the “diamag-
netic” contribution has been removed, the three independent
coefficients are all well defined in terms of the charge-density
response. Nonetheless, the above caveats should be kept in
mind when using the present current-density implementation
to access flexoelectric coefficients in less symmetric materials,
or other response properties that depend on the microscopic
current response.

VII. CONCLUSIONS

We have developed a DFPT implementation for calcu-
lating the bulk CI flexoelectric tensor from a single unit
cell. Therefore we have overcome the limitations of previous
implementations (Refs. [17,19]), which required supercells to
calculate the transverse and shear CI FxE coefficients.

Our implementation is based on calculating the micro-
scopic current density resulting from the adiabatic atomic
displacements of a long-wavelength acoustic phonon. We
have determined a form for the current-density operator that
satisfies the continuity condition in the presence of nonlocal,
norm-conserving pseudopotentials, and reduces to the correct
form in the limit of a uniform, macroscopic perturbation, and/or
when only local potentials are present.

In order to benchmark our methodology, we have used noble
gas atoms to model systems of noninteracting spherical charge
densities. The tests demonstrate the accuracy of our nonlocal
correction to the current operator, as well as the calculated CRG
corrections derived in Ref. [24]. For our form of the current
density, we demonstrate that nonlocal pseudopotentials result
in a violation of translational invariance and Larmor’s theorem,
though this does not affect our FxE coefficients after the CRG
contribution has been removed. Finally, we have applied our
methodology to several cubic oxides, all of which show similar
trends in that the longitudinal and transverse responses are
similar (∼1 nC/m), and the shear response is an order of
magnitude smaller.

Combining the methodology of this paper with DFPT
implementations for calculating the lattice-mediated contri-
bution to the bulk FxE coefficients [15,19], and the surface
contribution [19], will allow for efficient calculation of the full
FxE response for a variety of materials.
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APPENDIX A: ESSIN ET AL. APPROACH
AND THE ISMAIL-BEIGI, CHANG, AND LOUIE

STRAIGHT-LINE PATH

Here we perform a long-wavelength expansion of the
current operator using the approach of Essin et al. [51], and
confirm that the approach is equivalent to that of ICL [33]. We
start from Eq. (45) and rewrite it as

〈s|Ĵ ICL
α (q)|s′〉 = −iH (s, s′)(sα − s ′

α )
e−iq·s − e−iq·s′

iq · (s − s′)

= −i[r̂α, Ĥ ]ss′
e−iq·s − e−iq·s′

iq · (s − s′)

= −(i[r̂α, T̂ ]ss′ + i[r̂α, V̂ nl]ss′ )
e−iq·s − e−iq·s′

iq · (s − s′)
,

(A1)

where T̂ is the kinetic energy operator and V̂ nl is the nonlocal
part of the potential (the local part of the potential does not
contribute). We now factor out a e−iq·s′

and then expand the
term outside of the parentheses:

〈s|Ĵ ICL
α (q)|s′〉

= −(i[r̂α, T̂ ]ss′ + i[r̂α, V̂ nl]ss′ )e−iq·s′

×
(

−1 + iq · (s − s′)
2

+ [q · (s − s′)]2

6
+ . . .

)
. (A2)

As mentioned in Sec. III B 4, if q = 0, then Ĵ ICL
α (q = 0) =

i[r̂α, Ĥ ] = −v̂α , the velocity operator.
Consider the case of a Hamiltonian with a local potential,

so the only term in Eq. (A2) is the commutator of the position
operator with the kinetic part of the Hamiltonian. We can
rewrite this term as

〈s|Ĵ loc
α (q)|s′〉

= −
⎛⎝−i[r̂α, T̂ ]ss′ −

3∑
γ=1

qγ

2
[r̂γ , [r̂α, T̂ ]]ss′

+
3∑

γ=1

3∑
ξ=1

iqγ qξ

6
[r̂ξ , [r̂γ , [r̂α, T̂ ]]]ss′ + · · ·

⎞⎠e−iq·s′
.

(A3)

The term at zeroth order in q is simply the momentum operator,
p̂α = −i[r̂α, T̂ ]; at first order in q, we have q̂α/2 (the nested
commutator is simply the Kroneker delta function −δαγ );
higher-order terms vanish. So in the case of a Hamiltonian
that only has a local potential

Ĵ q,loc
α = −

(
p̂α + qα

2

)
, (A4)

which is the cell-periodic momentum operator for the case
of local potentials, as we derive in Appendix B. Therefore
the local and nonlocal components can be cleanly separated.
The nonlocal part of the potential in Eq. (A1) is addressed in
Appendix C 1.

