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Theoretical study of the cohesive and structural properties
of Mo and W in bcc, fcc, and hcp structures
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The structural properties of Mo and % in the bcc, fcc, and hcp structures are calculated using a
fully-self-consistent pseudopotential linear combination of atomic orbitals method. Equilibrium lat-
tice constants, cohesive energies, bulk moduli, differences in structural energies, and Mulliken-

population analyses are obtained. For both elements, the bcc structure is found to be the most stable
while the fcc and hcp structures have very similar cohesive energies. We find that the difference in
the sum of eigenvalues gives the correct sign but not the magnitude for the difference in total energy
between the bcc and fcc structures.

I. INTRODUCTION

The local-density approximation (LDA) within the
density-functional formalism' has in recent years been
very successful in determinin~ the structural properties of
a large variety of materials. 2 Within LDA, a number of
first-principles calculation schemes have been developed.
These methods are usually more suitable for one type of
material than others. For example, for simple metals and
semiconductors, ground-state and structural properties
can be calculated accurately and efficiently with the
plane-wave method together with the pseudopotential for-
malism. On the other hand, transition elements in
close-packed structures are more often treated by methods
like Korringa-Kohn-Rostoker (KKR), ' linear muffin-tin
orbital (LMTO), full-potential linear —augmented-plane-
wave (FLAPW), self-consistent local-orbital (SCLO),
and the mixed-basis approach. It is desirable to have a
method of general applicability such that different sys-
tems can be calculated with approximately the same
amount of effort to the same level of accuracy. This will
be important in the long run for more complicated ma-
terials that may contain elements of very different charac-
ters. A recently developed pseudopotential LCAO
schemeio —&2 could prove to be jn this category. Applica-
tions of this method to the ground-state and structural
properties of insulators and semiconductors have been re-
ported. ' ' In the present paper we report the computa-
tion of structural properties of Mo in the 4d and W in the
5d transition series.

Transition metals have been an area of keen theoretical
interest, not only because they are of important technolog-
ical use, but also because they exhibit many interesting
physical properties. An example is the (hcp~bcc~
hcp~fcc) structural pattern across the d series as the d
bands are filled progressively. In recent years, Mo and W
have assumed the stature of "prototypical" transition met-

als and have been used as testing grounds for electronic
and total-energy calculations. Their structural properties
in the ground-state bcc phase have been studied by various
authors. 5's

The structural properties of Mo and W are very similar.
We found that for both elements the bcc structure is the
most stable and the calculated ground-state structural
properties such as lattice constants and bulk moduli agree
favorably with experiments. The fcc and hcp structures
are very close in energy at the volumes considered. At
equilibrium, they are about —, eV smaller in cohesive ener-

gy than the bcc structure. The equilibrium volume of the
bcc structure is about 1—2%%uo smaller than those of the fcc
and hcp structures. The bulk moduli at equilibrium for
the different structures have very similar values.

The remainder of the paper is arranged as follows. The
fully-self-consistent pseudopotential LCAO method is re-
viewed in Sec. II. In Sec. III the total-energy results of
the present calculations are presented. Section IV is a dis-
cussion and summary.

II. METHOD

In the present calculations, a Hamann-Schluter-
Chiang —type pseudopotential was used for Mo and a
scalar-relativistic norm-conserving pseudopotential was
used for the heavier W. The ionic pseudopotentials are
taken (up to 1=2) to be

1

Vio (I ) = Vd(I )+ g [ Vl(r) —Va(r)]
I
1)(1

I

i.e., V, —Vd and Vz —Vd are used as the nonlocal com-
ponents. Atomic pseudocharge densities are superim-
posed to form an approximate crystalline charge density
[p(r)] from which the initial Hartree ( VH ) and exchange-
correlation ( V„,) potentials are generated. These poten-
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tials are decomposed into a linear combination of atomic
effective electron screening potentials which are added to
the bare ionic d pseudopotential to form a neutral local
potential for each atom:

Vi (r) = Vd(r)+ Vz~(p, r)+ V'„, (P,r} .
Since the superposition of atomic charge density p(r) is
usually not far away from the self-consistent charge in the
crystal, a construction like Eq. (2) gives a very reasonable
starting potential for the self-consistency cycles. Both the
local ( V~~) and nonlocal ( Vt —Ve) potentials are short
ranged and they are fitted to Gaussian expansions of the
form

p p2
V(r)= gc;e

This representation allows the use of analytic three-center
integrals in the Hamiltonian matrix elements. An accu-
rate fitting of the potentials is done by a Monte Carlo
simulated annealing scheme. Fitted values of c; and P;
are tabulated in Table I for both Mo and W.

