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%'e present a general self-consistency procedure formulated in momentum space for electronic
structure and total-energy calculations of crystalline solids. It is shown that both the charge density

and the change in the Hamiltonian matrix elements in each iteration can be calculated in a straight-
forward fashion once a set of overlap matrices is computed. The present formulation has the merit

of bringing the self-consistency problem for different basis sets to the same footing. The scheme is

used to extend a first-principles pseudopotential linear combination of Gaussian orbitals method to
full point-by-point self-consistency, without refitting of potentials. It is shown that the set of over-

lap matrices can be calculated very efficiently if we exploit the translational and space-group sym-

metries of the system under consideration. This scheme has been applied to study the structural and

electronic properties of Si and %, prototypical systems of very different bonding properties. The re-

sults agree well with experiment and other calculations. The fully self-consistent results are com-

pared with those obtained by a variational procedure [J. R. Chehkowsky and S. G. Louie, Phys.
Rev. 8 29, 3470 (1984)). We find that the structural properties for bulk Si and W (both systems

have no interatomic charge transfer) can be treated accurately by the variational procedure. Howev-

er, full self-consistency is needed for an accurate description of the band. energies.

I. INTRODUCTION

The local-density approximation (LDA), in the
density-functional formalism, ' has been very successful in
treating the electronic and structural properties of a wide
variety of solid-state systems. Within the LDA, there are
several popular approaches in solving the effective one-
particle Kohn-Sham equations. Examples are the plane-
wave (PW}, the linearized augmented plane-wave
(LAPW), the linear muffin-tin orbital (LMTO), the linear
combination of atomic orbitals (LCAQ), and the mixed-
basis methods. These approaches mainly differ in the
basis set chosen to expand the crystalline wave functions.
The efficiency of each method is dependent on the sys-
tems under consideration. For example, the PW method,
together with the ab initio pseudopotential approach, has
been proven very successful with simple metals and semi-
conductors. Methods like APW, LAPW, and LMTO are
more frequently applied to transition elements and sys-
tems with closed packed structures. Another commonly
used approach is the LCAO method which has the feature
of using a basis set that is "physical". Thus usually only
a relatively small number of basis functions (per atom) are
needed for the wave function. This yields a small Hamil-
tonian matrix, a crucial factor in electronic structure cal-
culations for complex structure materials. The method is
versatile and can be applied to a large variety of systems.
Ever since Lafon et al. and Langlinais and Callaway
formulated the LCAO method in a first-principles
fashion, the method has become an increasingly popular
computational tool.

However, the LCAO method, as with the other

methods, is not without difficulties. One common diff-
icult is that iteration to self-consistency in the screening
potential is a tedious procedure. Calculation of the elec-
tronic charge density in real space (which is the central
qiumtity in the density-functional formalism} is usually
computationally extensive as the charge density has to be
constructed from the eigenfunctions in every iteration.
Moreover, to make the calculations tractable, the charge
densities or the potentials are usually fitted to Gaussians
in every iteration. An accurate flt is in general not easy.
Despite the fact that various techniques have been
developed, the final result is inevitably influenced by the
quality of the fit. Unless great care is taken, fitting the
charge densities or potentials to Gaussians limits the accu-
racy of the calculation because an artificial form restric-
tion is imposed. Some of these difficulties have been cir-
cumvented by Smith, Gay, and Arlinghaus in their self-
consistent local orbitals (SCLO) scheme in treating the
electronic structure of transition metal surfaces. There
are no explicit constraints on the shape of the final self-
consistent potential in their method.

Recently, Chelikowsky and Louie have developed an
ab initio pseudopotential LCAO method, which has been
applied to several prototypical systems, mainly involving
the sp electrons. The present paper is to present a scheme
that will extend this method to full point-by-point self-
consistency. The approach has the following desirable
features.

(i) The calculation of the charge density in real or
Fourier space is rather straightforward.

(ii) No fitting of the screening potential or charge is
needed during the iteration process.
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(iii) The crystal potential has no shape constraint.
(iv} There is no need to recompute fully the Hamiltoni-

an matrix elements in every iteration. Only the changes in
matrix eleinents as a result of the changing potential are
computed and they can be obtained without evaluation of
any three-center integrals.

The present scheme should be applicable to the self-
consistency iteration for an arbitrary chosen basis set. It
thus has the merit of bringing the self-consistency prob-
lem for different basis sets to the same footing. In the
specific application to the LCAO basis set, the scheme in
part resembles that of Smith, Gay, and Arlinghaus. The
key feature of both methods is the introduction of a set of
overlap matrices (which have beaut defined in various
forms before; see, for example, Ref. 3). There are, howev-

er, differences. In our method the overlap matrices are
used to calculate both the charge density and the change
of Hamiltonian matrix elements while they are used only
for the latter by Sinith et al. The major problem of this
formulation is that the computation of these matrices are
not easy in general. We will show that for many systems,
both surface and bulk, the evaluation of these matrices
can be greatly simplified by a factorization scheme. The
method can treat both bulk and surface problems (using a
supercell) and can calculate electronic structure as well as
total energy.