Note that the approach of Essin et al. does not work for an
arbitrary choice of path. Specifically, if we were to use Eq. (42)
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with the PM path choice s′ → R → s, the expression would
not reproduce the correct form of the current for local potentials
(except for the case of the longitudinal response). Of course,
in the PM form of the coupled Hamiltonian in Eq. (48), the
current in the case of only local potentials trivially reduces to
the correct form Ĵ loc

α (r) = − 1
2 {ρ̂(r), (p̂α + Âα )}.

APPENDIX B: DERIVATION OF INDUCED
POLARIZATION: LOCAL POTENTIALS

In this section, we derive P
q,loc
α,κβ for Eq. (54). This is a

straightforward generalization of what was derived by Umari,
Dal Corso, and Resta [31] to finite q perturbations, and has
been derived previously in other contexts (e.g., for determining
magnetic [35] or dielectric [45] susceptibility, and in the
context of phonon deformation potentials [65]).

Using the adiabatic expansion of the time-dependent wave
function [Eqs. (10) and (11)], to first order in λ̇, we can write
the density matrix as

ρ(t ) = − 2

Nk

∑
nk

|�nk(λ(t ))〉〈�nk(λ(t ))|

� − 2

Nk

∑
nk

[|ψnk〉〈ψnk| + λ̇(|δψnk〉〈ψnk|

+|ψnk〉〈δψnk|)], (B1)

where the factor of two is assuming spin degeneracy. If we
apply the local current-density operator [Eq. (29)], retaining
terms only to linear order in λ̇, and take the derivative with
respect to λ̇, we obtain the induced polarization

P loc
α (r)

= − 1

Nk

∑
nk

[〈ψnk|r〉〈r|p̂α|δψnk〉 + 〈δψnk|r〉〈r|p̂α|ψnk〉

+〈ψnk|p̂α|r〉〈r|δψnk〉 + 〈δψnk|p̂α|r〉〈r|ψnk〉]. (B2)

Now consider the perturbation in Eq. (3): the displacement
of a sublattice κ in direction β modulated by a phase with
wave vector q. We begin with the real-space expression for the
polarization induced by this perturbation:

P
q,loc
α,κβ (r)

= − 1

Nk

∑
nk

[〈ψnk|r〉〈r|p̂α

∣∣δψκβ

nk,q

〉+〈
δψ

κβ

nk,−q

∣∣r〉〈r|p̂α|ψnk〉

+〈ψnk|p̂α|r〉〈r∣∣δψκβ

nk,q

〉 + 〈
δψ

κβ

nk,−q

∣∣p̂α|r〉〈r|ψnk〉
]
, (B3)

where the subscript q in δψ
κβ

nk,±q indicates that the perturbation
couples states at k to those at k ± q. If we assume TRS [see

Eq. (24)], then we have

P
q,loc
α,κβ (r) = − 2

Nk

∑
nk

[〈ψnk|r〉〈r|p̂α

∣∣δψκβ

nk,q

〉
+〈ψnk|p̂α|r〉〈r∣∣δψκβ

nk,q

〉]
. (B4)

We Fourier transform Eq. (B4) to reciprocal space and consider
the cell periodic part

P loc
α,κβ (G + q)

= − 2

Nk

∑
nk

∫
d3r

[〈ψnk|r〉e−i(G+q)·r〈r|p̂α

∣∣δψκβ

nk,q

〉
+〈ψnk|p̂α|r〉e−i(G+q)·r〈r∣∣δψκβ

nk,q

〉]
. (B5)

We now explicitly insert the expansion of the wave functions
in terms of plane waves:

ψk(s) =
∑
m

ck,Gm
ei(Gm+k)·s,

δψ
κβ

nk,q(s) =
∑
m

δck+q,Gm
ei(Gm+k+q)·s, (B6)

where we have dropped the band index and the κβ indices for
the expansion coefficients c and δc, and m indexes a reciprocal
lattice vector Gm. Then, applying the momentum operator,

P loc
α,κβ (G + q)

= − 2

Nk

∑
k

∑
m,m′

∫
d3rc∗

k,Gm
δck+qα,Gm′ [(kα + qα + Gα,m′ )

×e−i(G+Gm−Gm′ )·r + (kα + Gα,m)e−i(G+Gm−Gm′ )·r]

