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Optical spatial dispersion via Wannier interpolation
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We present a numerical implementation, based on Wannier interpolation, of a Kubo-Greenwood formalism
for computing the spatially dispersive optical conductivity in crystals at first order in the wave vector of light.
This approach is more efficient than direct ab initio methods because, with less computational cost, it allows for
a much finer sampling of reciprocal space, resulting in better-resolved spectra. Moreover, Wannier interpolation
avoids errors arising from truncation of the sums over conduction bands when evaluating the spatially dispersive
optical matrix elements. We validate our method by computing the optical activity spectrum of selected crystals,
both polar (GaN) and chiral (trigonal Te, trigonal Se, and α-quartz), and comparing it with existing literature.
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I. INTRODUCTION

When the wavelength of light is long compared to typical
atomic dimensions and bond lengths, the optical response
of a medium can be treated as local in space and, thus,
does not depend on the wave vector q of incident radiation.
Beyond this approximation, q-dependent contributions to the
optical response, corresponding to spatially dispersive—i.e.,
nonlocal—effects, must be taken into account [1]. Despite
usually being small corrections, spatial-dispersion terms de-
scribe phenomena that are not captured by the q-independent
optical response. Among them we mention natural optical
activity (optical activity henceforth), which stems from the
first-order spatial dispersion of the optical conductivity and
shows up in acentric systems. A well-known manifestation of
optical activity is optical rotation, i.e., the rotation of the plane
of polarization of incident linearly polarized light as it trav-
els through a chiral medium [1–5]. Besides optical activity,
optical spatial dispersion phenomena also include magneto-
optical effects such as gyrotropic birefringence [5–8] and
nonreciprocal directional dichroism [9], which occur in acen-
tric magnetic crystals (e.g., the antiferromagnet Cr2O3).

Due to the fundamental interest in chiral molecules and
their relevance for industry, historically optical activity has
been studied more extensively in molecules than in solids.
Starting a few decades ago, several ab initio approaches for
computing optical activity in molecules have been developed
[10–16], based on earlier molecular quantum theories. Un-
til a few years ago, not as many attempts to formulate an
equivalent theory for periodic solids had been made [17–19].
More recently, increased interest in chiral crystals has brought
renewed attention to optical activity and related phenomena.

*These authors contributed equally to this work.

This has fostered the development of first-principles theories
of spatial dispersion in bulk periodic systems [20–22].

Currently, the available ab initio implementations of
optical spatial dispersion in solids follow one of two dis-
tinct approaches: Kubo-Greenwood linear-response theory,
or density-functional perturbation theory (DFPT). Methods
based on the Kubo formulation [20,21] have a practical ad-
vantage over the DFPT-based approaches [22] because of
their ease of implementation. Indeed, while Kubo linear re-
sponse theory can be implemented as a postprocessing step
after a ground-state self-consistent first-principles calcula-
tion, DFPT requires the self-consistent solution of a more
involved Sternheimer linear system, besides the ground-state
calculation. Moreover, current DFPT implementations typi-
cally access only the zero-frequency limit of optical activity,
while the Kubo approach naturally accounts for the frequency
dependence of the response. On the other hand, the DFPT
formulation carefully accounts for the induced variation of the
self-consistent potentials (Hartree and exchange-correlation),
which can be large in some cases [22,23]. Such local-field
effects are neglected in current implementations of the Kubo
formalism—including the present one—which treat the self-
consistent potentials as frozen quantities, neglecting their
response to the electromagnetic perturbation.

A Kubo approach for computing the spatially dispersive
optical conductivity has recently been proposed in two dif-
ferent ways in Refs. [20] and [21], building on an earlier
work [19]. Both formulations take the molecular multipole
theory of electromagnetism [2,5] as a basis, and recast the
multipolar terms in a way that is suitable for crystals as well.
One drawback of the Kubo approach is connected with the
need to use a sufficiently dense k mesh to resolve the features
of interest in optical spectra. This requires a self-consistent
solution at every point on this dense mesh, which is compu-
tationally expensive. A second drawback is that in practice

2469-9950/2025/112(4)/045201(19) 045201-1 ©2025 American Physical Society

https://orcid.org/0000-0002-5602-3063
https://orcid.org/0000-0001-9901-5058
https://orcid.org/0000-0002-9320-4437
https://orcid.org/0000-0002-2465-9091
https://ror.org/05vt9qd57
https://ror.org/02hpa6m94
https://ror.org/01cc3fy72
https://ror.org/02s376052
https://crossmark.crossref.org/dialog/?doi=10.1103/56cw-5h19&domain=pdf&date_stamp=2025-07-14
https://doi.org/10.1103/56cw-5h19


ANDREA URRU et al. PHYSICAL REVIEW B 112, 045201 (2025)

the sum over states in the formulation of Ref. [20] has to be
truncated.

Here, we elaborate on the formulation of Ref. [21] and
present an ab initio implementation of the Kubo formalism
using Wannier interpolation [24–26]. This technique allows
for a very fine sampling of reciprocal space with a much
lower computational cost than a direct ab initio calculation.
Furthermore, it avoids sums over intermediate states when
evaluating the optical matrix elements at first order in q, and
is therefore expected to be less affected by band truncation
errors. We test our implementation by computing the optical
activity of both polar (GaN) and chiral (Te, Se, and α-SiO2)
crystals, and by comparing our results with existing literature,
both theoretical [20,22] and experimental [27,28].

The remainder of the paper is organized in the following
way. In Secs. II-IV we present the underlying theoretical for-
malism and the relevant details related to the implementation.
We start in Sec. II by recapitulating the general properties of
the spatially dispersive optical response and its expression in
the Kubo formalism. In Sec. III we discuss a sum-over-states
approach for evaluating the Kubo formula for the conductiv-
ity. Although this is not the method implemented in this work,
we find it instructive to discuss it and to compare with our
approach, which we present in the following section. Specif-
ically, in Sec. IV A we introduce the Wannier interpolation
scheme, and in Sec. IV B we show how to use it to evaluate
the spatially dispersive optical conductivity. In Sec. V we
present our numerical results and validate our implementation
by comparing with previous literature. Finally, Sec. VI con-
tains a summary and conclusions. We conclude the paper with
four Appendices, containing analytical derivations and some
numerical tests.

II. OPTICAL SPATIAL DISPERSION

A. Phenomenology

The optical response of a medium to a monochromatic
electromagnetic wave is described by the dielectric function
ε, which relates the induction field D to the incident wave’s
electric field E. In the reciprocal variables ω and q (frequency
and wave vector), this relationship reads [1]

Dα (ω, q) = εαβ (ω, q)Eβ (ω, q), (1)

where summation over repeated indices is implied, a conven-
tion that we adopt henceforth, and α and β are Cartesian
indices. In general, the response of a periodic medium to a
perturbation with wave vector q has contributions from all
q + G wave vectors, with the G �= 0 components resulting
from variations of the D field at spatial scales of the or-
der of the bond lengths. This fact underlies the presence of
local-field corrections, which are not included in this work, as
mentioned in the Introduction. The dielectric function can be
Taylor-expanded as [1]

εαβ (ω, q) = εαβ (ω, 0) + iηαβγ (ω)qγ + . . . . (2)

Here, εαβ (ω, 0) is the dielectric function in the infinite-
wavelength limit, and ηαβγ (ω) describes spatial-dispersion
effects at first order in q.

The ηαβγ tensor is odd under spatial inversion P , and thus
vanishes identically in centrosymmetric crystals. To analyze

its behavior under time-reversal T , we split ηαβγ into sym-
metric (S) and antisymmetric (AS) parts under permutation of
α and β,

ηαβγ (ω) = ηS
αβγ (ω) + ηAS

αβγ (ω). (3)

As a consequence of Onsager’s reciprocity relation, ηAS
αβγ is

T -even while ηS
αβγ is T -odd. ηAS

αβγ describes natural optical
activity (optical activity henceforth), which requires broken
P but not broken T . ηS

αβγ accounts for spatially dispersive
magneto-optical effects in materials where both P and T sym-
metries are broken (but the combined PT may be present).
The T -odd effects are nonreciprocal in that one sees distinct
behaviors for forward vs backward propagation of light. The
tensors ηAS

αβγ and ηS
αβγ can be further decomposed as

ηS
αβγ (ω) = Re ηH

αβγ (ω) + iIm ηAH
αβγ (ω), (4a)

ηAS
αβγ (ω) = Re ηAH

αβγ (ω) + iIm ηH
αβγ (ω) (4b)

into Hermitian (H) and anti-Hermitian (AH) parts related to
absorptive and reactive phenomena, respectively.

As our main focus is on optical activity, we analyze ηAS
αβγ

in more detail. Being a rank-3 tensor antisymmetric in two
indices, it has nine independent components that can be
repackaged as a rank-2 gyration tensor G by contracting with
the Levi-Civita symbol εαγ δ . Following Refs. [22,29], we
define the complex gyration tensor as

Gαβ (ω) = 1
2 εαγ δ ηAS

γ δβ (ω). (5)

With this definition, G has units of length and tends to a real-
valued constant in the ω → 0 limit [22,30].

It is useful to decompose G into a trace piece, a traceless
symmetric part, and an antisymmetric part [29]. The first two
form the symmetric part of G, whose real and imaginary com-
ponents account for optical rotation and circular dichroism,
respectively, of light propagating along an optic axis.