The remainder of the paper is organized in the follow-
ing way. The general formalism is presented in Sec. II.

Section III presents examples to which this method is em-

ployed. Section IV is a discussion and summary.

II. FORMALISM

A. Self-consistency scheme

Within the framework of the density-functional
theory, ' the basis problem in electronic structure calcula-
tions is to solve the set of Kohn-Sham equations self-
consistently:

( —t ~'+ V-+ Va+ V-)tt. i =&.i trodi

p(r
n, k

where V;,„ is the external potential due to the ions, VH is
the Hartree potential, V„, is the exchange-correlation po-
tential, n and k are band and k-point indices, respectively.
In almost all total-energy calculations, the local-density
approximation is used for V„,. Various functional forms
of local V„, have been proposed, ' and they have been
shown to yield similar results for electronic properties.

Once (1) and (2) are solved self-consistently, the total
energy of the system can be determined using

1 3 3 3
Etotai = +&nit f VH(Pin)Pout ti r+ t VH(Pout)Poutd r Vxc(Pin)Poutd r+ +xc(Pout)Poutd r+Eion ion ~

n, k
(3)

where e„, is the exchange-correlation energy density and

E;,„;,„ is the electrostatic interaction energy among the
bare ions.

Here we distinguish between input (p;„) and output

(p,„,) charge densities. They should in principle be equal
if the charge density is fully self-consistent. However, in
practice, a small (but controllable) difference is inevitable
due to the fact that Eqs. (1) and (2) have to be solved
iteratively. Formulating the total energy as in Eq. (3}
guarantees that the energy is a functional of the output
charge density only, with no explicit dependence on the
input charge density. This procedure gives better results
since E [p) is a variational minimum for the correct p, as
emphasized in Ref. 6. It has been shown that in some
cases, 6's self-consistency iterations can be avoided while
state-of-the-art accuracy is obtained if Eq. (3) were used.

Nevertheless, there are many problems of interests, such
as surfaces and chemisorption systems, in which the self-
consistency of the electronic screening potential is impor-
tant and demanding. It is thus desirable to have a scheme
which can handle self-consistency accurately and effi-
ciently. For the same system under consideration, the
amount of labor needed in achieving self-consistency
varies with the basis set used. As has been mentioned in
the Introduction, achieving self-consistency in the LCAO
approach is usually more tedious when compared with
basis sets like plane waves. %e show in this section that a

I

general self-consistency scheme can be formulated in
which most of the computation labor (besides the diago-
nalization of the Hamiltonian matrices) can be
transformed to the computation of a set of overlap ma-
trices. The scheme is formally independent of the basis
set chosen. It is only the evaluation of the overlap ma-
trices themselves that depends on the basis set. It will be
shown in the next section how these overlap matrices can
be computed for specific different basis sets, in particular
for the LCAO basis set.

For a crystalline solid with a set of reciprocal-lattice
vectors IGI and a set of Bloch functions ItI};(k,r}I
chosen as the basis functions to expand the electronic
wave function f:

g„i,(r) = g c;(n, k)((};(k,r),

where i is a general composite index, Eq. (1} becomes a
generalized eigenvalue problem:

HQ=ESQ .

The Hamiltonian matrix is given by

H,J(k)=(k, i
~

——,'7 +V;,„+VH+V„, ~k,j), (5a)

SJ(k)=(k, i
~
k,j)
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is the usttttl overlap matrix.
~
k,i ) here denotes )}{;(k,r).

The solution of Eq. (5) gives the eigenvectors ttt, for each

n and k, in the basis space in the form of a column ~ector
with the c s as components. (We assume that the basis

set chosen is fixed and does not change with iterations. }
Most of the labor associated in achieving point-by-point

self-consistency in the electronic screening potential can
be transformed into the computation of a set of overlap
matrices II;J(k,G) which are defined by the equation

or forinally in matrix notation as

p(G) = g tt„gll(k, G}g„i, . (9a)

Note that in many electronic structure calculations,
charge densities are computed in every iteration with the
same amount of effort using (7). Now that if Il,j(k,G}
have been computed and stored, the charge density can be
simply evaluated using (9) for every iteration. For a
LCAO-type basis set, the dimension of the II,J(k,G) is
usttally small and thus making the calculation of charge
density particularly simple. In particular, if pseudopoten-
tials are employed, the wave functions are nodeless. The
charge density is smooth and can be reprmnited very ac-
curately by using a reasonably small cutoff in Fourier
space.