= − 4

Nk

∑
k

∑
m

c∗
k,Gm

δck+qα,Gm+G

(
kα + Gα,m + qα+Gα

2

)

= − 2

Nk

∑
nk

〈unk|e−iG·r̂
(

p̂k
α + qα

2

)
+

(
p̂k

α + qα

2

)
× e−iG·r̂∣∣δuκβ

nk,q

〉
, (B7)

where, in the last line, we have restored the band andκβ indices,
p̂k

α = −i∇̂α + kα is the cell-periodic momentum operator (∇̂α

is a spatial derivative in the α direction), and we have used
that ψnk(s) = unk(s)eik·s. In Sec. V A, we use this result to
calculate real-space moments of the local contribution to the
FxE coefficient. Otherwise, we are usually interested in the
G = 0 term:

P
q,loc
α,κβ = − 4

Nk

∑
nk

〈unk|
(

p̂k
α + qα

2

)∣∣δuκβ

nk,q

〉
. (B8)

APPENDIX C: CURRENT DENSITY IN THE PRESENCE OF NONLOCAL PSEUDOPOTENTIALS

Here we derive the contributions to the current from the nonlocal potentials [P q,nl
α,κβ in Eq. (54)], which we obtain by expanding

the nonlocal current-density operator up to second order in q [Eq. (53)],

P
q,nl
α,κβ � 4

Nk

∑
nk

⎡⎣〈unk|Ĵ k,nl(0)
α

∣∣δuκβ

nk,q

〉 + 1

2

3∑
γ=1

qγ 〈unk|Ĵ k,nl(1)
α,γ

∣∣δuκβ

nk,q

〉 + 1

6

3∑
γ=1

3∑
ξ=1

qγ qξ 〈unk|Ĵ k,nl(2)
α,γ ξ

∣∣δuκβ

nk,q

〉⎤⎦. (C1)
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The nonlocal potential that we are interested in is that of the norm-conserving pseudopotential. In reciprocal space, the nonlocal
potential in the separable Kleinman-Bylander [29] form is given by [66]

V nl(K, K′) =
∑

ζ

e−iK·Rζ

(∑
lm

Y ∗
ζ lm(K̂)T ∗

ζ l (|K|) × Tζl (|K′|)Yζlm(K̂′)

EKB
ζ l

)
eiK′ ·Rζ , (C2)

where K = G + k; Rζ is the atomic position of atom ζ ; Yζlm is the spherical harmonic for the lm angular momentum channel;
Tζl (K ) is the Fourier transform of the radial function, ψ̃ζ l (r )Vζl (r ), where Vζl (r ) are the pseudopotentials and ψ̃ζ l (r ) the
pseudoorbitals; EKB

ζ l = 〈ψ̃ζ l|V̂l|ψ̃ζ l〉 is the Kleinman-Bylander energies. The term in the parentheses is the nonlocal form factor,
and the phase factors surrounding it are the structure factors. We define

〈K|φζlm〉 = eiK·Rζ Yζ lm(K̂)Tζl (|K|) (C3)

so

V̂ nl =
∑
ζ lm

|φζlm〉〈φζlm|
EKB

ζ l

. (C4)

1. Ismail-Beigi, Chang, and Louie straight-line path

For the straight-line path of Essin et al. [51] and Ismail-Beigi, Chang, and Louie,[33] we combine Eq. (46) and (assuming we
have TRS) Eq. (25). Since we have already addressed the local part in Appendix B, we only consider the nonlocal part of the
Hamiltonian, defining the operator

〈s|Ĵ k,q,ICL,nl
α |s′〉 = −iV k,nl(s, s′)(sα − s ′

α )

[
e−iq·(s−s′ ) − 1

iq · (s − s′)

]
. (C5)

Expanding the term in square brackets in powers of q gives

〈s|Ĵ k,q,ICL,nl
α |s′〉 = iV k,nl(s, s′)(sα − s ′

α )

[
1 − iq · (s − s′)

2
+ [iq · (s − s′)]2

6
− · · ·

]
.