The wave functions are expanded in a LCAO basis set

I P; J which has the form

P;(k, r}= ge "f t (r R r&),— —
0

where the A's are normalization constants. "Kubic har-
monics" (Kt } up to 1=2 (i.e., s,p, d states) are included.
Four decay constants (a) are used for the radial function
for Mo and %. They are listed in Table II and are chosen
to minimize the total energy of the system. The Hamil-
tonian matrix sizes are 40X40 for the bcc and fcc struc-
tures and 80X80 for the hcp structure, which has two
atoms in the unit cell.

The calculations are carried to full self-consistency with
a momentum-space self-consistency scheme that has been
reported elsewhere. ' Fourier components of the overlap
matrices, m;J. (k,G), are evaluated:

—&Or

~„(k,G)=(k j k, i),0,
where 0, is the volume of the unit cell, G are reciprocal-
lattice vectors, and

~
k, i) are the basis orbitals. These

overlap matrices are used directly to compute the charge
density p (and hence the total energy), and the changes of
the Hamiltonian matrix elements at a k point, 5H(k), for
an arbitrary change in the crystal potential 5V (and hence
can be used to update the Hamiltonian matrices as the po-
tentials change during the iteration procedure):

p(G}=g l( „i,Lr(k, G)p„i, (7)
n, k

where i =IImpaI here is a composite index, 0 is the
crystal volume, R is a lattice vector, r is a basis vector,
and f(r) are localized functions of the orm

and

5Hj(k) = y 5 V(G)trJ(k, G)n, .
6

(8)

f I (r)=A t r'e "Kt (e,p), (5) Matrix notation is used in Eq. (7) and g„i, is the eigenvec-

TABLE I. Coefficients {c;},in Ry, and exponential decays (P;), in a.u. , for the Gaussian expan-
sions of local and nonlocal potentials for Mo and %.

V~ —Vg

ct.

V, —Vd

10.538 63
6.949 23
5.373 66
4.002 99
2.699 29
1.957 95
1.601 08
0.31602
0.21308
0.182 95

—56.681 04
619.36904

—1540.361 98
1687.772 18

—1202.844 95
806.323 82

—316.694 02
—6.S64 36

9.808 06
—8.13470

Mo
8.162 84
7.31935
5.125 25
3.817 84
2.70741
1.78472
1.335 72
0.925 80
0.780 31
0.602 57

potential
692.51673

—1370.460 55
2146.79642

—2858.208 53
2281.408 19

—1986.569 41
1758.842 12

—1432.61083
873.30098

—95.557 26

13.384 85
11.199 18
8.392 37
6.102 57
3.831 38
2.456 39
1.797 70
1.17904
1.16147
0.896 98

—124.189 11
430.778 83

—842.869 96
1006.555 79

—1012.738 21
992.787 96

—616.961 47
—32.820 92
193.244 94
—2.358 19

9.035 06
6.396 74
3.142 29
1.749 10
1.214 89
0.76046
0.583 66
0.15097

13.800 84
—40.673 08

74.93994
—41.41621
—0.202 19

7.297 65
—13.073 34
—1.427 59

8.565 88
6.54696
5.34076
3.298 37
1.748 79
1.038 19
0.605 12
0.422 55

% potential
—19.858 61

32.976 56
27.763 17

—93.693 18
S8.82907

—30.84609
32.764 30

—5.18086

17.733 92
12.83648
7.1S3 12
3.925 57
2.328 97
1.420 58
0.805 60
0.59640

15.722 57
—39.971 96

65.01693
—76.877 85

26.182 19
—26.795 04

59.122 22
—16.443 17
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TABLE II. Exponential decays {o,) for the Gaussian radial
functions of the LCAO basis set. [See Eq. (5).]

Element

-291.9

Mo
W

4.50
3.00

1.59
1.22

0.56
0.49

0.20
0.20

-292.1

tor in the basis space corresponding to a wave function.
There is no need to ftt the potential to Gaussians during
the iteration procedure and the final self-consistent poten-
tial has no special shape constraint. Smith et a/. have

used a similar approach in their SCLO method for
transition-metal surface calculations.