After obtaining the charge density in Fourier space
from Eq. (9}, the electron screening potentials may be
computed in the usual way. The Hartree potential is
straightforwardly given by

V (G)
Ss'p(G)

H

where Q, is the volume of the unit cell. The II,J(k,G)
matrices are completely determined by the basis set and

the reciprocal lattice. These matrices have the same di-

mension as the Hainiltonian matrix.
The total charge density p(r) is

p(r)= g gc;(n, k)cj (n, k)P;(k, r)P~ (k,r),
s, lr. i,j

and its Fourier components, p(G}, defined by

p(r) = g p(G)e' ',
6

are then, using (6},given by

p(G) = g g c;(n, k)c&'(n, k)II&J(k, G),

5 V =5Voutput 5Viuput ~

the change in Hamiltonian matrix elements,

5H; J( k) = ( ki, (
5V

~
k,j),

is then given by

5H J(k)= /5V(G)II, '(k, G)n, .

(12}

(14)

lA
t nk

—'nk &nk

Vo„t
= V(Pl

Pi V = Vout Vin

Hence the corrections to the Hamiltonian matrix for the
next iteration can be expressed simply in terms of
II;;(k,G) and computed easily. Other than errors due to
incompleteness of bases or a finite G space, the formula-
tion here is exact within the LDA. There is no need to re-
fit the charge density or the potential, and there is no
form constraint on the screening potential, even if a
LCAO-type basis set is used. As long as the II;J(k,G)
matrices can be calculated, the iterative procedure is
greatly simplified. The iteration procedure is illustrated
schematically in Fig. l.

In practice, the 5V in Eq. (12), defined as the difference
between output and input potential, is damped to ac-
celerate convergence by anticipating electron-screening
effects. A popular method is to assume Thomas-
Fermi —type screwing; then

5 V'(G) =
1+A,'/6' (15}

where A, is the Thomas-Fermi screening wave vector, and
5V' instead of 5V is used in Eq. (14}. More sophisticated
approaches like Broyden's method' or the dielectric ma-

trix scroming scheme" can further accelerate conver-

gence.

and the exchange-correlation potential, in the LDA by SH;I(k) =g T);}(k, G} SV"(6)

The charge density in real space can be computed from
p(G) either directly from (8) or more effectively by using
fast-Fourier-transform techniques. Likewise, V„, can be
transformed to V„,(G) by fast Fourier transforms.

Defining the difference between the input and output
potentials as

H = H'"+ BH

FIG. 1. A schematic chart of the self-consistency procedure
using the m matrix.
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B. Evaluation of 0;J matrix

In this section, the general form of the II;J(k,G) ma-
trices will first be given. It will then be shown that for
both plane-wave and LCAO (with Gaussian orbitals) basis
sets, it reduces to simple analytic expressions and can be
evaluated efficiently by exploiting the symmetry of the
system.

We express an arbitrary basis set of Bloch functions in
an expansion of plane waves,

(16)

xf,'(k+G' —G), (22)

where

where 0 is the crystal volume, R is a lattice vector, ~; is a
basis vector, and f; is a localized function. Using (21), the
Il,&(k,G) in Eq. (6) becomes

—iG-v.

Ilia(k, G) = 0

Then the II,&(k,G} matrices, as defined by Eq. (6), have
the general form:

f(k+G) f e
—i(k+G) rf (r}dr3

Q,
(23)

II~)(k, G}= g p;(k+G')pj'(k+G' —G) .
c G'

(17)

11,,(k, G) =IIG.,-(k, G) =sG, .G, (18)

which is independent of k and trivially simple in this spe-
cial case. The charge density and the change in matrix
elements are just, using (18) in (9) and (14),

and

p(G) = g g gi, +6 (n, k)Pi', +6 o(n, k),
n, k 6'

(19)

For a plane-wave basis set, (!} s are plane waves them-
selves and so the index i labels a G vector. The Fourier
coefficients in Eq. (16) are just Kronecker deltas so that
Eq. (17}reduces to

is the Fourier transform of the atomiclike orbitals. 0, is
the atomic volume and Q, is the unit-cell volume.

If Gaussian orbitals are used for the radial part of the
atomiclike functions, as is frequently the case, analytic ex-
pressions exist for fi(k+G). For example, we can take
f(r) tobe

(24)

where A i are normalization constants. Suppose that
the Xi 's (up to l=2) have the form Il, x,y, z,xi,
y,z,xy,yz, zxI and the function f(r) is normalized ac-
cording to

ff(r) d r=l, (24a)

5HGGi =5V(G —G') (20} then A~i~ is given by

iI};(k,r)= ge ' f;(r R r;), — —
0 R

(21)

The present formalism thus reduces Eqs. (9) and (14) to
the usual expressions in the plane-wave representation.