Optical rotation—the rotation of the plane of polarization
of linearly polarized incident light—results from a different
speed of propagation of left and right circular components.
It is quantified by the optical rotatory power, defined as the
angle of rotation of the plane of polarization of light per unit
distance traveled inside the material. Circular dichroism is
the absorptive counterpart of optical rotation, and corresponds
to different absorption coefficients for left and right circular
components. As a result, a linearly polarized incident wave
develops an elliptical character as one of its circular com-
ponents decays more quickly than the other. For light not
propagating along an optic axis, linear birefringence typically
dominates, but the modes of propagation acquire some el-
liptical character. The rotatory power ρ and ellipticity θ are
obtained from the real and imaginary parts of G as [1]

ρ(ω) + iθ (ω) = ω2

2c2
q̂α[Re Gαβ (ω) + iIm Gαβ (ω)]q̂β (6)

with q̂ the unit vector along the propagation direction q,
assumed to be an optic axis, and c the speed of light. As
anticipated, ρ and θ only depend on the symmetric part of G.
Since Re G becomes constant at low frequencies, the rotatory
power decreases as ω2, that is, the quantity

ρ̄(ω) = ρ(ω)

ω2
(7)
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tends to a constant for ω → 0.
The antisymmetric part of G can be repackaged as a polar

vector with components Gα = (1/2)εαβγ Gβγ . This describes
a situation in which the electric polarization vector of the
beam acquires a small longitudinal component [29]. For ex-
ample, light entering along x with polarization z can propagate
in the medium with a slight elliptical polarization in the
x-z plane. By analogy with Eq. (6), one may quantify this
“polar optical activity” via a complex vector d(ω) with units
of inverse length,

d(ω) = ω2

2c2
G(ω). (8)

Of the 21 acentric crystal classes, 18 allow for a nonzero
gyration tensor G. We identify as optically active a material
belonging to any of these classes, according to a broad defini-
tion [29]. The three acentric classes that do not show optical
activity are 6̄, 6̄2m, and 4̄3m. Among the 18 optically active
crystal classes, three of them (3m, 4mm, and 6mm) have a
purely antisymmetric G tensor. Materials that belong to these
polar classes do not display optical rotation or circular dichro-
ism. Nevertheless, we still classify them here as optically
active, while noting that some authors adopt a more stringent
definition that would exclude materials such as these [31]. The
other 15 classes, which do support optical rotation, include
11 where the trace of G is nonzero. These chiral or enan-
tiomorphic groups are the only ones for which optical rotation
is present even in polycrystalline samples. Chiral materials
can exist in two different forms, called enantiomorphs, related
to each other by a mirror reflection. The two enantiomorphs
show opposite (“dextrogyre” and “levogyre”) optical rotation.
The remaining four classes (4̄, 4̄2m, mm2, and m) have a
traceless G tensor. They still show signs of optical rotation and
circular dichroism [4], but these effects are mixed with linear
birefringence, so that the solutions of the wave equation are
elliptically polarized in general.

B. Microscopic theory

In the Kubo linear-response formalism, one calculates the
optical conductivity tensor σ relating the induced current den-
sity j to the optical electric field E,

jα (ω, q) = σαβ (ω, q)Eβ (ω, q). (9)

The dielectric function and the optical conductivity are related
in CGS units by

εαβ (ω, q) = δαβ + 4π i

ω
σαβ (ω, q). (10)

Expanding the latter in powers of q as

σαβ (ω, q) = σαβ (ω, 0) + σαβγ (ω)qγ + . . . (11)

and comparing with the expansion (2) of the former yields

ηαβγ (ω) = 4π

ω
σαβγ (ω), (12)

which combined with Eq. (5) expresses the gyration tensor in
terms of the spatially dispersive conductivity.

The spatially dispersive optical conductivity evaluated
from Kubo linear response is given by the following expres-

sion, equivalent to the one in Ref. [21]:

σαβγ (ω) = ie2

h̄

∑
l,n

∫
[dk]

{
Aα,nlTβγ ,ln + Aβ,lnTαγ ,nl

ωnl + ω + iη
fnl

− Aα,nl Aβ,ln

(
ω f̄γ ,nl + fnl v̄γ ,nl

ωnl +ω+iη
+ ωnl fnl v̄γ ,nl

(ωnl +ω+iη)2

)}

+ e2

h̄(ω + iη)

∑
n

∫
[dk]

(
fα,nTβγ ,nn − fβ,nTαγ ,nn

)

+ ie2

h̄

∑
n

∫
[dk]gαβ,n fγ ,n

− ie2

h̄(ω + iη)2

∑
n

∫
[dk] f ′

nvα,nvβ,nvγ ,n. (13)

Here, e and h̄ identify the elementary charge and the re-
duced Planck constant, respectively,

∫
[dk] = ∫

BZ d3k/(2π )3,
with the integral spanning the first Brillouin zone (BZ), and
k dependence is implied in the integrands. ωnl = ωn − ωl and
fnl = fn − fl are interband frequencies and differences in oc-
cupation factors, respectively, and η is a positive infinitesimal.
We have also defined

vα,n = ∂ωn

∂kα

, (14a)

f ′
n = ∂ fn

∂ωn
, (14b)

fα,n = ∂ fn

∂kα

= f ′
nvα,n, (14c)

f̄α,nl = 1

2
( fα,n + fα,l ), (14d)

v̄α,nl = 1

2
(vα,n + vα,l ). (14e)

Tensors Aα,ln and Tαβ,ln containing optical matrix elements
will be introduced below, along with the quantum-metric ten-
sor gαβ,n.

Every term in Eq. (13) except for the quantum-metric term
has either one or two powers of ω + iη or ωnl + ω + iη in
the denominator. Those terms with one power of frequency
in the denominator give δ-like contributions to the optical
absorption, and those with two give δ′-like contributions.

The first two lines of Eq. (13) contain the interband terms,
and the last three describe the intraband terms. All intra-
band terms contain derivatives ∂ f /∂k or ∂ f /∂ω and are thus
Fermi-surface-like vanishing in the absence of free carriers.
However, the reverse is not true: The term containing f̄γ ,nl

in the second line is interband and Fermi-surface-like. In
insulators and cold semiconductors only the first line and the
two terms containing fnl in the second line survive, while in
molecules only the first line survives, as all other terms con-
tain band velocities. The term in the last line, with a product of
three band velocities, is Drude-like in the sense of depending
only on the band structure.

All terms in the first two lines in Eq. (13) have both
symmetric and antisymmetric parts in αβ; the third line is
antisymmetric; and the fourth and the fifth are symmetric.
Since the symmetric parts are time-odd, they vanish in the
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FIG. 1. Schematic chart of Eq. (13). The contributions
to σαβγ are classified at three different levels according to
whether they are (i) Fermi sea (bound carriers) or Fermi
surface (free carriers), (ii) interband or intraband, and
(iii) electric dipole (E1) or magnetic dipole plus electric quadrupole
(M1 + E2). Terms containing the matrix T (see Fig. 2 below) are
of the M1 + E2 type, whereas the E1 terms do not contain T . The
quantum-metric term is classified as E2, whereas the Drude-like term
in the last line of Eq. (13) falls outside the E1-M1-E2 classification
scheme.

presence of time-reversal symmetry. Thus, only the third line
and the antisymmetric parts of the first two lines contribute
in the case of nonmagnetic materials. For a nonmagnetic or
collinear-spin system computed without spin-orbit coupling
(SOC), the electron bands are all pure spin up or down, so
that matrices indexed by ln are spin diagonal and Eq. (13) can
be evaluated separately in each spin sector.

In Fig. 1, we provide a schematic summary to help the
reader navigate Eq. (13) and classify all its terms.

The Hermitian matrices Aα and Tαβ contain the optical
matrix elements at zeroth and first order in q, respectively. Aα

describes electric-dipole (E1) transitions, while Tαβ describes
electric-quadrupole (E2) and magnetic-dipole (M1) transi-
tions via its symmetric and antisymmetric parts, respectively
(see Appendix A). Aα takes the form of a gauge-covariant
Berry connection,

Aα,ln = i〈ul |Dαun〉, (15)

with

|Dαun〉 = (1 − |un〉〈un|)|∂αun〉 (16)

the covariant derivative of a cell-periodic Bloch state |un〉,
and ∂α = ∂/∂kα (here and throughout this section, we assume
nondegenerate bands). While Aα is purely orbital and off-
diagonal (Aα,nn = 0), Tαβ has both orbital and spin parts, as

well as diagonal and off-diagonal parts. It is given by

Tαβ,ln = 1

2
(Kαβ,ln + K∗

αβ,nl ) − gs

2me
εαβγSγ ,ln, (17)

where in the first term the orbital matrix Kαβ reads

Kαβ,ln = 1

ih̄
〈Dαul |H − εl |Dβun〉 + vα,l Aβ,ln, (18)

and in the second gs � 2 is the spin g factor, me is the electron
mass, and

Sγ ,ln = h̄

2
〈ul |σγ |un〉 (19)

is the spin matrix expressed in terms of Pauli matrices. The
diagonal part of Tαβ appearing in the third line of Eq. (13)
is purely antisymmetric (M1), while the off-diagonal part in
the first line has both symmetric (E2) and antisymmetric (M1)
components. Finally, the quantity

gαβ,n = Re 〈Dαun|Dβun〉 (20)

in the fourth line of Eq. (13) is the single-band quantum metric
[32,33]. It contributes a frequency-independent and purely
reactive intraband response of E2 character.

We have adopted a notation where lower-case letters ( f , g,
v) are used for intraband quantities, and capital letters are used
for matrices in the band indices; calligraphic letters (K, T , S)
are used for matrices with both interband and intraband parts,
and Roman letters (A) for purely interband matrices. Intraband
quantities can appear either as band vectors, like vα,n and
gαβ,n, or as matrices, in which case they are automatically
diagonal, e.g., vα,ln = δlnvα,n.

The above quantities need to be computed on a suf-
ficiently fine k mesh to obtain converged results for the
optical responses of interest. We assume this is being done
as a post-processing step after a self-consistent first-principles
calculation. In the sum-over-states approach to be summa-
rized in Sec. III, it is possible to compute the ingredients in
Eqs. (15)–(20) directly, but with a limitation on the number
of contributing conduction bands. To prepare for the Wannier
interpolation approach to be introduced in Sec. IV, on the
other hand, it is useful to define a set of auxiliary tensors from
which these matrices can be constructed in a way that is free
of the conduction-band limitation. These are introduced next.