= i[r̂α, V̂ k,nl]ss′ − 1

2

3∑
γ=1

qγ [r̂γ , [r̂α, V̂ k,nl]]ss′ − i

6

3∑
γ=1

3∑
ξ=1

qγ qξ [r̂ξ , [r̂γ , [r̂α, V̂ k,nl]]]ss′ + · · · , (C6)

so we can write the operator as

Ĵ k,q,ICL,nl
α =

∑
γ1···γn

qγ1 · · · qγn

(n + 1)!
Ĵ k,ICL,nl(n)

α,γ1···γn
, Ĵ k,ICL,nl(n)

α,γ1···γn
= − ∂n+1V̂ k,nl

∂kα∂kγ1 · · · ∂kγn

. (C7)

In terms of the cell-periodic projectors φk
ζ lm(s) = e−ik·sφζlm(s) [see Eq. (C4)], the lowest-order terms in Eq. (C7), to be incorporated

into Eq. (C1), are

Ĵ k,nl(0)
α = −

∑
ζ lm

1

EKB
ζ l

(∣∣φk
ζ lm

〉〈
∂αφk

ζ lm

∣∣ + ∣∣∂αφk
ζ lm

〉〈
φk

ζ lm

∣∣), (C8)

Ĵ k,ICL,nl(1)
α,γ = −

∑
ζ lm

1

EKB
ζ l

(∣∣∂γ φk
ζ lm

〉〈
∂αφk

ζ lm

∣∣ + ∣∣φk
ζ lm

〉〈
∂α∂γ φk

ζ lm

∣∣ + ∣∣∂α∂γ φk
ζ lm

〉〈
φk

ζ lm

∣∣ + ∣∣∂αφk
ζ lm

〉〈
∂γ φk

ζ lm

∣∣), (C9)

and

Ĵ k,ICL,nl(2)
α,γ ξ = −

∑
ζ lm

1

EKB
ζ l

(∣∣∂ξ ∂γ φk
ζ lm

〉〈
∂αφk

ζ lm

∣∣ + ∣∣∂ξφ
k
ζ lm

〉〈
∂γ ∂αφk

ζ lm

∣∣ + ∣∣∂γ φk
ζ lm

〉〈
∂α∂ξφ

k
ζ lm

∣∣ + 〈
unk

∣∣φk
ζ lm

〉〈
∂γ ∂α∂ξφ

k
ζ lm

∣∣
+ ∣∣∂γ ∂α∂ξφ

k
ζ lm

〉〈
φk

ζ lm

∣∣ + 〈
unk

∣∣∂α∂ξφ
k
ζ lm

〉〈
∂γ φk

ζ lm

∣∣ + ∣∣∂γ ∂αφk
ζ lm

〉〈
∂ξφ

k
ζ lm

∣∣ + ∣∣∂αφk
ζ lm

〉〈
∂γ ∂ξφ

k
ζ lm

∣∣). (C10)

These correspond to last three terms in Eq. (53), here specialized to the ICL path. Note that Ĵ k,nl(0)
α = −∂V̂ k,nl/∂kα represents

the well-known nonlocal correction to the Born effective charge (with an overall negative sign from the electron charge), which
combined with the local part [Eq. (B8)] yields the velocity operator v̂

k,q
α and should be unsensitive to the path choice.

2. Pickard and Mauri path through atom center

The PM [34] path goes through the center of the atom. For simplicity of the derivation, we consider a single atom positioned
at the origin (R = 0); the generalization to an atom not at the origin simply involves an extra phase in the structure factors in
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Eq. (C2). Then Eq. (51) becomes

〈s|Ĵ PM,nl
α (q)|s′〉 = −iV nl(s, s′)

[
s ′
α

1 − e−iq·s′

iq · s′ + sα

e−iq·s − 1

iq · s

]
. (C11)

Following the same steps as in Appendix C 1, we arrive at slightly different current operators for the terms to first and second
orders in q (the zeroth-order term is the same as for the ICL path, as expected),

Ĵ k,PM,nl(1)
α,γ = −

∑
ζ lm

1

EKB
ζ l

(
2
∣∣∂αφk

ζ lm

〉〈
∂γ φk

ζ lm

∣∣ + ∣∣φk
ζ lm

〉〈
∂α∂γ φk

ζ lm

∣∣ + ∣∣∂α∂γ φk
ζ lm

〉〈
φk

ζ lm

∣∣), (C12)

Ĵ k,PM,nl(2)
α,γ ξ = −

∑
ζ lm

1

EKB
ζ l

(
3
∣∣∂α∂γ φk

ζ lm

〉〈
∂ξφ

k
ζ lm

∣∣ + 3
∣∣∂αφk

ζ lm

〉〈
∂γ ∂ξφ

k
ζ lm

∣∣ + ∣∣φk
ζ lm

〉〈
∂α∂γ ∂ξφ

k
ζ lm

∣∣ + ∣∣∂α∂γ ∂ξφ
k
ζ lm

〉〈
φk

ζ lm

∣∣). (C13)

We see immediately that, for the case of a longitudinal perturbation, Eqs. (C12) and (C13) are identical to their ICL counterparts
[cf. Eqs. (C9) and (C10)].