For a LCAO basis set in general, we have a Bloch sum
of atomiclike orbitals localized on the atomic sites of the

rm:

1/2

(24b)

where n, ,n„,n„are the powers of x, y, and z, respec-

tively, in the Kubic harmonics.
%riting out the composite indices i and j explicitly,

II,J(k,G) then has the form

—i G.r —&G{ —v )1

,ipi' '(k G}—~ i ~p~p ' ye g [I (k +G }Ip (k +G G )]Iamb m ~ em m (25)

where
1/2

I«(g) =(2iV a) "H„(g/2v a) — e
a

(25a)

with H„being a Hermite polynomial of order n, %e note
that the i and j indices for II,J(k,G) have been used as
general indices, while in (25), i and j are specifically site
indices, a and P are indices for Gaussian decay constants,
and lm and l'm' are angular momentum indices for the
localized functions.

Great savings can be achieved if the system has a unit
cell (not necessarily primitive) that is orthorhombic. Ex-
amples are sc, fcc, bcc, diamond, hcp structures and so
forth. In that case, the summations over G' in Eq. (25)
are separable into individual x,y,z components and thus
reduce the computation efforts significantly.

We first consider the simplest case in which the primi-
tive unit cell is orthorhombic. In this case, the
reciprocal-lattice vectors G have the form
G—m i bi +m 2b2+ m 3bi, where (i) bi, bi and 13 are mu-
tually orthogonal and (ii) m i,m2, and m 3 are arbitrary in-
tegers. It is easy to see then the sum over t G') on the
right-hand side of Eq. (25) factorizes into the form
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$[ ]= $( ~ ~ ) y( ) y(. ) . (26)
G Gx G„ Gg

5H, (k)= g 5V(G, )II,'P(k, G, )' 0, , (32)

X-X+ + X
6 IGi) f&, I

(27)

and the individual subset summations are factorizable.
For example, for a crystal with fcc lattice in real space,
the G's can be partitioned into two subsets of G's which
form two interpenetrating simple cubic sublattices. This
is illustrated schematically in Fig. 2 for a two-dimensional
reciprocal lattice.

Both the computational effort and storage for the
II,J(k,G) matrices can be further reduced by applying
group theory. Let I R

f ra I be the space group of the sys-
tem, where ill is a point-group operation and ~it is the as-
sociated nonprimitive translation vector. It is not difficu-
lt to show that Eq. (9) can be rewritten as

p(G)= g g gc;(n, k)c&'(n, k)
kGIZ fj

, (28)

so that we just need to consider the k points in the irredu-
cible wedge of the Brillouin zone (IZ). Furthermore, if we
define a set of symmetrized II@'(k,G) matrices by

11',I (k,G)=+11,j(k,z-'G)e ' '", (29)

then, Eq. (28) becomes

p(G)= g gg„i,II'" (k, G)g„i, .
kGIZ n

(30)

Also, we need only to calculate p(G) for a prototypical G
in every star of the set of G's. The charge density for
other G's in the same star can be generated by

p(R 'G) =e "p(G) . (31)

Similarly, Eq. (14) is simplified to

0 0
~ ~

~ ~
0 ~

~ 0
~ 0

~ ~
0

0 ~

0
0

0

0

0

~ ~

~ +
0
0

!c,

FIG. 2. Example of partitioning a set of two-dimensional 6
vectors into two disjoint subseis, each of @which is primitive
orthorhombic.

We basically reduce a N summation problem to a N'
summation problem, a huge saving if the number of G
vector is 1arge.

For a crystal structure that has an unit ce11 orthorhom-
bic but its primitive unit cell not (e.g., bcc and fcc), it is
always possible to partition the IGI into a finite (and
us~Hy small) number of disjoint subsets I G;I, each of
which satisfies conditions (1) and (2) above. Then, we
have

where the sum is over the stars of G vectors (not the indi-
vidual G) and G, on the right-hand side of Eq. (32) is a
prototypical G vector (one for each star) for a given star.
Ng is the number of G vectors in a star of G vectors and
N is the order of the space group. Hence, we see that one
needs only to calculate and store the symmetrized
Iltf (k,G, ) matrix for k points in the IZ and for one G,
in each star.

We have here illustrated the evaluation of the II,J(k, G)
matrices for LCAO's and plane waves. It is clear that a
mixed basis, ' which contains both plane waves and
Gaussian orbitals can similarly be treated by the above
Ilt&(k, G) approach. The present approach will also im-
prove the efficiency of obtaining self-consistency.