C. Auxiliary matrices for Wannier interpolation

As we shall see in Sec. IV, our Wannier interpolation
approach gives us convenient access to a set of auxiliary
matrices

Aα,ln = i〈ul |∂αun〉 = A∗
α,nl , (21a)

Cαβ,ln = 〈∂αul |∂βun〉 = C∗
βα,nl , (21b)

Dαβ,ln = 〈∂αul |H |∂βun〉 = D∗
βα,nl . (21c)

Here, we show how the Kαβ and gαβ tensors of Eqs. (18) and
(20) can be obtained from these ingredients.

The Berry connection matrix can be decomposed into in-
traband and interband parts, Aα = aα + Aα , with

aα,ln = δlnAα,ln, (22a)

Aα,ln = (1 − δln)Aα,ln. (22b)
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Aα is the same as in Eq. (15), and the covariant derivative in
Eq. (16) may now be written as

|Dαun〉 = |∂αun〉 + i|un〉aα,n, (23)

where we have converted aα to band-vector form. Inserting
this expression in Eqs. (18) and (20) and then using Eq. (21)
leads to

Kαβ,ln = 1

ih̄
(Dαβ,ln − εlCαβ,ln) − iωlnAα,lnaβ,n + vα,l Aβ,ln

(24)

and

gαβ,n = Re Cαβ,nn − aα,naβ,n. (25)

Plugging Eq. (24) into Eq. (17) for Tαβ and invoking the
Hermiticity relations in Eq. (21), one finds that the symmet-
ric part of Dαβ drops out, so that Tαβ and σαβγ (ω) only
involve the antisymmetric part. Instead, both the symmet-
ric and antisymmetric parts of Cαβ contribute; separating
them as

Cαβ = 1

2
(Cαβ + Cβα ) − i

2
Fαβ (26)

where

Fαβ = ∂αAβ − ∂βAα (27)

is the Abelian Berry curvature matrix, Eq. (24) becomes

Kαβ = 1

ih̄

[
Dαβ − ε

2
(Cαβ + Cβα ) + iε

2
Fαβ

+ εAαaβ − Aαaβε

]
+ vαAβ, (28)

where ε is the diagonal band-energy matrix and all products
are matrix multiplications.

To recap, once the occupations f , band velocities vα of
Eq. (14a), and tensors Aα , Cαβ , and Dαβ of Eq. (21) are
available at a given k point, it is straightforward to com-
pute, at that same point, the various quantities introduced
above. The computation of these tensor ingredients needed
for the Wannier-interpolation approach will be discussed in
Sec. IV. Figure 2 presents a flowchart to summarize the
important relationships to obtain the building blocks of the
E1, M1, and E2 contributions to the optical conductivity in
Eq. (13).

D. Summary

In this section, we have described the formalism and tensor
ingredients needed to compute the spatial-dispersion conduc-
tivity tensor in Eq. (13). In the remainder of this paper, we first
briefly describe a relatively straightforward sum-over-states
approach for computing this conductivity, although it is not
the one we have adopted. We then provide the details of
our Wannier-interpolation approach and present some appli-
cations of this method.

III. SUM-OVER-STATES APPROACH

In this approach, one adopts a single k mesh for the entire
calculation and computes the needed matrix elements directly
from the Kohn-Sham wave functions on that mesh. The details
are as follows.

FIG. 2. Flowchart showing how the building blocks introduced
in the main text are combined to obtain the electric dipole
(E1, blue), magnetic dipole (M1, green) and electric quadrupole (E2,
red) contributions to the spatially dispersive optical conductivity in
Eq. (13). Quantities needed exclusively for the Wannier interpolation
approach are highlighted in brown; the sum-over-states approach to
the Kubo formulation requires only the velocity matrix elements and
the interband frequencies (see Sec. III).

The spin matrices Sγ can be readily evaluated from
Eq. (19). As for the orbital tensors Aα , Kαβ , and gαβ , they are
evaluated via the sum-over-states expression for the covariant
derivative (16),

|Dαun〉 = −
∑
p�=n

|up〉Vα,pn

ωpn
. (29)

Here,

Vα,pn = 1

h̄
〈up|(∂αH )|un〉 (30)

is the velocity matrix, whose diagonal elements give the band
velocity (14a),

vα,n = Vα,nn. (31)

The orbital tensors can be written solely in terms of velocity
matrix elements and interband frequencies. This can be seen
by inserting Eq. (29) in Eqs. (15), (18), and (20), which gives

Aα,ln =
{Vα,ln

iωln
if l �= n

0 if l = n
, (32)

Kαβ,ln = (VαAβ )ln, (33)

and

gαβ,n = Re(AαAβ )nn. (34)

To obtain Eq. (33), note the identity

〈Dαul |H − εl |Dβun〉 = ih̄
∑
p�=l

Vα,l pAβ,pn, (35)

which follows from Eqs. (15) and (29). Using that identity in
Eq. (18) leads to

Kαβ,ln =
∑
p�=l

Vα,l pAβ,pn + vα,l Aβ,ln

=
∑

p

Vα,l pAβ,pn − Vα,ll Aβ,ln + vα,lAβ,ln. (36)

The last two terms cancel out, yielding Eq. (33).
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The sum-over-states evaluation of σαβγ (ω) was imple-
mented in Ref. [20]. The advantage of this type of approach is
the ease of implementation, especially if the ab initio code
already provides the velocity matrix elements. One disad-
vantage is the need to truncate the implied summations over
intermediate states in Eqs. (33) and (34). This can be traced
back to a band-truncation error in the covariant derivative
of Eq. (29), where index p only runs over the conduction
bands carried in the first-principles calculation. It also suffers
from the need to call the ab initio engine for every k when
performing the BZ integral in Eq. (13), which can become
costly for narrow-gap semiconductors and when evaluating
Fermi-surface terms for conductors.

IV. WANNIER INTERPOLATION

To overcome the difficulties mentioned above, we adopt an
approach based on Wannier interpolation [24–26]. As we shall
see, some terms in the resulting expressions for Aα , Kαβ , and
gαβ resemble the sum-over-states formulas in Eqs. (32)–(34),
while others resemble the k-derivative formulas in Eqs. (15),
(20), and (28). This approach typically cannot treat as many
interband excitations as is allowed by the sum-over-states
approach. However, it is free from band-truncation errors in
the computation of optical matrix elements, and it allows
the optical properties to be calculated efficiently on a fine
interpolation mesh of k points.

A. Basics of Wannier interpolation

The Wannier functions (WFs) are constructed as

|R j〉 = 1

N

∑
q

e−iq·(R+τ j )
∣∣ψW

jq

〉
( j = 1, . . . , M ), (37)

where R is a Bravais lattice vector and∣∣ψW
jq

〉 =
∑

n

|ψnq〉Wn j (q). (38)

The summation in Eq. (37) is over the uniform Brillouin-zone
mesh of N points q where the ab initio Bloch eigenstates
|ψnq〉 were calculated, and the Wannier-gauge Bloch-like
states |ψW

jq〉 are related to the Bloch eigenstates by a uni-
tary wannierization matrix W (q). That matrix is M × M
without disentanglement [33], and with disentanglement it
becomes J (q) × M with J (q) � M at every q [34]. Since in
WANNIER90 [35] the Wannier centers τ j = 〈0 j|r|0 j〉 are not
included in the Fourier phase factors, W (q) in Eq. (38) is
related to WANNIER90’s wannierization matrix W̃ (q) by

Wn j (q) = W̃n j (q) eiq·τ j . (39)

Once the WFs have been constructed using a relatively
coarse q grid, a Bloch basis is defined at each point k on the
dense interpolation grid as∣∣ψW

jk

〉 =
∑

R

eik·(R+τ j )|R j〉. (40)

Here the sum over R is restricted such that |R j〉 lies inside
the Wigner-Seitz cell of the supercell conjugate to the coarse
q grid [36]. The Hamiltonian matrix in this basis reads

HW
i j (k) = 〈

uW
ik

∣∣Hk
∣∣uW

jk

〉
, (41)

where we have switched to cell-periodic states and defined
Hk = e−ik·rHeik·r. To obtain the interpolated band energies
[38], the matrix HW is diagonalized as

HH
ln(k) = [U†(k)HW(k)U (k)]ln = δlnεnk, (42)

where U (k) is a unitary matrix and the H superscript stands
for Hamiltonian gauge. (When disentanglement is not used,
U = W† on mesh points k = q.)

Equation (42) can be brought to the same form as Eq. (41)
by defining ∣∣uH

nk

〉 =
∑

j

∣∣uW
jk

〉
U jn(k), (43)

so that

HH
ln(k) = 〈

uH
lk

∣∣Hk
∣∣uH

nk

〉 = δlnεnk. (44)

Differentiating Eq. (43) gives (from now on we drop k)∣∣∂αuH
n

〉 =
∑

j

∣∣∂αuW
j

〉
U jn − i

∑
l

∣∣uH
l

〉
AI

α,ln, (45)

where

AI
α = iU†∂αU (46)

is the Berry connection matrix constructed from derivatives of
the column vectors of U (the eigenvectors of HW). We refer to
quantities of this kind, which can be expressed solely in terms
of the M × M Wannier Hamiltonian matrix HW(k) and its
M-component column eigenvectors U (k), as internal (I). In-
stead, external (E) quantities are those that depend on the
character of the Wannier functions themselves relative to the
full Hilbert space. Considering only the internal terms is
equivalent to treating the problem at a tight-binding level in
the Wannier subspace, with on-site energies, hoppings, and or-
bital centers as the only model parameters. The external terms
capture the extra embedding information that is missed by
the standard tight-binding description. This partition becomes
particularly clear and meaningful when the intracell Wannier
centers τ j are included in the Fourier phase factors, as done in
Eqs. (37) and (40).

Using Eq. (45) in Eq. (21a) for Aα yields the Hamiltonian-
gauge Berry connection [24]

AH
α = AI

α + AE
α, (47)

where the external part reads

AE
α = U†AW

α U (48)

with

AW
α,i j = i

〈
uW

i

∣∣∂αuW
j

〉
. (49)

More generally, for any Wannier-gauge matrix OW we define
its external part to be

OE = U†OWU , (50)

and when OH = OE that matrix is said to be gauge covariant
[24]. In view of Eqs. (42) and (47), we conclude that H is
gauge covariant but Aα is not.