The many-electron interactions are treated with the
local-density approximation using the Hedin-Lunqvist
exchange correlation for Mo and the Wigner interpolation
formula for W. For both Mo and W, there is nontrivial
overlapping of the core electrons with the valence d elec-
trons, and the nonlinearity of the exchange-correlation in-
teraction between them is treated by the "partial core"
technique. Uniform grids of 47 k points in the irreduci-
ble portion of the Brillouin zone were used for the bcc and
fcc structures and 50 k points were used for the hcp
structures. Gaussian weighting in the occupancy of the
electronic states near the Fermi energy was used to in-
crease the stability of the total energy with respect to the
number of k points sampled. Iterations were carried out
until the Fourier components of the potentials were self-
consistent to at least 0.1 mRy. By then, the total energy is
stable to within 1D eV. Cohesive energies are obtained
by taking the difference between the total pseudoenergy
for an atom in a bulk environment and the corresponding
total energy of the isolated pseudoatom in its ground state
with a correction for spin-polarization energy calculated
from the energy difference between spin-polarized and
nonpolarized all-electron atomic calculations.

E
O
CQ

-292.3—
ID

Q)
C)
C

-292.6

fcc

-292,7

-282.8
86 116

The fcc structures are slightly more stable if the hcp
structures have ideal c/a ratios of ( —,')'~. The small
difference in energy is not surprising as the two structures
have the same first- and second-nearest neighbors. We
made an estimate of the change of the total energies of the
hcp structures, as the c/a ratios are changed by comput-
ing the total energies at different c/a ratios at some fixed
atomic volumes. For W, the c/a ratio is changed and the

I I I I I

80 96 100 106 110

Volume (a.u. )

FIG. 1. Total energy {in the pseudopotential formalism) of
Mo as a function of atomic volumes for bcc, fcc, and hcp (with
ideal c/a ratio) structures. The solid lines are Murnaghan equa-
tions of state fitted to the calculated points.

III. RESULTS

The total energy (in the pseudopotential formalism) of
Mo and W at various atomic volumes close to the experi-
mental volumes are calculated for the bcc, fcc, and hcp
structures. For the hcp structure, we have assumed an
ideal c/a ratio of ( —, )'~ =1.63. The total (pseudo) ener-

gies are plotted against atomic volumes for Mo and W in
»gs. 1 and 2, respectively. The solid lines in the figures
are Murnaghan equations of state ' fitted to the calculated
points. The equilibrium volumes, bulk moduli, and total
energies at equilibrium for various structures are deter-
mined by the Murnaghan fits and are tabulated in Table
III. From Figs. 1 and 2, it can be seen that the equations
of state for W and Mo have many similar features:

(1) Body-centered cubic, the structure observed in na-
ture, has the lowest energy in the calculation for all
volumes calculated. The cohesive energies decrease in the
order E„h &E "h-E,"g. At equilibrium, the fcc struc-
tures have total energies of about —,

' eV above the bcc
structure (0.55 eV for W and 0.41 eV for Mo).

(2) The fcc and hcp structures are very close in energy.

-273.7

-273.8

0 -274.1

-274.3
tD

UJ

-274.6

-274.9
85 115

\ I

90 95 100 105 110

volume (a.u. )

FIG. 2. Total energy {in the pseudopotential formalism) of %
as a function of atomic volumes for bcc, fcc, and hcp {with ideal
c/a ratio) structures. The solid lines are Murnaghan equations
of state fitted to the calculated points



CHAN, VANDERBILT, LOUIE, AND CHELIKOWSKY 33

TABLE III. Structural properties of Mo and %' in bcc, fcc, and hcp structures. The hcp structures

have ideal c/a ratios of ( —, )' . The total energy (E„„~),equilibrium atomic volume ( Vo), and bulk

modulus (80) are obtained by fitting to Murnaghan equations of state.