APPENDIX D: DIAMAGNETIC CORRECTION

In this section, we provide some details about the calculation
of the CRG contribution to the transverse and shear FxE
coefficients, which is related to the diamagnetic susceptibility.
We refer the reader to Ref. [24] for a complete discussion.

For the case of a small deformation u that is applied to
the atoms of a crystal adiabatically through the perturbation
parameter λ(t ), the CRG contribution to linear order in the
velocity is

λ̇Ĥ (λ̇) = − 1
2 (Â · p̂ + p̂ · Â). (D1)

Here, A is not the vector potential of electromagnetism, but
one that emerges when transforming from the static reference
frame to the CRG one. For a monochromatic perturbation, it
becomes just A = λ̇u = λ̇eiq·r, so

Ĥ (λ̇β )(q) = −eiq·r̂
(

p̂β + qβ

2

)
, (D2)

which we recognize as the local current operator [cf. Eq. (A4)
or (B8)]. Therefore the first-order, cell-periodic wave functions
with respect to this perturbation are

∣∣∂λ̇β
u

β

nk,q

〉 =
unocc∑

m

|umk,q〉〈umk,q|
(
p̂k

β + qβ/2
)|unk〉

εmk,q − εnk
, (D3)

and the (cell averaged) induced polarization from the CRG part
of the metric perturbation is

P
q, CRG
α,β = 4

Nk

∑
nk

〈unk|Ĵ k,q
α

∣∣∂λ̇β
u

β

nk,q

〉
. (D4)

The contribution to the FxE coefficient is determined by taking

the second derivative of P
q,CRG
α,β with respect to q:

P
(2,ων), CRG
α,β = ∂2P

q,CRG
α,β

∂qω∂qν

∣∣∣∣
q=0

. (D5)

The CRG contribution is closely related to the diamagnetic sus-
ceptibility, χαβ . In fact, in the case where only local potentials
are present in the Hamiltonian [so that Ĵ k,q

β = −(p̂k
β + qβ/2)

in Eq. (D4)], Eq. (D5) has the same form as the expressions
for the magnetic susceptibility derived in, e.g., Refs. [32] and
[35] [cf. Eqs. (11) and (9) in those works, respectively].

The magnetic susceptibility relates the magnetization, M,
to the external magnetic field, B, via Mγ = χ

mag
γ λ Bλ. This can

be rewritten to relate the bound currents to the vector potential

Jα = εαζγ ∇ζ χγλε
λρβ∇ρAβ, (D6)

so that

P
q, CRG
α,β ∼ εαζγ qζ χγλε

βλρqρ, (D7)

where we have expressed the spatial derivatives in reciprocal
space and canceled the resulting negative sign by permutating
the second Levi-Civita symbol. Performing the q derivatives
in Eq. (D5) gives

P
(2,ων), CRG
α,β =

∑
γ λ

(εαωγ εβλν + εανγ εβλω )χγλ. (D8)

In the case that nonlocal potentials are present in the
Hamiltonian, a calculation of the magnetic susceptibility
would involve replacing the “displacement velocity” operator,
−(p̂k

β + qβ/2), in Eq. (D3) with the full electromagnetic
current operator from Eq. (53), as well as evaluating extra terms
originating from the second-order Hamiltonian [33,34,37].
This is in contrast to the case of the CRG contribution we
would like to calculate, where the only change in the case
of nonlocal potentials is replacing Ĵ k,q

α in Eq. (D4) with the
full current operator from Eq. (53); Eqs. (D2) and (D3) are
unchanged. Therefore Eq. (D4) does not strictly correspond to
the magnetic susceptibility in this case. However, we show in
Sec. VI that the numerical values are quite similar to previously
calculated diamagnetic susceptibilities.