We are now ready to evaluate the covariant derivative
(16) of an interpolated Bloch state |uH

n 〉. Multiplying by 1 −
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|uH
n 〉〈uH

n | on both sides of Eq. (45) yields

∣∣DαuH
n

〉 =
∑

j

∣∣∂αuW
j

〉
U jn + i

∣∣uH
n

〉
aE

β,n − i
∑

p

∣∣uH
p

〉
AI

α,pn

(51)

where, by analogy with Eq. (22), aE is the intraband part of AE

and AI is the interband part of AI. Note that this expression for
|DαuH

n 〉 does not suffer from the same band-truncation error
as was discussed above for the sum-over-states approach: see
Eq. (29). Here, the covariant derivative has the full accuracy
of the plane-wave (or other first-principles) basis, as do the
various tensors computed from it.

B. Application to σαβγ (ω)

1. Optical matrix elements

In Sec. III, the optical matrix elements entering Eq. (13)
for σαβγ were evaluated using the sum-over-states formula of
Eq. (29) for |Dαun〉. In our approach we evaluate the covariant
derivatives using Eq. (51) instead. Our immediate goal is to
obtain the needed quantities such as Aα of Eq. (15) and Kαβ

of Eq. (18) on a coarse q mesh. These will then be Wannier
interpolated onto a fine k mesh as described in detail later in
Sec. IV B 3.

The covariant derivatives |Dαun〉 are not needed for the
Hamiltonian and spin matrices, which can be obtained directly
from the first-principles calculation as in Sec. III. For consis-
tency with what follows, however, we transform them to the
Wannier gauge using Eq. (38) to obtain

HW
i j = 〈

uW
i

∣∣H ∣∣uW
j

〉
, (52a)

SW
α,i j = 〈

uW
i

∣∣Sα

∣∣uW
j

〉
. (52b)

We then also construct a set of Wannier-gauge orbital
matrices

AW
α,i j = i

〈
uW

i

∣∣∂αuW
j

〉
, (53a)

BW
α,i j = i

〈
uW

i

∣∣H ∣∣∂αuW
j

〉
, (53b)

CW
αβ,i j = 〈

∂αuW
i

∣∣∂βuW
j

〉
, (53c)

DW
αβ,i j = 〈

∂αuW
i

∣∣H ∣∣∂βuW
j

〉
(53d)

on the coarse mesh. The derivatives in these equations are
evaluated by finite differences on the coarse q mesh as de-
scribed in Sec. IV B 2; this has to be done in the Wannier
gauge to enforce a smooth evolution of wave functions be-
tween neighboring q points. After Wannier interpolation of
the quantities in Eqs. (52) and (53) onto the fine k mesh, it is
relatively straightforward to compute quantities such as those

in Eqs. (15) and (18) in the Hamiltonian gauge, as described
below.

In Eq. (53), compared to Eq. (21), we have introduced
an additional matrix Bα , which will be needed later in the
interpolation formula for Kαβ if Wannier disentanglement is
used. Recall from Eq. (21) that Aα , Cαβ , and Dαβ satisfy
Hermiticity relations. Instead, Bα satisfies the generalized
Hermiticity constraint(

BW
α, ji

)∗ = BW
α,i j + ih̄VW

α,i j − i∂αHW
i j , (54)

which follows from differentiating Eq. (41) for HW, with Vα

given by Eq. (30). Following Eq. (27), we also define

FW
αβ = ∂αAW

β − ∂βAW
α . (55)

As a reminder, our goal is to obtain the quantities Aα , Kαβ ,
gαβ , and Sα in the Hamiltonian gauge from the above Wannier-
gauge matrices. Let us start with the spin matrix in Eq. (19).
Using Eq. (43) we find

SH
α = U†SW

α U = SE
α . (56)

Thus, the Sα matrix is gauge covariant, just like H. But while
HH in Eq. (42) is diagonal by construction, SH

α is generally
nondiagonal in the presence of SOC.

The orbital matrices Aα , Kαβ , and gαβ , on the other hand,
are noncovariant (i.e., they are not equal to their external
parts). For example, inserting Eq. (51) in Eq. (15) for Aα gives

AH
α = AI

α + AE
α, (57a)

AI
α,ln ≡ (1 − δln)AI

α,ln =
{V I

α,ln

iωln
if l �= n

0 if l = n
, (57b)

AE
α,ln ≡ (1 − δln)AE

α,ln = (1 − δln)
[
U†AW

α U
]

ln. (57c)

In Eq. (57b) V I
α is the internal velocity matrix

V I
α = 1

h̄
U†(∂αHW)U , (58)

and the right-hand side of Eq. (57c) follows from Eq. (48)
for AE

α . Note that Eqs. (57b) and (58) have the same form as
Eqs. (32) and (30) for Aα and Vα , except that they are writ-
ten in terms of internal quantities. Moreover, the interpolated
band velocities can be obtained from Eq. (58) via the internal
analogue of Eq. (31),

vα,n = V I
α,nn. (59)

Using Eq. (51) in Eq. (18) for Kαβ one finds (see
Appendix B) that it contains not only internal and external
terms, but also cross (X) terms that mix internal and external
quantities,

KH
αβ = KI

αβ + KE
αβ + KX

αβ, (60a)

KI
αβ = V I

αAI
β, (60b)

KE
αβ = 1

ih̄

[
DE

αβ − ε

2

(
CE

αβ + CE
βα

) + iε

2
FE

αβ

+εAE
αaE

β − AE
αaE

βε

]
+ vαAE

β, (60c)

KX
αβ = 1

ih̄

[
AI

αBE
β − εAI

αAE
β + (

AI
βBE

α − AI
βAE

αε
)†

]
. (60d)
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Here, ε = HH and vα are the diagonal band-energy and band-
velocity matrices, respectively, and BE

α is the off-diagonal part
of BE

α . Equation (60b) is the internal analog of the sum-over-
states formula (33) for Kαβ , and Eq. (60c) is the external
analog of the k-derivative formula (28).

When disentanglement is not used in the Wannier construc-
tion, Eq. (60d) can be simplified using the relation

BE
α,ln = εlAE

α,ln (61)

from Appendix B. This is an exact identity when the
interpolation point falls on the ab initio mesh and an ex-
cellent approximation otherwise. In this case, Eq. (60d)
reduces to

KX
αβ = 1

ih̄

[
AI

αεAE
β − εAI

αAE
β + (I ↔ E)

]
, (62)

which further highlights the parallelism with the sum-
over-states formula (33) for Kαβ . Of course, the optical
absorption spectra predicted from KH

αβ,ln can only cover the
frequency range of transitions between wannierized bands l
and n.

When disentanglement is used, we make the same assump-
tion about the range of computed spectra, but now insisting
that bands l and n lie inside the frozen window. In this case,
Eq. (60) is still correct as written, but the replacement of
Eq. (60d) by Eq. (62) is no longer justified when the interior
band index (p in an expression like

∑
p AI

α,l pBE
β,pn) lies outside

the frozen window. While Eq. (60d) could be used for both
situations, we find it convenient to use Eq. (62) when p lies in
the frozen window and Eq. (60d) otherwise [39].

Since l and n must lie inside the frozen window, the sums
in the Kubo formula (13) for the optical conductivity are
restricted to a subset of the ab initio bands. This leads to a
truncation error, inherent to the present methodology, which
can be controlled by enlarging the frozen window to capture
the relevant conduction states. This truncation error affects
only the reactive part of the response; the absorptive part is
not affected because, as noted in Sec. II B, it comes with
δ(ωnl − ω) and δ′(ωnl − ω) factors, which restrict the sums
over l and n to a small subset of states close to the optical
transition.

Finally, using Eq. (51) in Eq. (20) gives for the quantum
metric

gH
αβ,n = gI

αβ,n + gE
αβ,n + gX

αβ,n, (63a)

gI
αβ,n = Re

(
AI

αAI
β

)
nn

, (63b)

gE
αβ,n = Re CE

αβ,nn − aE
α,naE

β,n, (63c)

gX
αβ,n = Re

(
AI

αAE
β + AE

αAI
β

)
nn

. (63d)

Equation (63b) is the internal counterpart of the sum-over-
states formula (34) for gαβ,n, and Eq. (63c) is the external
counterpart of the k-derivative formula (25); as in the case of
Kαβ , the cross term is similar to the internal term and to the
sum-over-states expression.

In summary, the interpolated spin matrix is given by
Eq. (56); of the three orbital matrices entering Eq. (13),
Aα [Eq. (57)] contains only internal and external terms

in the Wannier representation, while Kαβ [Eq. (60)] and
gαβ [Eq. (63)] also contain cross terms. The band energies
and band velocities appearing in Eq. (60) and elsewhere in
Eq. (13) are obtained from Eqs. (42) and (59), respectively,
with Eq. (42) also providing the U matrices.

The only remaining task is to compute the Wannier-gauge
matrices in Eqs. (52) and (53). The derivatives with respect
to wave vector in Eq. (53) will be evaluated by finite differ-
ences on the coarse q mesh as described in the next section.
At this point, if we were only interested in computing the
responses on the coarse mesh, we would essentially be done.
However, one of the main advantages of the Wannier in-
terpolation approach is that it now allows these matrices to
be interpolated efficiently onto a fine mesh for a higher-
resolution calculation of the optical response, as described in
Sec. IV B 3.