E„„I (eV)
E —E (eV)

Vo (a.u. )

80 (Mbar}

bcc

—292.782
0.0

99.72
2.78

Mo
fcc

—292.375
0.41

101.08
2.59

hcp

—292.368
0.41

101.20
2,72

—274.837
0.0

103.39
3.33

fcc

—274.289
0.55

105.38
3.07

hcp

—274.236
0.60

104.92
3.18

total energy computed at the experimental volume (which
is within 1% of the equilibrium volume of the hcp struc-
ture at the ideal c/a ratio). At that volume, the total en-

ergy is found to be lowest at c/a=1.78 and the energy is
lowered by 0.055 eV/atom. Thus, at the experimental
volume, the hcp structure has virtually the same energy as
the fcc structure if the c/a ratio is optimized. For Mo,
we found that the changes in energy for different c/a ra-
tios are very small near the ideal ratio. At both the exper-
imental volume (105.463 a.u./atom) and the equilibrium
volume of the hcp structure at the ideal c/a ratio
(101.204 a.u./atom), the total energy changes by less than
0.01 eV/atom within 5% of the ideal c/a ratio. The
structural energy difference per atom between the fcc and
hcp structures for Mo at equilibrium is also only about
0.01 eV. %e may conclude that near the bcc experimental
volumes, the hcp and fcc structures for both elements are
indeed very close in energy.

(3) The fcc structure has an equilibrium volume slightly
larger than that of the bcc structure. The equilibrium
volumes for the fcc and hep (with ideal c/a ratio) struc-
tures are almost the same.

(4) The bulk modulus for W and Mo in different struc-
tures does not change very much.

The structural properties of bcc Mo and W are com-
pared with experimental data in Table IV, and the agree-
ment is good. Cohesive and structural properties of Mo
and W in the bcc structure have been calculated accurate-
ly from first-principles within the local-density approxi-
mation (LDA) by a number of authors in recent years.
Examples are Moruzzi et al. , Zunger and Cohen, Fu

4.9—

c. 47 — ~ fcc I~s
bcc

4'5 094
I l

0.96 0.98 1.00
I

1.02

and Ho's for Mo, and Zunger and Cohen, Bylander and
Kleinman, ' and Jansen and Freeman for W. In par-
ticular, Jansen and Freeman have carefully studied W in
bcc and fcc structures and found, in agreement with the
present calculation, that the fcc structure has a slightly
larger equilibrium volume and smaller bulk modulus.
Our calculated structural energy difference of 0.55 eV is
slightly larger than the 0.46 eV found by Jansen and Free-
man. Our results for both Mo and W also agree well with
that of Skriver (as estimated from Fig. 11 of Ref. 32),
who calculated the structural energy differences at experi-
mental volumes. To the best of our knowledge, the equa-
tions of state of Mo and W in the hcp structure have not
been calculated from first principles before.

In Fig. 3, the Mulliken d populations 3 of Mo and W
are plotted as a function of the Wigner-Seitz radius in
units of the experimental radius. The hcp structures have
ideal c/a ratios. The change in the Mulliken populations

INO

TABLE IV. Comparison of calculated ground-state proper-

ties of Mo and % in the bcc structure (lowest-energy structure)

with experimental results. Experimental values are quoted from

C. Kittel [Introduction to Solid State Physics (Wiley, New York,

1976)]. 4.9 L I I

0 94 &.&6 0.9S
Rws

1.00 1.02

S~~

bcc

0
Lattice constant (A)
Cohesive energy (eV)
Hulk modulus (Mbar)

Theo r.

3.09
7.14
2.78

Expt.

3.15
6.82
2.73

Theo r.

3.13
9.79
3.33

Expt.

3.16
8.90
3.23

FIG. 3. Mulliken d populations for Mo and %' in different
structures as a function of R~s, the ratio of the signer-Seitz
radius at a particular volume to that of the experimental
volume. The hcp structures have ideal c/a ratios.
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for different c/a ratios of the hcp structure is found to be
very small at the experimental volumes. Although the
Mulliken populations do not correspond directly to exper-
imentally measurable quantities, it is interesting to ob-
serve the trends. Similar trends are found for Mo and W.
For both elements, the d population increases as the
volume decreases. This is because when the volume de-
creases, the increase in the kinetic energy of the d elec-
trons is slower than that of the lower-angular-momentuin
states, thus causing electron transfer into the d states.
The change in the s populations is small (most of the s
states are low in energy compared with the Fermi energy),
so the increase of d populations is mainly at the expense
of the p electrons. The fcc and hcp structures have very
similar populations, as expected. We also see from Fig. 3
that, for the same structure, Mo has higher d populations
than %.