APPENDIX E: DIVERGENCE OF THE CURRENT
AT THE ATOMIC SITE FOR THE PM PATH

To illustrate the point that nonlocal pseudopotentials allow
unphysical transfer of charge between r and r′, we shall
consider the PM [34] definition of the current density, which
provides a particularly transparent manifestation of such un-
physical behavior. For simplicity, we focus our attention on
a single atomic sphere [so we drop the ζ index of Eq. (48)],
and we set the corresponding nuclear site as the coordinate
origin. (There is no approximation here, as the contributions
from different sites are spatially separated and additive.) Now
suppose we wish to evaluate the nonlocal current density at
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the point r0. We need then to calculate Eq. (39) with Eq. (48),
using a Dirac delta as a vector potential,

A(r) = Ar̂0 δ(r − r0) = Ar̂0δ(r̂ − r̂0)
δ(r − r0)

4πr2
, (E1)

where the caret above the position variable denotes a direction
(not to be confused with the position operator), and in the
second equality we have written the Dirac delta function in
spherical coordinates. We choose the vector potential to be
oriented along the radial direction, as this is the only allowed
component within the PM theory: it is easy to see that a purely
tangential A field yields a vanishing nonlocal contribution to
the current [see Eq. (48)]. Then, the line integral needed for
the first-order term in Eq. (43) is∫

s′→0→s
A · d� =

∫ 1

0
A(τ s) · sdτ −

∫ 1

0
A(τ s′) · s′dτ

= Ar̂0 ·
[
δ(ŝ − r̂0)s

∫ 1

0

δ(τs − r0)

4π (sτ )2
dτ

−δ(ŝ′ − r̂0)s′
∫ 1

0

δ(τs ′ − r0)

4π (s ′τ )2
dτ

]
= A

4πr2
0

[δ(ŝ − r̂0)θ (s − r0)

−δ(ŝ′ − r̂0)θ (s ′ − r0)], (E2)

where θ is the Heaviside step function. Therefore we can
write the current-density operator as (recall that the tangential
components vanish, so the current is purely radial)

〈s|Ĵ (r)|s′〉 = iV nl(s, s′)
4πr2

[δ(ŝ − r̂)θ (s − r )

− δ(ŝ′ − r̂)θ (s ′ − r )]. (E3)

Considering a general time-dependent wave function as in
Eq. (8), the current density is

Jnl(r, t ) = ir̂
4πr2

∫
d3s

∫
d3s ′�∗(s, t )�(s′, t )V nl(s, s′)

×[δ(ŝ − r̂)θ (s − r ) − δ(ŝ′ − r̂)θ (s ′ − r )]

= ir̂
r2

∑
lm

∫ ∞

r

ds[〈φlm|�(t )〉�∗(sr̂, t )φlm(sr̂)

−〈�(t )|φlm〉�(sr̂, t )φ∗
lm(sr̂)]s2

= r̂
r2

∫ ∞

r

ds ρnl(sr̂)s2, (E4)

where we have identified the nonlocal charge ρnl(r) =
−i〈�|[|r〉〈r|, V̂ nl]|�〉 [cf. Eq. (32)]. Note that the upper limit
of the integral can be set to rc, i.e., the core radius that was used
in the generation of the pseudopotential (the nonlocal current
density field is strictly contained within a sphere of radius
rc). This shows that, in the special case of the Pickard-Mauri
theory, the nonlocal density does, in fact, provide complete
information about the current density.

Unfortunately, a consequence of the above derivations is
that the nonlocal current density diverges as |r − R|−2 in the
vicinity of an atomic site R. To see this, it suffices to observe
that the integral in the above equation tends, for r → 0, to a
direction-dependent constant,∫ +∞

0
s2ds ρnl(sr̂) = C(r̂). (E5)

Thus the current-density field diverges near the atomic site as

Jnl(r) ∼ r̂C(r̂)

r2
. (E6)

[1] M. S. Majdoub, R. Maranganti, and P. Sharma, Phys. Rev. B 79,
115412 (2009).

[2] D. Lee, A. Yoon, S. Y. Jang, J.-G. Yoon, J.-S. Chung, M. Kim,
J. F. Scott, and T. W. Noh, Phys. Rev. Lett. 107, 057602 (2011).

[3] P. V. Yudin, A. K. Tagantsev, E. A. Eliseev, A. N. Morozovska,
and N. Setter, Phys. Rev. B 86, 134102 (2012).

[4] A. Y. Borisevich, E. Eliseev, A. Morozovska, C.-J. Cheng, J.-Y.
Lin, Y.-H. Chu, D. Kan, I. Takeuchi, V. Nagarajan, and S. V.
Kalinin, Nat. Commun. 3, 775 (2012).