2. Construction of Wannier-gauge matrices

To interpolate the Wannier-gauge matrices OW, with O =
H,Sα,Aα,Bα, Cαβ,Dαβ , onto a fine mesh of k points, one
needs first to compute OW on the coarse ab initio q mesh. This
is done starting from Eq. (52) for the Hamiltonian and spin
matrices and from Eq. (53) for the orbital matrices, and using
Eq. (38). In particular, the derivatives appearing in Eq. (53)
are computed by finite differences on the q grid as [33]∣∣∂αuW

jq

〉 �
∑

b

wbbα

∣∣uW
jq+b

〉
, (64)

where wb are appropriately chosen weights, and the sum
is performed over shells of vectors b connecting a point
q of the ab initio grid to its neighbors. In this way, the
Wannier-gauge Hamiltonian and spin matrices in the coarse q
mesh read

HW(q) = W†(q)H(q)W (q), (65a)

SW
α (q) = W†(q)Sα (q)W (q), (65b)

whereas the orbital matrices take the form

AW
α,i j (q) � i

∑
b

wbbα[W†(q)M(q, q + b)W (q + b)]i j,

(66a)

BW
α,i j (q) � i

∑
b

wbbα[W†(q)H(q)M(q, q + b)

×W (q + b)]i j, (66b)

CW
αβ,i j (q) �

∑
b,b′

wbwb′bαb′
β[W†(q + b)M(q + b, q + b′)

×W (q + b′)]i j, (66c)

DW
αβ,i j (q) �

∑
b,b′

wbwb′bαb′
β[W†(q + b)N(q + b, q + b′)

×W (q + b′)]i j . (66d)

Here, W (q) is related by Eq. (39) to the W̃ (q) matrix pro-
vided by WANNIER90, and

Hmn(q) = 〈umq|Hq|unq〉 = δmnεnq, (67a)

Sα,mn(q) = 〈umq|Sα|unq〉, (67b)
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TABLE I. Quantities needed from the ab initio code to evaluate
Eq. (13) by Wannier interpolation. The filename convention follows
PW2WANNIER90, the interface between the ab initio code QUANTUM

ESPRESSO [40,41] and WANNIER90.

Ab initio matrix Needed for Stored in

H(q) = 〈uq|Hq|uq〉 HW(q),BW
α (q) seedname.eig

Sα (q) = 〈uq|Sα|uq〉 SW
α (q) seedname.spn

M(q, q + b) = 〈uq|uq+b〉 AW
α (q),BW

α (q) seedname.mmn

M(q + b, q + b′) =
〈uq+b|uq+b′ 〉

CW
αβ (q) seedname.uIu

N(q + b, q + b′) =
〈uq+b|Hq|uq+b′ 〉

DW
αβ (q) seedname.uHu

Mmn(q, q + b) = 〈umq|un,q+b〉, (67c)

Mmn(q + b, q + b′) = 〈um,q+b|un,q+b′ 〉, (67d)

Nmn(q + b, q + b′) = 〈um,q+b|Hq|un,q+b′ 〉, (67e)

are matrices provided by the ab initio code through its inter-
face to WANNIER90. This complete list of ab initio matrices,
which are needed to compute σαβγ , is also summarized in
Table I.

Compared to the ground-state bulk magnetization [26],
an additional piece of information [Eq. (67d)], stored in
the seedname.uIu file, is required. According to Eqs. (17)
and (60c), that information is only used for the symmetric
(E2) part of the Tαβ matrix, not for the antisymmetric (M1)
part. Conversely, the information stored in seedname.uHu
[Eq. (67e)] is only used for the antisymmetric part of Tαβ ;
this is due to the fact that the symmetric part of Dαβ drops out
from Tαβ , as discussed in Sec. II C.

3. Wannier interpolation onto the fine mesh

Once the matrices on the q mesh are computed, they are
Fourier-interpolated onto a finer mesh in the following way.
First, a Fourier transform to real space is performed,

Oi j (R) = 1

N

∑
q

e−iq·(R+τ j−τi )OW
i j (q), (68)

then, the real space matrices are Fourier transformed to the
fine k mesh,

OW
i j (k) =

∑
R

eik·(R+τ j−τ i )Oi j (R). (69)

In these expressions, Oi j (R) = 〈0i|O|R j〉. The real-space
matrix elements of H and Sα read

Hi j (R) = 〈0i|H |R j〉, (70a)

Sα,i j (R) = 〈0i|Sα|R j〉, (70b)

whereas those of the orbital matrices are

Aα,i j (R) = 〈0i|(r − R − τ j )α|R j〉, (71a)

Bα,i j (R) = 〈0i|H (r − R − τ j )α|R j〉, (71b)

Cαβ,i j (R) = 〈0i|(r − τi )α (r − R − τ j )β |R j〉, (71c)

Dαβ,i j (R) = 〈0i|(r − τi )αH (r − R − τ j )β |R j〉. (71d)

Equation (69) concludes the Wannier interpolation. Once
the Wannier-gauge matrices are known on the fine mesh,
they are used to compute the optical matrix elements in the
Hamiltonian gauge via the interpolation formulas obtained in
Sec. IV B 1. To this end, we note that the internal velocity
V I

α is also needed, particularly to compute the internal parts of
the Berry connection [Eq. (57b)] and of Kαβ [Eq. (60b)]. To
evaluate V I

α from Eq. (58) one needs to differentiate HW(k),
which can be easily done with the help of Eq. (69),

∂αHW
i j (k) = i

∑
R

(R + τ j − τi )αeik·(R+τ j−τ i )Hi j (R). (72)

In addition, to evaluate KE
αβ from Eq. (60c) one also needs

FW
αβ . Starting from its definition in Eq. (55) and again using

Eq. (69), one finds

FW
αβ,i j (k) = i

∑
R

(R + τ j − τi )αeik·(R+τ j−τ i )Aβ,i j (R)

− (α ↔ β ). (73)

Once all the necessary ingredients are assembled, σαβγ is
computed using Eq. (13).

The way we have presented the interpolation of orbital
matrices follows Ref. [24], except for the inclusion of the
Wannier centers in the Fourier phase factors. In this formu-
lation, the real-space orbital matrices contain, in each factor
depending on r, the position of only one of the two Wannier
centers involved, either τ i or R + τ j : see Eq. (71).

Recently, an improved procedure was introduced [42],
whereby the Wannier centers τ i and R + τ j are replaced
by their average (R + τ i + τ j )/2. This formulation preserves
symmetries better, has a faster convergence with respect to
the size of the coarse q grid, and preserves the generalized
Hermiticity conditions in Eqs. (21) and (54), which in the
standard approach [24] are only satisfied in the limit of a dense
q grid. Our implementation uses this revised procedure, which
we discuss in Appendix C for completeness.

V. RESULTS

In this section we present our results for the optical activ-
ity of selected materials, and compare with previous works.
The workflow is summarized in Fig. 3, and a more com-
plete schematic is provided in the Supplemental Material
[43].

We start with an ab initio ground-state calculation per-
formed using QUANTUM ESPRESSO, which provides the
Kohn-Sham Bloch eigenstates and energy eigenvalues on the
coarse q mesh. This is followed by the wannierization of
the low-energy ab initio electronic structure. In this step,
the ab initio matrices listed in Table I are computed with
PW2WANNIER90, and the wannierization matrices W̃ (q) in
Eq. (39) are subsequently generated by WANNIER90. The final
step—the Wannier interpolation of σαβγ (ω)—is carried out
using the WANNIERBERRI code [37], where the methodology
presented in this work was implemented.

All the materials studied are either semiconductors or insu-
lators, thus only the Fermi-sea terms in Eq. (13) and in Fig. 1

045201-9



ANDREA URRU et al. PHYSICAL REVIEW B 112, 045201 (2025)

FIG. 3. Workflow of the computational approach used for evaluating the spatially dispersive optical conductivity.

contribute at zero electronic temperature. Moreover, since all
the materials studied are nonmagnetic, the spin contribution
to σαβγ vanishes in the absence of SOC. With SOC, the spin
terms are found to be negligible.

A. Computational details

1. Density-functional theory calculations

Density-functional theory (DFT) electronic-structure cal-
culations are performed for wurtzite GaN, trigonal Se and Te,
and α-SiO2 using QUANTUM ESPRESSO. The local density ap-
proximation (LDA) is employed for GaN, and the generalized
gradient approximation (GGA) for Se and α-SiO2. LDA cal-
culations use the Perdew-Zunger [44] parametrization of the
exchange-correlation energy, while GGA calculations use the
Perdew-Burke-Ernzerhof (PBE) functional [45]. In the case of
Te, exact Fock exchange is added on top of the PBE exchange-
correlation energy, adopting a Heyd-Scuseria-Ernzerhof [46]
hybrid functional.

The ions are described via scalar-relativistic and fully-
relativistic optimized norm-conserving Vanderbilt pseudopo-
tentials [47]. Specifically, for GaN, Se, and α-SiO2 we use
scalar-relativistic pseudopotentials (valence configurations:
3d104s24p1 for Ga, 2s22p3 for N, 3d104s24p4 for Se, 3s23p2

for Si, and 2s22p4 for O), whereas for Te we use both
scalar-relativistic and full-relativistic pseudopotentials (va-
lence configuration 4d105s25p4). The pseudo-wavefunctions
are expanded in plane-wave basis sets with kinetic energy
cut-offs of 80 Ry for GaN, 60 Ry for Te, and 100 Ry for both
Se and α-SiO2.

The BZ is sampled using �-centered Monkhorst-Pack
meshes [48]. The mesh size is 6 × 6 × 4 for GaN, 6 × 6 × 6
for Te and α-SiO2, and 8 × 8 × 8 for Se.

2. Construction of Wannier functions

For the construction of Wannier functions using
WANNIER90, we choose atom-centered s and p trial orbitals
for each atomic species in each material studied; the one
exception is oxygen in α-SiO2, for which we use p orbitals
only. These choices correspond to the dominant orbital
character of the highest occupied and lowest unoccupied
bands. The disentanglement procedure [34] is used when
necessary. Details about the ranges of the frozen and
disentanglement energy windows adopted for each material
are provided in the Supplemental Material [43].

The resulting Wannier functions reproduce the low-energy
ab initio electronic structure around the Fermi level. As dis-
cussed in Sec. IV B 1, this allows us to compute the absorptive
part of the low-frequency optical conductivity σαβγ (ω) with-
out any band-truncation errors. On the other hand, the reactive
part of the calculated optical response does suffer from these
errors.