Friedel, Deegan, Dalton and Deegan, and
Pettifor have suggested that the structural trends across
the transition-metal series can be explained at least semi-
quantitatively by the difference in the sum of band ener-
gies. The density of states (DOS) of the bcc structure of
transition metals has a well-known double-peak structure.
For elements like Mo and W that have nearly half-filled
bands, the Fermi energy is near the minimum between the
two peaks in the DOS of the bcc structure, and thus the
sum of band energies is lower in the bcc than in the fcc
structure. This DOS effect accounts qualitatively for the
stability of the bcc structure for elements near the middle
of the transition series. Recently, Skriver has calculat-
ed the crystal structure (at the experimental volumes) of
nearly all 3d, 4d, and Sd elements using the difference in
band energies to approximate the structural energy differ-
ences. Within the linear muffin-tin orbital (LMTO) and
Anderson force-theorem framework used by Skriver, the
structural energy differences are assumed to be well ap-
proximated by differences of the sum of eigenvalues if
"frozen" potentials (potentials that are not self-
consistently relaxed) are used for various structures. It is
interesting to see if the DOS effect is the determining fac-
tor in the relative stability of fcc and bcc structures in a
self-consistent calculation. If this is the case, the differ-
ence in the sum of eigenvalues should be approximately
equal to the difference in total energy for the two struc-

~ws

1.02
1.00
0.98
0.96

~Etotal

0.37
0.39
0.41
0.43

5(ge; )

0.62
0.64
0.66
0.69

~Etotal

0.50
0.54
0.57
0.60

5(g~; )

0.63
0.67
0.73
0.7S

TABLE V. Comparison of the difference in total energy be-
tween the fcc and bcc structures with the corresponding differ-
ence in the sum of electronic eigenvalues. All energies are in eV.
A~s is the ratio of the %igner-Seitz radius to that at the experi-
mental volume.

fcc-bcc
Mo

tures. %e note that whereas the total energy does not de-

pend on the "zero" of the crystal potential, the eigen-
values (and hence the sum of the eigenvalues) do depend
on the average of the potential. Hence, we start from the
same initial potential [Eq. (2)] for various structures and
during the iteration to self-consistency, the 6=0 com-
ponent of the potential is left unchanged. The average po-
tentials for different structures at the same volume are
thus equal. In Table V, the differences in the total energy
and in the sum of eigenvalues for the fcc and bcc struc-
tures are compared. For both Mo and W, the differences
in the sum of eigenvalues do have the same sign as the
differences in the total energy. However, they differ in
the absolute magnitude. Thus, within the present self-
consistent approach, the sum of band energies correctly
shows that the bcc structure is favored over the fcc struc-
ture, but it overestimates the differences in structural en-
ergies.

IV. DISCUSSION AND SUMMARY

An accurate determination of the relative stability of
different phases for transition metals is challenging be-
cause the difference in structural energy is usually small
(a few percent) compared with the cohesive energy, which,
in turn, is small compared to the total energy. However,
the determination is shown to be within reach of the
local-density-functional calculations. For example, the
ground-state phases are found successfully32 using the
LMTO method for most of the transition elements in the
Periodic Table. In the present calculations, the bcc struc-
ture is found correctly to be the ground-state phase for
Mo and W. The calculated structural properties are in
very good agreement with experimental data. Although
the, structural energy differences for W and Mo are more
than an order of magnitude smaller than the correspond-
ing cohesive energies, we still have reason to believe that
they are accurate. For cohesive energies, we are compar-
ing energies for atoms in bulk and isolated environments,
and LDA's are not equally accurate in these situations.
There are also convergence problems in bulk calculations,
such as the completeness of the basis employed and num-
ber of k points sampled. However, for similar structures
in the bulk environment, like bcc, fcc, and hcp structures,
these errors should cancel to a large extent and relative en-
ergies, though small, should be meaningful. Support for
this assertion may be found in the fact that the structural
energy differences calculated with different methods agree
fairly well with each other. For example, our results agree
with those obtained with the use of fully linearized
augmented-plane-wave (FLAPW) calculation.

In summary, the present calculations, which incorpo-
rate full point-to-point self-consistency, show that the
pseudopotential LCAO scheme can discriminate between
energy differences among various structures for transition
metals. This gives us the ability to perform structural
phase studies.

Note added. Since submission of this paper, two linear
augmented-plane-wave calculations of the structural prop-
erties of Mo and W have been published. Wei, Krakauer,
and %einert treated % in bcc structure and Mattheiss
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and Hamann calculated the structural properties of Cr,
Mo, and W in both bcc and fcc structures.
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