[5] G. Catalan, L. Sinnamon, and J. Gregg, J. Phys.: Condens. Matter
16, 2253 (2004).

[6] G. Catalan, B. Noheda, J. McAneney, L. J. Sinnamon, and J. M.
Gregg, Phys. Rev. B 72, 020102 (2005).

[7] H. Zhou, J. Hong, Y. Zhang, F. Li, Y. Pei, and D. Fang, Physica
B: Condensed Matter 407, 3377 (2012).

[8] A. N. Morozovska, E. A. Eliseev, M. D. Glinchuk, L.-Q. Chen,
and V. Gopalan, Phys. Rev. B 85, 094107 (2012).

[9] W. Zhu, J. Y. Fu, N. Li, and L. Cross, Appl. Phys. Lett. 89,
192904 (2006).

[10] U. K. Bhaskar, N. Banerjee, A. Abdollahi, Z. Wang, D. G.
Schlom, G. Rijnders, and G. Catalan, Nat. Nanotechnol. 11, 263
(2016).

[11] H. Lu, C.-W. Bark, D. Esque de lo Ojos, J. Alcala, C. B. Eom,
G. Catalan, and A. Gruverman, Science 336, 59 (2012).

[12] A. Gruverman, B. J. Rodriguez, A. Kingon, R. Nemanich, A.
Tagantsev, J. Cross, and M. Tsukada, Appl. Phys. Lett. 83, 728
(2003).

[13] P. Zubko, G. Catalan, and A. K. Tagantsev, Annu. Rev. Mater.
Res. 43, 387 (2013).

[14] P. V. Yudin and A. K. Tagantsev, Nanotechnology 24, 432001
(2013).

[15] M. Stengel, Phys. Rev. B 88, 174106 (2013).
[16] J. Hong and D. Vanderbilt, Phys. Rev. B 84, 180101 (2011).
[17] J. Hong and D. Vanderbilt, Phys. Rev. B 88, 174107

(2013).
[18] The FxE response of any finite crystal also has an important

contribution from the surface, as discussed in Refs. [21,56],
and calculated using density-functional theory for SrTiO3 in
Ref. [19]. In this work, we will exclusively focus on bulk
contribution, which poses a more significant challenge for a
computational treatment.

[19] M. Stengel, Phys. Rev. B 90, 201112 (2014).
[20] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,

Rev. Mod. Phys. 73, 515 (2001).

075153-19

https://doi.org/10.1103/PhysRevB.79.115412
https://doi.org/10.1103/PhysRevB.79.115412
https://doi.org/10.1103/PhysRevB.79.115412
https://doi.org/10.1103/PhysRevB.79.115412
https://doi.org/10.1103/PhysRevLett.107.057602
https://doi.org/10.1103/PhysRevLett.107.057602
https://doi.org/10.1103/PhysRevLett.107.057602
https://doi.org/10.1103/PhysRevLett.107.057602
https://doi.org/10.1103/PhysRevB.86.134102
https://doi.org/10.1103/PhysRevB.86.134102
https://doi.org/10.1103/PhysRevB.86.134102
https://doi.org/10.1103/PhysRevB.86.134102
https://doi.org/10.1038/ncomms1778
https://doi.org/10.1038/ncomms1778
https://doi.org/10.1038/ncomms1778
https://doi.org/10.1038/ncomms1778
https://doi.org/10.1088/0953-8984/16/13/006
https://doi.org/10.1088/0953-8984/16/13/006
https://doi.org/10.1088/0953-8984/16/13/006
https://doi.org/10.1088/0953-8984/16/13/006
https://doi.org/10.1103/PhysRevB.72.020102
https://doi.org/10.1103/PhysRevB.72.020102
https://doi.org/10.1103/PhysRevB.72.020102
https://doi.org/10.1103/PhysRevB.72.020102
https://doi.org/10.1016/j.physb.2012.04.041
https://doi.org/10.1016/j.physb.2012.04.041
https://doi.org/10.1016/j.physb.2012.04.041
https://doi.org/10.1016/j.physb.2012.04.041
https://doi.org/10.1103/PhysRevB.85.094107
https://doi.org/10.1103/PhysRevB.85.094107
https://doi.org/10.1103/PhysRevB.85.094107
https://doi.org/10.1103/PhysRevB.85.094107
https://doi.org/10.1063/1.2382740
https://doi.org/10.1063/1.2382740
https://doi.org/10.1063/1.2382740
https://doi.org/10.1063/1.2382740
https://doi.org/10.1038/nnano.2015.260
https://doi.org/10.1038/nnano.2015.260
https://doi.org/10.1038/nnano.2015.260
https://doi.org/10.1038/nnano.2015.260
https://doi.org/10.1126/science.1218693
https://doi.org/10.1126/science.1218693
https://doi.org/10.1126/science.1218693
https://doi.org/10.1126/science.1218693
https://doi.org/10.1063/1.1593830
https://doi.org/10.1063/1.1593830
https://doi.org/10.1063/1.1593830
https://doi.org/10.1063/1.1593830
https://doi.org/10.1146/annurev-matsci-071312-121634
https://doi.org/10.1146/annurev-matsci-071312-121634
https://doi.org/10.1146/annurev-matsci-071312-121634
https://doi.org/10.1146/annurev-matsci-071312-121634
https://doi.org/10.1088/0957-4484/24/43/432001
https://doi.org/10.1088/0957-4484/24/43/432001
https://doi.org/10.1088/0957-4484/24/43/432001
https://doi.org/10.1088/0957-4484/24/43/432001
https://doi.org/10.1103/PhysRevB.88.174106
https://doi.org/10.1103/PhysRevB.88.174106
https://doi.org/10.1103/PhysRevB.88.174106
https://doi.org/10.1103/PhysRevB.88.174106
https://doi.org/10.1103/PhysRevB.84.180101
https://doi.org/10.1103/PhysRevB.84.180101
https://doi.org/10.1103/PhysRevB.84.180101
https://doi.org/10.1103/PhysRevB.84.180101
https://doi.org/10.1103/PhysRevB.88.174107
https://doi.org/10.1103/PhysRevB.88.174107
https://doi.org/10.1103/PhysRevB.88.174107
https://doi.org/10.1103/PhysRevB.88.174107
https://doi.org/10.1103/PhysRevB.90.201112
https://doi.org/10.1103/PhysRevB.90.201112
https://doi.org/10.1103/PhysRevB.90.201112
https://doi.org/10.1103/PhysRevB.90.201112
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/RevModPhys.73.515