The Wannier functions generated by WANNIER90 slightly
break crystal symmetries, because symmetry is not enforced
in the wannierization algorithm. To ensure that the calcu-
lated σαβγ tensor complies with the point-group symmetry,
two seperate symmetrization procedures are applied during
Wannier interpolation, as described in Appendix D 1.

When studying in Appendix D 2 the effect of band-
truncation errors on the rotatory power of Se, we need to
wannierize a number of empty states that is larger than those
accessible by using only s and p trial orbitals. To that end, we
exploit the “selected columns of the density matrix” (SCDM)
method [49,50], as implemented in WANNIER90 [51]. This
method is used as a guide to identify the centers of the
Wannier functions that span the additional conduction bands.
We interpret those Wannier functions as interstitial orbitals,
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FIG. 4. Absorptive part of the polar optical activity spectrum of
GaN, calculated with two different broadening parameters η and
broken down into E1, M1, and E2 contributions. Dashed lines in-
dicate the decomposition used in Ref. [20] (where the E1 terms were
denoted as “band dispersion”), while solid lines indicate the revised
decomposition presented in this work.

for which s-like trial orbitals are used. A more detailed expla-
nation is provided in the Supplemental Material [43].

B. Polar optical activity of wurtzite GaN

Wurtzite is a polar structure with point group 6mm, whose
gyration tensor is purely antisymmetric and therefore shows
neither optical rotation nor circular dichroism (Sec. II A).
With the polar axis along z, the nonzero tensor components
are Gxy = −Gyx(= Gz ), which map onto dz via Eq. (8). We
evaluate as a function of frequency its absorptive (imaginary)
part, and compare it with a recent Kubo-formula calculation
[20] that used a sum-over-states approach (Sec. III).

Figure 4 shows the calculated spectrum from 1 to 3 eV
(solid black line), broken down into E1, M1, and E2 terms
(solid colored lines). This decomposition, depicted schemat-
ically in Fig. 1 and detailed in Appendix A, is somewhat
different from that in Ref. [20], which is also shown in Fig. 4
as calculated in the present work (dashed lines). The spec-
trum in Fig. 4(a) is obtained using an interpolation mesh of

198 × 198 × 132 k points. Since the details of the spectrum at
frequencies near the band gap are particularly sensitive to the
broadening parameter η, we adopt η = 0.1 eV as in Ref. [20]
for a better comparison. Both the relative peak positions and
their heights are in good quantitative agreement with that
work, as shown in Fig. S5 within the Supplemental Material
[43]. The main differences arise in the E1 contribution at fre-
quencies above the band gap, which could possibly be caused
by the band truncation error inherent to the method used in
Ref. [20], and to the different sampling density of reciprocal
space.

The M1 and E2 terms cancel to a large extent in Fig. 4(a),
so that Im dz(ω) follows closely the E1 term [20]. However,
E2 has a sharper rise compared to M1, which makes the
cancellation incomplete for frequencies just below the gap,
pushing the resonance peak to lower frequencies by about
0.05 eV. This can be better appreciated by reducing the broad-
ening parameter to η = 0.04 eV and sampling the BZ on a
denser 300 × 300 × 200 mesh to ensure convergence. The
resulting spectrum in Fig. 4(b) reveals an additional E2 feature
close to the band-gap frequency.

C. Rotatory power of tellurium, selenium, and α-quartz

Recently, the rotatory power of several chiral materials was
computed using both Kubo [20] and DFPT [22] methods. The
latter is at present restricted to the low-frequency limit, but
it includes local-field effects that are instead neglected in the
former. As mentioned earlier, such effects were found to play
a substantial role in the optical rotation of certain materials
[22,23].

Here, we compute the rotatory power of trigonal Te, trigo-
nal Se, and α-SiO2. The results for Te are compared with the
Kubo calculations of Ref. [20] and with experimental mea-
surements [27,28]. In the case of Se and α-SiO2, we compare
with the DFPT results of Ref. [22].

All three materials are chiral, with their left- and right-
handed enantiomorphs crystallizing in the P3221 and P3121
space groups, respectively (point group 32). The gyration ten-
sor is diagonal, with Gxx = Gyy �= Gzz. According to Eq. (6),
the rotatory power for light propagating along the trigonal z
axis is given by

ρ(ω) = ω2

2c2
Re Gzz(ω). (74)

The calculations reported below were carried out for the left-
handed enantiomorphs.

1. Tellurium

Figure 5(a) shows the rotatory-power spectrum of tel-
lurium, calculated both with and without SOC using a 200 ×
200 × 150 interpolation mesh, together with experimental
data from Refs. [27,28]. Due to the large atomic number of Te,
SOC plays a substantial role. The spectrum computed without
SOC overestimates the experimental one, while that obtained
with SOC underestimates it.

The band gap is important in determining ρ(ω). Since
reactive and absorptive responses satisfy Kramers-Krönig re-
lations, ρ(ω) shows a resonance at the gap frequency where
circular dichroism sets in. This, in turn, affects the rate at
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FIG. 5. Calculated and experimental rotatory power of left-
handed trigonal Te for light propagating along the trigonal axis.
(a) Raw calculated data compared to experimental data [27,28] and to
a previous theoretical calculation [20]. For a meaningful comparison
with Ref. [20], we use the same broadening parameter, η = 35 meV,
as in that work. (b) Same data as in (a), with a rescaled frequency
axis for the theoretical results, to align the ab initio energy gap with
the experimental one.

which ρ(ω) increases at subgap frequencies. An accurate band
gap is therefore important to obtain a spectrum in good agree-
ment with experiment. For this reason, our calculations were
performed with a hybrid functional (see Sec. V A), which
typically provides improved band gaps compared to LDA and
PBE. This is particularly true for Te, where hybrid-functional
calculations with (without) SOC give a band gap of 0.42 eV
(0.342 eV), to be compared with the experimental value of
0.323 eV [52]. Instead, the PBE band gap is 0.015 eV [20], 20
times smaller than experiment.

Even though hybrid functionals provide a substantially im-
proved electronic structure, the band gap obtained with SOC
is still 0.1 eV larger than experiment. This pushes up the ρ(ω)
resonance resulting in a slower increase at subgap frequencies,
which could explain the underestimation of the experimental
spectrum. To test this conjecture, in Fig. 5(b) we renormalize
the frequency axis to align the resonance frequency with the
experimental band gap. This ad hoc correction significantly
improves the results obtained with SOC.

FIG. 6. Calculated rotatory power of trigonal Se for light propa-
gating along the trigonal axis. (Inset) Rotatory power divided by ω2,
which tends to a nonzero constant at low frequencies.

2. Selenium and α-quartz

The rotatory power of both elemental Se (isostructural
to Te) and α-SiO2 is strongly affected by local-field effects
[22,23]. The ω → 0 limit of the quantity ρ̄(ω) = ρ(ω)/ω2

introduced in Eq. (7) was computed in Ref. [22] using a
DFPT approach. It was found that the removal of local-field
effects reduces ρ̄(0) by factors of 4 and 7 for Se and α-SiO2,
respectively.

Figure 6 shows our results for the rotatory power of Se, ob-
tained with a 50 × 50 × 36 interpolation mesh, much coarser
than for Te owing to the larger band gap (≈0.96 eV). The
quantity ρ̄(ω) is plotted in the inset, and its value at ω = 0
is in agreement with that obtained in Ref. [22] without self-
consistent fields, see Table II [53]. To calculate the rotatory
power of α-SiO2, we use a 100 × 100 × 100 interpolation
grid. Also in this case, the value of ρ̄(0) is in reasonable agree-
ment with the one obtained in Ref. [22] without self-consistent
terms.

Since optical rotation is a reactive response, its calculation
with our methodology is affected by band-truncation errors
(see Sec. IV B 1). It is therefore important to assess the
convergence of ρ(ω) with respect to the number of conduction
bands spanned by the Wannier basis. In Appendix D 2 we
present such a convergence test for Se.

VI. SUMMARY AND OUTLOOK

Wannier interpolation is a fast and accurate technique
for computing k-dependent quantities across the BZ, using
Wannier functions as a tight-binding-like representation of

TABLE II. Static limit of ρ̄(ω) = ρ(ω)/ω2 in comparison with
the results of Ref. [22] without and with local fields (LF).

This work Ref. [22] w/o LF Ref. [22] w/LF

Se 18.0 17.8 74.5
α-SiO2 −1.1 −0.7 −4.9
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the low-energy ab initio electronic structure. The method
is widely used to evaluate the k-space Berry curvature and
its BZ integral—the intrinsic anomalous Hall conductivity
[24]. Other applications include computing σαβ (ω) (the op-
tical conductivity in the E1 approximation) [25,54], and the
ground-state orbital magnetization [26,55]. For a comprehen-
sive review, see Ref. [56].

In this work, we developed and implemented a Wannier in-
terpolation scheme to evaluate the Kubo-Greenwood formula
(13) for σαβγ (ω), the optical conductivity of bulk crystals at
first order in the wavevector of light. This quantity contains
not only E1 matrix elements as in the case of the Berry
curvature and σαβ (ω), but also M1 and E2 matrix elements.
The latter are trickier to evaluate, as they involve virtual
interband transitions; by expressing them as k derivatives,
the intermediate band summations were circumvented, avoid-
ing a source of truncation errors that was present in a prior
ab initio implementation [20].

The proposed method is particularly well suited to compute
the absorptive part of σαβγ (ω) (e.g., circular dichroism) in
the energy range covered by the Wannier basis, which is
done without introducing any band-truncation errors. On the
other hand, such errors do occur for the reactive response
(e.g., rotatory power), which is effectively evaluated as a trun-
cated Kramers-Krönig transform of the absorptive response.
Methods based on DFPT [22] seem better suited to obtain the
reactive response with high accuracy, as they completely avoid
band summations and explicitly account for local-field effects.
Nevertheless, our tests indicate that the proposed method can
give semiquantitative results for the rotatory power with a
manageable number of Wannier functions.