III. APPLICATION TO Si AND %'

The present self-consistent scheme is applied to extend
the pseudopotential LCAO method in Ref. 6 to full
point-by-point self-consistency. This approach, which
utilizes linear combination of Gaussian orbitals and the
variational property of the total energy functional, has
been applied to treat the cohesive and structural properties
of several insulators, semiconductors, and transition met-
als. We demonstrate in this section the effects of self-
consistency on the band structure and cohesive properties
of two prototypical systems: Si and W. These two sys-
tems were chosen because of the availability of self-
consistent calculations that we can compare results with
[e.g., for Si (Refs. 13 and 14), and for W (Refs. 15—17]
and also because of their different bonding characters (Si
being a covalent semiconductor and W a transition metal),
which should test the versatility of the present scheme.

For Si, the calculation procedure can be summarized as
follows.

(i) The norm-conserving ionic pseudopotential is gen-
erated by the method of Hamann et al. '

(ii) The atomic pseudo-charge-density (corresponding to
an sp3 configuration) is superimposed to form a crystal-
line charge density from which the input Hartree and
exchange-correlation potentials are generated. The
Hedin-Lundqvist form of local exchange-correlation po-
tential is used.

(iii) The ionic pseudopotential for 1=2 ( Ve) is used as
the local potential. It is screened by the Hartree and
exchange-correlation potentials. The screened local poten-
tial is then fitted to a set of Gaussians centered on the
atomic sites. The nonlocal potentials ( V, —Ve and

V~ —Vd) are also fitted to on-site Gaussians. The fittings
are done by a Monte Carlo simulated annealing minimiza-
tion method. '

(iv) A LCAO basis set of the form (21) is employed to
expand the wave function with radial functions of the
form (24) for the atomic orbitals. Kubic harmonics up to
1=2 (i.e., s,p, d orbitals) are used for the angular part and
three Gaussian functions with exponential coefficients
a=0.202, 0.758, and 2.837 are used for the radial part.
The o. s are determined by minim. izing the total energy.
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(v) Ten special k points in the irreducible Brillouin

zone are used in calculating the charge density. The total
energy is computed using Eq. (3). Lattice constants,
cohesive energy, and bulk modulus are then obtained by
fitting the total energy versus volume curve to the Mur-

naghan equation of state. ' (Eight points are used). These
procedures give us the cohesive properties of Si as report-
ed in Ref. 9. The calculation at this stage is not fully
self-consistent and the accuracy of this method depends
on the fact that the total energy is variational with respect
to the charge density. This procedure can be considered
as a variational approach. This terminology will be used

in this paper for the purpose of contrasting to the fully
self-consistent results of the scheme described in Sec. II.
The variational approach may be regarded as a one itera-
tion calculation done in a very careful way.

(vi) The problem is done fully self-consistently using
the present self-consistency scheme as depicted in Fig. 1.
We stop iterating when the Fourier components of the

output and input potentials have a maximum difference
of less than 10 Ry. (This is achieved typically by 3—5
iterations).

We can now compare the variational (or one step) and
the fully-self-consistent results. In Table I, the cohesive
properties are given. The band structures are plotted in
Fig. 3. The solid lines in Fig. 3 correspond to the fully-
self-consistent results and the dashed lines correspond to
the variational results. Band energies at high-symmetry k
points calculated by the pseudopotential plane-wave (PW)
method are also marked (as dots) in Fig. 3 for compar-
ison. These PW band energies are calculated with a very
high plane-wave energy cutoff of 21.5 Ry. The band ener-
gies at high-symmetry k points from the present calcula-
tion are listed in Table II. They are also compared with
the results from a highly converged (energy cutoff of 21.5
Ry) and a not-so-well-converged (energy cutoff of 5 Ry)
PW calculations.

From Table I, we see that the cohesive properties are al-
most unchanged by self-consistency except for a small in-
crease in cohesive energy as expected. However, Fig. 3
shows that the band structure does change as full self-
consistency is included. This is not surprising since there
is no variational principle for the individual Kohn-Sham
eigenvalues. Comparing with the PW band energies in
Table II and Fig. 3, we note that the self-consistent band
structure agrees very well with the high-cutoff PW result.
The Hamiltonian matrix of the LCAO calculation
(60X 60) is approximately the same size as the low-cutoff
PW calculation but is substantially smaller than that of
the converged high-cutoff PW calculation (-450X450)

Lattice constant (A)
Bulk modulus (Mbar)
Cohesive energy (eV)

5.35
1.15
4.9

5.35
1.16
5.0

5.43
0.99
4.63

TABLE I. Structural and cohesive properties of Si obtained
by variational and fully self-consistent LCAO methods. Experi-
mental values are quoted from Ref. 13.