DREYER, STENGEL, AND VANDERBILT PHYSICAL REVIEW B 98, 075153 (2018)

[21] M. Stengel, Nat. Commun. 4, 2693 (2013).
[22] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651

(1993).
[23] R. Resta, Rev. Mod. Phys. 66, 899 (1994).
[24] M. Stengel and D. Vanderbilt, arXiv:1806.05587 [cond-

mat.mtrl-sci].
[25] J. Sakuri and J. Napolitano, Modern Quantum Mechanics, 2nd

ed. (Addison-Wesley, San Fransisco, CA, 1994).
[26] C. Li, L. Wan, Y. Wei, and J. Wang, Nanotechnology 19, 155401

(2008).
[27] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
[28] D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43,

1494 (1979).
[29] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425

(1982).
[30] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[31] P. Umari, A. D. Corso, and R. Resta, AIP Conf. Proc. 582, 107

(2001).
[32] G. Vignale, Phys. Rev. Lett. 67, 358 (1991).
[33] S. Ismail-Beigi, E. K. Chang, and S. G. Louie, Phys. Rev. Lett.

87, 087402 (2001).
[34] C. J. Pickard and F. Mauri, Phys. Rev. Lett. 91, 196401 (2003).
[35] F. Mauri and S. G. Louie, Phys. Rev. Lett. 76, 4246 (1996).
[36] F. Mauri, B. G. Pfrommer, and S. G. Louie, Phys. Rev. Lett. 77,

5300 (1996).
[37] C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001).
[38] C. J. Pickard and F. Mauri, Phys. Rev. Lett. 88, 086403 (2002).
[39] J. Nye, Physical Properties of Crystals: Their Representation by

Tensors and Matrices, Oxford Science Publications (Clarendon
Press, Oxford, U.K., 1985).

[40] A. Messiah, Quantum Mechanics (North-Holland Publishing
Company, Amsterdam, 1981), Vol. 2, p. 752.

[41] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).
[42] Q. Niu and D. J. Thouless, J. Phys. A: Math. and Gen. 17, 2453

(1984).
[43] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[44] X. Gonze, Phys. Rev. B 55, 10337 (1997).
[45] S. L. Adler, Phys. Rev. 126, 413 (1962).
[46] Note that the definition of Eq. (22) involves a choice of conven-

tion in that the exponential factor eiq·r is placed to the right of
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