The method was applied to the optical activity of insulators
and semiconductors at zero temperature, for which the Fermi-
surface terms in Eq. (13)—both intraband and interband—do
not play any role. In metals and doped semiconductors such
terms do contribute to the optical activity, yielding in the static
limit the kinetic magnetoelectric effect (the bulk version of the
Edelstein effect at surfaces) [21]. The low-frequency optical
activity of conductors arising from these terms is an inter-
esting topic for future studies employing the present method.
Another promising direction is to consider the time-odd (sym-
metric) part of σαβγ (ω); that part becomes nonzero in acentric
antiferromagnetic materials, giving rise to characteristic opti-
cal and static responses.
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APPENDIX A: MULTIPOLE-LIKE EXPANSION OF THE
OPTICAL MATRIX ELEMENTS IN CRYSTALS

In this Appendix we expand to first order in q the combi-
nation of optical matrix elements entering the Kubo formula
for the optical conductivity σαβ (ω, q), and express the result
in a multipole-like form. We leave out spin terms that are
straightforward, and focus on the more subtle orbital terms.

1. Finite systems

Before considering bulk crystals, let us work out the stan-
dard multipole expansion for finite systems. We start from the
paramagnetic current operator written in Fourier space, and
expand it to first order in q,

Jα (q) = −|e|
2

(
vαe−iq·r + e−iq·rvα

)
� −|e|vα + i|e|

2
qβ (vαrβ + rβvα ). (A1)

Next, we take its matrix elements in the eigenstate basis,

〈l|Jα (q)|n〉 � −|e|〈l|vα|n〉 + i|e|
2

qβ

∑
p

(〈l|vα|p〉〈p|rβ |n〉

+ 〈l|rβ |p〉〈p|vα|n〉)

= i|e|ωnl〈l|rα|n〉 + |e|
2

qβ

×
∑

p

(ωpl〈l|rα|p〉〈p|rβ |n〉

+ ωnp〈l|rβ |p〉〈p|rα|n〉), (A2)

where the second equality follows from the relation

Vα,ln ≡ 〈l|vα|n〉 = iωln〈l|rα|n〉. (A3)

Writing the antisymmetric part of the q-linear term according
to the first line of Eq. (A2) and the symmetric part according
to the second, one finds

〈l|Jα (q)|n〉 � −iωnldα,ln + i

(
mαβ,ln + i

2
ωnlqαβ,ln

)
qβ,

(A4)

where

dα,ln = −|e|〈l|rα|n〉, (A5)

mαβ,ln = −|e|
2

〈l|rαvβ − rβvα|n〉, (A6)

qαβ,ln = −|e|〈l|rαrβ |n〉 (A7)
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are the E1, M1, and E2 matrix elements, respectively.
Equation (A4) is analogous to the Fourier-transformed
multipole expansion of a current distribution [5,19,58],

Jα (ω, q) � −iωdα (ω) + i

[
mαβ (ω) + i

2
ωqαβ (ω)

]
qβ. (A8)

The matrix elements of the current operator enter the Kubo
formula in the combination

〈n|Jα (q)|l〉〈l|Jβ (−q)|n〉, (A9)

which, in view of Eq. (A4), can be written at first order in
q as

〈n|Jα (q)|l〉〈l|Jβ (−q)|n〉 � e2Vα,nlVβ,ln + ie2(Vα,nlTβγ ,ln

− Vβ,lnTαγ ,nl )qγ , (A10)

where the velocity matrix Vα is related to the E1 matrix
by Eq. (A3), and the antisymmetric and symmetric parts of
Tαβ give the M1 and E2 matrices, respectively. All in all,
we have

ωlndα,ln = i|e|Vα,ln, (A11a)

mαβ,ln = |e|
2

(Tαβ,ln − Tβα,ln), (A11b)

ωlnqαβ,ln = i|e|(Tαβ,ln + Tβα,ln). (A11c)

2. Bulk crystals

When the expansion (A10) is carried out in the Bloch
eigenstate basis, one faces the problem that k derivatives of
cell-periodic Bloch states do not transform covariantly under
gauge transformations. By introducing covariant derivatives
each term in the expansion becomes gauge covariant [21], and
one finds that the matrix Tαβ appearing in Eq. (A10) is given
by Eq. (17) [59]. Using Eq. (18) for Kαβ and comparing with
Eqs. (32) and (A11) leads to

dα,ln = −i|e|〈ul |Dαun〉 = −|e|Aα,ln, (A12)

mαβ,ln = |e|
2ih̄

〈Dαul |H − ε̄ln|Dβun〉

+ |e|
2

v̄α,lnAβ,ln − (α ↔ β ), (A13)

ωlnqαβ,ln = − |e|
2

ωln〈Dαul |Dβun〉
+ i|e|v̄α,lnAβ,ln + (α ↔ β ), (A14)

with ε̄ln = (εl + εn)/2 and v̄α,ln given by Eq. (14e). We denote
these multipole-like bulk tensors as d, m, and q to distinguish
them from the standard multipoles d , m, and q in Eqs. (A5)–
(A7), which become ill-defined for extended systems.

The expressions above for mαβ and qαβ differ from the ones
in Ref. [21] by the presence of the off-diagonal v̄αAβ terms.

If Eq. (33) is used for Kαβ instead of Eq. (18), the following
sum-over-states formulas are obtained:

mαβ,ln = i|e|
4

∑
p�=l

Vα,l pVβ,pn − (α ↔ β )

ωl p

− i|e|
4

∑
p�=n

Vα,l pVβ,pn − (α ↔ β )

ωpn
(A15)

and

ωlnqαβ,ln =|e|
2

∑
p�=l

Vα,l pVβ,pn + (α ↔ β )

ωl p

+ |e|
2

∑
p�=n

Vα,l pVβ,pn + α ↔ β )

ωpn
. (A16)

In both equations, only the terms with vanishing denomina-
tors are excluded. Instead, in the sum-over-state formulas of
Ref. [21] an additional nonsingular term is excluded from
each summation when l �= n [60].

Interband orbital moments are needed to evaluate the or-
bital Hall conductivity, and the expression used in the recent
literature [61,62] agrees with the sum-over-states formula of
Ref. [21]. The impact on the orbital Hall conductivity of the
additional off-diagonal term in Eqs. (A13) and (A15) remains
to be studied. As it contains the band velocity, that term is
“itinerant” (it vanishes for crystals composed of nonoverlap-
ping units); its contribution should therefore be enhanced in
crystals with strongly dispersive bands.

In closing, we note that a different expression for the
interband orbital moment has been proposed within the
semiclassical wavepacket formalism [63]. That expression is
non-Hermitian, and its Hermitian part almost agrees with
Eq. (A13), the only difference being that the itinerant v̄αAβ

term is twice as large. Upon integrating over the BZ and
performing an integration by parts, that term becomes an
interband version of the Berry-curvature contribution to the
ground-state orbital magnetization of a non-Chern insulator,
which reads [64]

Mαβ =
occ∑
n

∫
[dk]

(
mαβ,nn − |e|

h̄
εnFαβ,nn

)
, (A17)

with Fαβ given by Eq. (27) and mαβ by Eq. (A13) (Fαβ,nn

and mαβ,nn are the Berry curvature and the intrinsic orbital
moment of a Bloch state, respectively).

APPENDIX B: DERIVATION OF Eq. (60) FOR KH
αβ

We want to evaluate by Wannier interpolation the matrix
Kαβ defined by Eq. (18). Denoting its first term as (1/ih̄)Zαβ

and expanding the covariant derivatives according to Eq. (51),
we find

ZH
αβ,ln =

∑
i, j

U†
li

〈
∂αuW

i

∣∣H − εl

∣∣∂βuW
j

〉
U jn + i

∑
i

U†
li

〈
∂αuW

i

∣∣H − εl

∣∣uW
n

〉
aE

β,n

− i
∑
p, j

U†
l j

〈
∂αuW

j

∣∣H − εl |uH
p 〉AI

β,pn − i
∑

j

aE
α,l

〈
uH

l

∣∣H − εl

∣∣∂βuW
j

〉
U jn

+ i
∑
p, j

AI
α,l p

〈
uH

p

∣∣H − εl

∣∣∂βuW
j

〉
U jn + (εl − εn)AI

α,lnaE
β,n +

∑
p

(εp − εl )A
I
α,l pAI

β,pn, (B1)
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where Eq. (44) was used to eliminate two terms and to sim-
plify two other terms.

Next, use Eq. (43) for the Hamiltonian-gauge Bloch states
together with the definitions in Eq. (53) and with the prescrip-
tion (50) for obtaining external objects. Equation (B1) then
becomes

ZH
αβ,ln =DE

αβ,ln − εlCE
αβ,ln − [(

BE
α,nl

)∗ − εlAE
α,ln

]
aE

β,n

+
∑

p

[(
BE

α,pl

)∗ − εlAE
α,l p

]
AI

β,pn

− aE
α,l

(
BE

β,ln − εlAE
β,ln

)
+

∑
p

AI
α,l p

(
BE

β,pn − εlAE
β,pn

) + (εl − εn)AI
α,lnaE

β,n

+
∑

p

(εp − εl )A
I
α,l pAI

β,pn. (B2)

To proceed further, assume that both εl and εn—but not
necessarily εp—lie inside the frozen window, and use

BE
α,np = εnAE

α,np, ∀p and εn ∈ frozen window. (B3)

This relation, which follows from H |uH
n 〉 = εn|uH

n 〉, holds ex-
actly when the interpolation point k falls on the ab initio mesh
(k = q), and it holds to an excellent approximation otherwise;
when εn lies outside the frozen window |uH

n 〉 ceases to be an
eigenstate of H , and as a result Eq. (B3) does not hold even
approximately.