Fully
Variational Self-consistent Experiment

Ll

0-

-8

-IO

-l2

A I X U, K

Wove Vector

FIG. 3. Band structure of Si calculated by the full self-
consistent LCAO approach (solid lines) and the variational
LCAO approach (dashed lines). The band energies from a
21.5-Ry cutoff plane-wave calculation (Ref. 22) are marked as
dots at points I, X and I..

despite the fact that Si is one of elements that should be
very efficiently treated by plane waves. For more local-
ized systeins such as those involving C, the self-consistent
LCAO method is even more practical. The valence-band
energies of the variational approach differ only slightly
from the fully self-consistent results. The changes are
more pronounced for the conduction bands. Coinparing
with the band energies of the low-cutoff (5 Ry) plane-
wave calculation in Table II, it is fair to say that even the
band structure of the non-self-consistent variational calcu-
lation is better than the low-cutoff self-consistent plane-
wave results.

The sensitivity of the result with respect to the choice
of the radial exponential coefficients are also tested. In
Tables III and IV, we compare the structural properties
and band structure of Si calculated using three decay con-
stants a=(0.202,0.758,2.837) and four decay constants
a = (0.2,0.41,0.85,1.75). The change is indeed rather small
except for a slight increase in the cohesive energy for the
more complete basis set.

In Table I, we note that the lattice constant is about
1.5% too small compared with the experimental value
whereas PW calculations' have shown an agreement of
better than 1%. This is partially due to the fact the
Hedin-Lundqvist exchange-correlation potential is used in
the present calculation while the Wigner exchange-
correlation potential is used by Yin and Cohen. ' Using
the Wigner form consistently gives a larger lattice con-
stant and a smaller cohesive energy (both of which would
improve the present results compared with experiment. )

Another difference is that we have used the d ionic pseu-
dopotential as the local potential whereas Yin and Cohen
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TABLE II. Comparison of band energies {in eV) of Si obtained by LCAO and plane-wave {P%'}{Ref.
22) methods.

r,.
I iso
I is

Variational
LCAO

—11.73
0.0
3.00
3.35

Fully
self-consistent

LCAO

—11.99
0.0
2.53
3.21

PW
E„,=21.5 Ry

—11.91
0.0
2.55
3.28

p%'
Ecut=5 Ry

—11.21
0.0
2.72
5.62

X(y
X4y

X(,

—7.69
—2.64

1.44

—7.&4
—2.86

0.84

—7.76
—2.86

0.66

—6.88
—2.80

1.29

L2t —9.50
—6.70
—1.11

1.89
3.89

—9.65
—7.00
—1,21

1.54
3.38

—9.56
—6.96
—1.20

1.50
3.33

—8.82
—6.50
—1.17

3.36
3.79

used the s ionic pseudopotential as the local potential. We
found that the use of the higher angular momentum pseu-
dopotential as the local potential gives a slightly smaller
lattice constant. This also contributes to the slight differ-
ence in the results of the twa calculatians.

We also note that the cohesive properties of Si can be
described very accurately without d states in the I.CAO
basis set. (In other words by just treating a 24)&24 ma-
trix, using three decay constants in the radial part of the
atomic orbitals. ) This makes the method even more ap-
pealing in treating structural properties. The d states are
however needed for an accurate description of the band
structure, especially the canduction bands.

Tungsten is studied is essentially the same way as Si,
except for the following differences.

(i) The scalar relativistic ionic pseudopotential is used.
This is because W is much heavier than Si and the band
structure is changed substantially when relativistic effects
are included.

(ii) The Wigners form of local exchange-correlation po-
tential is used. The nonlinearity of the exchange-
correlation interaction between core and valence electron
is treated by the partial-core method, owing to the rela-
tively large extension of the Sp core-state wave function.

(iii) A uniform grid of 47 k points is used for the

TABLE IV. Comparison of band energies {in eV) of Si ob-
tained by the fully self-consistent LCAO scheme with three and
four radial Gaussian functions. Band energies from a high-
cutoff (21.5 Ry) plane-wave calculation (Ref. 22) are also quoted
for comparison.

LCAO
Three radial

Gaussians

LCAO
Four radial
Gaussians

P%'
Eeet=21.5 Ry

charge density. Four exponential decay constants
a=(0.2,0.49,1.22,3.0) are used for the atomic orbitals.
These values of a are again determined by minimizing the
total energy of the system.

(iv) For the non-self-consistent part of the calculation,
whereas the "variational" result of Si is done by a single
iteration process, W is done in a two-step process. This is
the way that Mo has been treated, as has been reported
briefly previously. The physical reason far this is that
the s and p atomic pseudowave-functions for Si are essen-

tially occupying the same radial region in real space, while
the d pseudo-wave-functions in W (and in other transition
elements) being more localized, occupy different regions
as compared with the s or p states. Consequently, p(r)
from the superposition of atomic charge densities for Si is
only weakly dependent on the atomic configuration

Lattice constant {A)
Bulk modulus {Mbar)
Cohesive energy {eV)
80

LCAO
Three radial

Gaussians

5.35
1.16
5.0
3.5

LCAO
Four radial
Gaussians

5.35
1.13
5.14
3.6

TABLE III. Comparison of structural properties of Si ob-
tained by the fully self-consistent LCAO scheme with three and
four radial Gaussian functions. 80 is the derivative of the bulk
modulus at the equilibrium volume as determined by the Mur-
naghan equation of state {Ref.21).

Ir„„
I lsc

X,„
X4,
Xl,

~z.

L3,
~lc

—11.99
0.0
2.53
3.21

—7.84
—2.86

0.84

—9.65
—7.00
—1.21

1.54
3.38

—11.92
0.0
2.59
3.29

—7.78
—2.81

0.75

—9.58
—6.97
—1.20

1.58
3.38

—11.91
0.0
2.55
3.28

—7.76
—2.86

0.66

—9.56
—6.96
—1.20

1.50
3.33
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chosen, and is reasonably close to the final self-consistent

charge density. On the other hand, the superposition of
atomic charge densities, and hence the results of the first
iteration, do depend on the particular atomic configura-

tion chosen in the case of W. To circumvent this difficul-

ty, the output crystalline charge density in the first itera-

tion is refitted to a superposition of effective atomic

charges centered on the atomic sites.

p(r)= g p,tt(r R —r),—
R,r

(33)

with the constraints that the total number of electrons is
conserved and that the charge density is positive definite.
The complete procedure is then repeated once more. The
resultant charge density at the second iteration is used to
compute the total energy by Eq. (3). We found that there

is no point to go beyond the second step. This is because
the purpose of the second step is to avoid the dependence
of the result on the input atomic configuration and a
second iteration already served the purpose. Moreover,
the fit as described by Eq. (33) is a difficult constrained
nonlinear minimization problem and the fitting is usually
not of sufficiently high quality to justify further itera-
tions. The self-consistent procedure developed in Sec. II
of course alleviates all these difficulties. For the present
discussion, we refer the variational results as the results of
this two iteration process as contrast to the fully self-
consistent results which were obtained by the procedure
described by Fig. 1.

The structural properties are compared in Table V. We
see that the two-step variational procedure is adequate for
a fairly good description of structural and cohesive prop-
erties for W. We have arrived at the same conclusion for
Mo.9 However, the self-consistency scheme does improve
the result. There is some difference between Si and W as
far as the effects of self-consistency on the structural
properties are concerned. For Si, self-consistency lowers
the energy (as a function of volume) almost uniformly, in-
ducing practically no change in the calculated lattice con-
stant and bulk modulus. Even the derivative of the bulk
modulus does not change significantly. For W, the
change in energy as a function of volume due to self-
consistency is small but not uniform, giving a small
change in lattice constant and bulk modulus. This gives a
small improvement as compared with the experimental re-
sults. The agreement with experiment is very good. We
note that Bylander and Kleinman' and Zunger and
Cohen' and Jansen and Freeman' have also obtained

The purpose of the present work is to extend an
ab initio pseudopotential LCAO scheme to full point-
by-point self-consistency. Making use of the matrices
II,J (k, G), we arrive at a scheme that is formally indepen-
dent of the basis set chosen. When applied to a LCAO
basis set, it avoids some well-known problems like the fit-
ting of the charge density and potential. The method is
exact within the basis subspace and the LDA.

TABLE VI. Band energies of W (in eV) calculated by the
variational LCAO and the fully self-consistent LCAO methods.
Results of Bylander and Kleinman (BK) {Ref. 15) are quoted for
comparison. The energy scale is set to 0 at I 25.

Vanational
Fully

self-consistent
LCAO BK

structural results that agree very favorably with experi-
mental data.

The band-energy results for W are shown in Table VI.
Results by Bylander and Kleinman' are also quoted for
comparison. Comparing the band energies in Table VI,
we found that the self-consistent results and the variation-
al results of the present formalism differ by an average of
about 0.1 eV. An exception is the position of I i relative
to the d-bands. The difference I i5-I i changes by 0.3 eV,
indicating that the s-d separation is quite sensitive to
self-consistency. Comparing our results with that of By-
lander and Kleinman, ' we find that our band energies
agree rather mell with theirs. The only discrepancy is the
position of I i relative to the d bands. The present self-
consistent value differ from that of Bylander and Klein-
man by almost 0.5 eV. Such a discrepancy is surprising
as the two calculations are very similar and only differ in
the details of the starting screening potential, the basis set
employed, and the way in which self-consistency is treat-
ed. In view of this, we compare in Table VII the Fourier
components of the self-consistent pseudo-charge-density
with those of Bylander and Kleinman'5 and Zunger and
Cohen. ' Though not exactly equal, our form factors
agree fairly well with those of Bylander and Kleinman.
Those of Zunger and Cohen are rather different probably
because a nonrelativistic hard-core pseudopotential was
used. As a further test, we have done some preliminary
calculation on Pd and Ni and for both cases, we obtain
band energies very similar to the self-consistent result of
Moruzzi et al.