Under the stated assumption, Eq. (B3) can be used in the
first and third lines of Eq. (B2); it makes the third line vanish,
and it turns the quantity inside square brackets in the first
line into (εn − εl )AE

α,ln, with AE
α the off-diagonal part of AE

α .
Separating ZH

αβ into internal, external and cross terms we find

Z I
αβ,ln =

∑
p

(εp − εl )A
I
α,l pAI

β,pn, (B4)

ZE
αβ,ln = DE

αβ,ln − εlCE
αβ,ln + (εl − εn)AE

α,lnaE
β,n, (B5)

ZX
αβ,ln =

∑
p

AI
α,l p

(
BE

β,pn − εlAE
β,pn

) +
∑

p

[(
BE

α,pl

)∗

− εlAE
α,l p

]
AI

β,pn + (εl − εn)AI
α,lnaE

β,n. (B6)

The matrix KH
αβ defined by Eq. (18) can be similarly

decomposed. The internal part of its first term is given by
Eq. (B4) divided by ih̄, and to evaluate its second term we use
Eqs. (57) and (59) for the interband Berry connection and for
the band velocity, respectively. Collecting all internal terms
we obtain [compare with Eq. (36)]

KI
αβ,ln = 1

ih̄

∑
p

(εp − εl )A
I
α,l pAI

β,pn + V I
α,ll A

I
β,ln

=
∑
p�=l

V I
α,l pAI

β,pn + V I
α,ll A

I
β,ln

=
∑

p

V I
α,l pAI

β,pn, (B7)

which corresponds to Eq. (60b).

To evaluate the external part of KH
αβ , use Eqs. (B5) and (57)

in Eq. (18); after converting band energies and band velocities
to matrix form, we obtain Eq. (60c).

Finally, to evaluate the cross term KX
αβ = (1/ih̄)ZX

αβ , split
AE

β and BE
β into interband and intraband parts as

AE
β,pn = AE

β,pn + δpnaE
β,n, (B8)

BE
β,pn = BE

β,pn + δpnεnaE
β,n (B9)

(the second relation is only valid for εn inside the frozen
window). Inserting these expressions in Eq. (B6) gives

ZX
αβ,ln =

∑
p

AI
α,l p

(
BE

β,pn − εlA
E
β,pn

)

+
∑

p

[(
BE

α,pl

)∗ − εlA
E
α,l p

]
AI

β,pn

+ εnAI
α,lnaE

β,n−εl A
I
α,lnaE

β,n + εl a
E
α,l A

I
β,ln

− εl a
E
α,l A

I
β,ln + (εl − εn)AI

α,lnaE
β,n. (B10)

The terms in the third and fourth line cancel out, and dividing
the first two lines by ih̄ we arrive at Eq. (60d).

APPENDIX C: IMPROVED SCHEME FOR EVALUATING
THE REAL-SPACE ORBITAL MATRICES

Here, we describe the improved procedure to evaluate
the real-space matrices [42], mentioned in Sec. IV B 3,
that is used in our implementation. The idea is to in-
troduce recentered real-space matrices where the Wannier
centers τ i and R + τ j in Eq. (71) are both replaced by their
average

r̄i j (R) = 1
2 (R + τ j + τ i ), (C1)

resulting in

Āα,i j (R) = 〈0i|[r − r̄i j (R)]α|R j〉, (C2a)

B̄α,i j (R) = 〈0i|H[r − r̄i j (R)]α|R j〉, (C2b)

C̄αβ,i j (R) = 〈0i|[r − r̄i j (R)]α[r − r̄i j (R)]β |R j〉, (C2c)

D̄αβ,i j (R) = 〈0i|[r − r̄i j (R)]αH[r − r̄i j (R)]β |R j〉. (C2d)

Once these recentered matrices have been computed as de-
scribed below, the original ones in Eq. (71) are recovered
using

Aα,i j (R) = Āα,i j (R), (C3a)

Bα,i j (R) = B̄α,i j (R) − dα,i j (R)Hi j (R), (C3b)

Cαβ,i j (R) = C̄αβ,i j (R) + dα,i j (R)Āβ,i j (R)

−dβ,i j (R)Āα,i j (R), (C3c)

Dαβ,i j (R) = D̄αβ,i j (R) + dα,i j (R)B̄β,i j (R)

−dβ,i j (R)B̄α,i j (R)

−dα,i j (R)dβ,i j (R)Hi j (R), (C3d)

where

di j (R) = 1
2 (R + τ j − τ i ). (C4)
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Note that the last term in Eq. (C3d) is symmetric in αβ; since
only the antisymmetric part of Dαβ contributes to σαβγ , that
term drops out.

The next step is to evaluate the recentered matrices via the
approximate identity

r − r0 � i
∑

b

wbbe−ib·(r−r0 ), (C5)

which follows from expanding the exponential to first order,
and then using the relation

∑
b wbbαbβ = δαβ [33] (the b

vectors connect neighboring points on the q-grid, and wb

are weight factors). Equation (C5) provides an approximate
representation of the position operator on a periodic supercell
commensurate with the Wannier functions given by Eq. (37).
As that representation is most accurate near r0 [65], the choice
r0 = r̄i j (R) (halfway between the Wannier centers 〈0i|r|0i〉
and 〈R j|r|R j〉) is optimal for the purpose of evaluating orbital
matrix elements between |0i〉 and |R j〉.

To proceed, write

(r − r0)|R j〉 � i
∑

b

wbbe−ib·(r−r0 )|R j〉, (C6a)

〈0i|(r − r0) � −i
∑

b

wbb〈0i|eib·(r−r0 ), (C6b)

plug these expressions into Eq. (C2) setting r0 = r̄i j (R), and
then use Eqs. (37) and (38) to express the WFs in terms of the
ab initio Bloch eigenfunctions. Invoking the orthonormality
relation

〈ψq|χq′ 〉 = Nδq,q′ 〈uq|vq〉 (C7)

between Bloch-like states ψq(r) = eiq·ruq(r) and χq′ (r) =
eiq′ ·rvq′ (r), one arrives at

Āα,i j (R) � i

N

∑
b,q

wbbαe−i(q+b/2)·(R+τ j−τ i )

× [W†(q)M(q, q + b)W (q + b)]i j, (C8a)

B̄α,i j (R) � i

N

∑
b,q

wbbαe−i(q+b/2)·(R+τ j−τ i )

× [W†(q)H(q)M(q, q + b)W (q + b)]i j,

(C8b)

C̄αβ,i j (R) � 1

N

∑
b,b′,q

wbwb′bαb′
βe−i(q+b/2+b′/2)·(R+τ j−τ i )

× [W†(q + b)M(q + b, q + b′)W (q + b′)]i j,

(C8c)

D̄αβ,i j (R) � 1

N

∑
b,b′,q

wbwb′bαb′
βe−i(q+b/2+b′/2)·(R+τ j−τ i )

× [W†(q + b)N(q + b, q + b′)W (q + b′)]i j,

(C8d)

where H,M, and N are the ab initio matrices introduced in
Eq. (67), and W is the wannierization matrix of Eq. (38).

FIG. 7. Absorptive part of the polar optical activity spectrum
of GaN obtained with different levels of symmetrization: no
symmetrization (red dashed-dotted line), symmetrization of the real-
space matrices (blue dashed line), symmetrization both in real space
and in reciprocal space (black solid line). The latter is the same as
the black solid line in Fig. 4(a).

APPENDIX D: NUMERICAL TESTS

1. Symmetrization

As mentioned in Sec. V A 2, the Wannier functions em-
ployed in this work do not fully respect crystal symmetries.
Here, we test the two symmetrization procedures that we use
to correct for this slight symmetry breaking in the calculation
of σαβγ (ω). The first is symmetrization of the real-space ma-
trices defined in Sec. IV B, for which we follow the approach
first implemented in Ref. [66] for the Hamiltonian matrix, and
later generalized to other matrices as well [67]. The second,
performed in reciprocal space, uses point-group symmetry
to reduce the k summations to the irreducible wedge of the
BZ [37].

To check that the above symmetrization procedures are
properly implemented, we calculate in three different ways
for GaN the quantity Im dz(ω) displayed in Fig. 4: (i) no
symmetrization, (ii) symmetrization for the real-space ma-
trix elements but no symmetrization in reciprocal space, and
(iii) symmetrization in both real and reciprocal space. The re-
sults are shown in Fig. 7. If the Wannier functions respected all
point-group symmetries, the three curves would be identical;
the small deviations among them suggest that the symmetry
breaking is minor.

Symmetry breaking in Wannier interpolation can be
avoided altogether by using symmetry-adapted Wannier
functions [68]. However, their current implementation in
WANNIER90 has two limitations: It does not allow for a frozen
window in the disentanglement procedure, and it does not take
SOC into account. These limitations prevented us from us-
ing symmetry-adapted Wannier functions in the present work
[69].
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2. Convergence of rotatory power vs wannierized
conduction states

As discussed in Sec. IV B 1, in our Wannier interpolation
scheme the reactive part of σαβγ (ω) is affected by a band-
truncation error. To assess its magnitude, here we recalculate
the rotatory power of Se using augmented sets of Wannier
functions.

The results for Se reported in Sec. V C 2 were obtained
with 12 Wannier functions per primitive cell, constructed from
atom-centered s and p trial orbitals. This Wannier basis covers
the nine valence bands and the three lowest conduction bands.
To describe higher conduction bands, we use additional s-like
Wannier functions centered at interstitial sites, identified using
the SCDM method (see the Supplemental Material [43] for
more details). In this way, we are able to describe a total of
18 (9 valence and 9 conduction) and 24 (9 valence and 15
conduction) bands.

In Fig. 8 we display the quantity ρ̄(ω) = ρ(ω)/ω2 defined
in Eq. (7), computed using the three Wannier basis sets; the
curve corresponding to 12 Wannier functions is the same as in
the inset of Fig. 6. The convergence with respect to the number

FIG. 8. Dependence on the size of the Wannier-function (WF)
basis of the calculated rotatory power of trigonal Se divided by ω2.

of Wannier functions is somewhat slow and nonmonotonic,
with ρ̄(ω) changing by roughly a factor of two when going
from 18 to 24 orbitals.
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