VI. DISCUSSION AND SUMMARY

Lattice constant {A)
Bulk modulus (Mmr)
Cohesive energy (eV)

3.12
3.438
8.43

3.13
3.335
8.46

3.16
3.232
8.90

TABLE V. Structural and cohesive properties of W calculat-
ed by the variational and fully self-consistent LCAO method.
Experimental values are quoted from C. Kittel, Introduction to
Solid State Physics (Wiley, New York, 1976).

Fully
Variational self-consistent Experiment

Il
I asr„
N2

N4

H)p
P4
P3

—8.946
0.0
3.507

—5.251
—2.402

1.844
3.420
4.437

—4.756
—1.883

4.599

—8.645
0.0
3.491

—5.071
—2.341

2.161
3.388
4.364

—4.593
—1.749

4.518

—8.186
0.0
3.425

—4.934
—2.315

2.311
3.333
4.249

—4.557
—1.641

4.403
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TABLE VII. Comparison of the Fourier components of the

fully self-consistent valence charge density in electrons/cell be-

tween the present self-consistent LCAO calculation, the By-
lander and Kleinman (BK) (Ref. 15) results, and the Zunger and

Cohen (ZC) (Ref. 16) results.

Present
work ZC

(000)
(110)
(200)
(211)
(220)
(310)
(222)
(321)

6.000
0.412

—0.157
—0.091
—0.099
—0.174
—0.052
—0.063

6.000
0.388

—0.152
—0.107
—0,123
—0.180
—0.052
—0.055

6.000
0.691

—0.024
0.034

—0.076
—0.176
—0.043
—0.075

We have formulated the II,&(k,G) matrices in Fourier
space. This is because the lower Fourier components of
the screening potential are more sensitive to changing en-
vironment and contribute importantly to the total energy.
Another key reason is that the periodic electron screening
potential in a crystal can be expressed arbitrarily accurate-
ly by a Fourier expansion. This almost dictates a formu-
lation in Fourier space as can be seen from Eqs. (13) and
(14) if we want the potential to be free of form con-
straints. The use of pseudopotentials in the present calcu-
lations further favors Fourier-space expansions.

The method is tested on Si and W. The calculated
structural and electronic properties agree well with experi-
ment and previous calculations. The fact that there are
only very small changes in structural properties in going
from the variational results to full self-consistent results
justify the previous claim ' that self-consistent iterations
can be avoided in some applications if the total energy is
formulated carefully as an explicit functional of the out-
put charge density only. The self-consistency scheme is
however an important improvement. For example, treat-
ing W fully self-consistently using the present scheme is
actually easier than the two-step calculation which needs
the fitting of the output crystalline charge density to a su-

perposition of effective atomic charge density. The self-
consistent result is also more satisfactory and reliable
from a theoretical point of view. The fully self-consistent
scheme would be indispensable in treating systems like
ionic compounds and surface problems where charge rear-

rangements are expected to be substantial. We also note
that despite Si and W having rather different bonding
properties, they can be treated in the same way by the
present scheme. In fact, their properties were calculated
by the same computer code taking approximately the
same amount of time. This demonstrates the versatility
of the method.

Lastly, we make a comment about the storage of the
II,'z~(k, G, ) matrices, which are the key quantities in the
present approach. These matrices have four indices and
the total number of elements is proportional to the num-
ber of k points, the square of the number of basis func-
tions used, and the number of stars of G vectors used.
For W, we used 47 k points, 40 basis functions, and about
40 stars of G vectors (corresponding to about 1000 G vec-
tars with a G space cutoff of 8 a.u. '). The Iltjy (k,G, )

matrices have altogether about 3X106 numbers. Si has
two atoms per unit cell but less k points are needed for a
semiconductor, so the lit@(k,G, ) matrices are of approx-
imately the same size as W. The matrix sizes quoted here
are for high convergent results and they can be reduced
without introducing significant errors. 6 The use of pseu-
dopotentials is important because the electron wave func-
tions are then nodeless and the (pseudo)charge density can
be represented by a reasonably small number of stars of G
vectors. For surface calculations, the ir~P(k, G, ) matrices
are large. However, it is usually the low Fourier com-
ponents of the potential that are most sensitive to self-
consistency in surface problems. One can reduce storage
and input and/or output load during the iteration cycles
by employing a lower cutoff in G space and use a higher
cutoff (i.e., more stars of G vectors) in the final stage of
calculating the total energy when the potential is self-
consistent.
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