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The intense theoretical and experimental interest in topological insulators and semimetals has established band
structure topology as a fundamental material property. Consequently, identifying band topologies has become
an important, but often challenging, problem, with no exhaustive solution at the present time. In this work we
compile a series of techniques, some previously known, that allow for a solution to this problem for a large set
of the possible band topologies. The method is based on tracking hybrid Wannier charge centers computed for
relevant Bloch states, and it works at all levels of materials modeling: continuous k · p models, tight-binding
models, and ab initio calculations. We apply the method to compute and identify Chern, Z2, and crystalline
topological insulators, as well as topological semimetal phases, using real material examples. Moreover, we
provide a numerical implementation of this technique (the Z2Pack software package) that is ideally suited for
high-throughput screening of materials databases for compounds with nontrivial topologies. We expect that our
work will allow researchers to (a) identify topological materials optimal for experimental probes, (b) classify
existing compounds, and (c) reveal materials that host novel, not yet described, topological states.
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I. INTRODUCTION

Topology studies the properties of geometric objects that
are preserved under smooth deformations, and divides these
objects accordingly into distinct topological classes. In the
past decade the principles of topology were applied to crys-
talline solids, where electronic bands can have a topological
characterization [1–4]. For example, in band insulators the
occupied bands are separated from the unoccupied ones by
an energy gap, and form a well-defined manifold in Hilbert
space. Certain geometric properties can be defined for this
manifold, giving rise to a topological classification of band
insulators [5–7] and to the notion of topological insulators
[2,3]. The physical equivalent of the mathematical notion of
smoothly connectable manifolds in this case is the possibility
to adiabatically transform one gapped manifold into another.
This means that if two gapped Hamiltonians belong to the
same topological class, they can be adiabatically connected
without a direct closure of the band gap.

The topological classification of insulators can be en-
riched by an additional symmetry constraint on the classified
Hamiltonians. In this case, two systems are considered to
be topologically equivalent if their Hamiltonians can be
adiabatically connected by a path along which the band gap
remains open and the symmetry is preserved. Time-reversal-
(TR-) symmetric [1,8–12], antiferromagnetic [13,14], and
crystalline topological insulators [15–19] are examples of
these symmetry-enriched topological classifications.

Unlike other observables, quantum numbers describing
the topology of a state do not necessarily correspond to
eigenvalues of some Hermitian operator. Instead, a different
type of quantum numbers, topological invariants, has to be

defined in such a way that a distinct number is assigned to each
class. The task of identifying topological states then reduces to
defining sensible topological invariants that discern different
classes. Finding ways to compute these invariants becomes
of major importance in the field. A final predictive theory of
all topological invariants for all existing topological classes is
missing and, due to the multitude of symmetry space groups
and possible orbitals at the Fermi level, seems to be out of
reach at the present time.

The ability to distinguish distinct topological classes is not
only of theoretical interest, but also allows for the prediction
of physical phenomena in real materials. For example, in two
dimensions generic insulators with no symmetries apart from
the fundamental charge conservation are classified according
to the value of the (first) Chern number C [20]. This is a
unique characteristic of the occupied manifold. Insulators with
C �= 0, called Chern insulators, realize the integer quantum
Hall effect in the absence of an external magnetic field [21,22],
and their Hall conductance is related to the Chern number as
σxy = Ce2/h [23,24], where e is the electron charge and h is
the Planck constant.

The invariants of symmetry-protected band topologies are
usually more complex, giving rise to a variety of physical phe-
nomena such as the existence of topologically protected sur-
face states [2,3], quantized magnetoelectric response [25,26],
the quantum spin Hall effect [1,8,27,28], and non-Abelian
quasiparticles for topological quantum computing [29–34] in
topological superconductors and superfluids [4].

Metals also allow for a topological characterization [4]. For
indirect band-gap semimetals, where the lower-lying bands are
gapped from the rest at each momentum in the Brillouin zone
(BZ), the topology of the lower-lying states is defined in a
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similar way to that of the occupied states in insulators. At the
surfaces of these metals, topologically protected (sometimes
discontinuous) surface states (Fermi arcs) can coexist with
projected bulk metallic states. For metals with a vanishing
direct band gap, topological invariants akin to those of
insulators can sometimes still be defined on surfaces/lines in
the BZ, on which the bands of interest are gapped. A suitable
choice of the chemical potential in a calculation also allows for
topological invariants to be defined for metallic Fermi surfaces
[35]. Nontrivial topology in semimetals, such as Weyl and
Dirac nodes, can significantly affect observed quantities, for
instance their electromagnetic response [36–46].

Many real material examples of topological insulators
and metals have been discovered so far. They realize some
of the theoretically predicted topological phases (see, for
example, Refs. [27,28,44,45,47–63]). The identification of
new candidate materials, better suited for experimental studies
and for realizing novel topologies, is a high priority for
the field, but again a common, exhaustive, search procedure
seems out of reach at the present time. Given the amount of
existing materials and current abilities in synthesis and growth
of novel compounds and heterostructures, it is desirable to
develop a methodology and software that would allow for a
routine computation of some of the various known topological
invariants in a way accessible to nonspecialists.

In this paper, we develop such a general methodology and
present a software package, Z2Pack, based on it. This software
can be used as a postprocessing tool with most existing
ab initio codes, or as a standalone tool for analyzing topolog-
ical structure of tight-binding or k · p Hamiltonians. Z2Pack
is ideally suited for a high-throughput search of topological
materials. It can also be used to design materials or devices
with specific topological properties and to identify not only
new topological materials, but also novel topological classes
thereof.

Topological invariants of superconductors in the
Bogoliubov–de Gennes (BdG) representation can also be
studied since they are also described by tight-binding or
k · p models, supplemented with the particle-hole symmetry.
For simple models, a specially designed online interface
is provided (http://z2pack.ethz.ch/online/), allowing one to
obtain topological invariants without installing the software.
The code represents one of the main results of this paper. We
hope it will bring the field of topological invariants in realistic
materials to every interested researcher.

The method is based on the concept of hybrid Wannier
functions (HWF) [64], which are localized in only one
direction, remaining delocalized in the others. It was shown
previously [19,65–70] that the flow of HWF charge centers
reveals the nontrivial topology of Chern [21,22] and TR-
symmetric [1,9] topological insulators and can be used to
compute the corresponding topological invariants.1

This technique can be generalized to crystalline topological
insulators [17–19] and topological semimetals [61,71–77].
For the former, spatial symmetries give rise to nontrivial

1Interestingly, HWF charge centers were argued to provide a
measure of the state topology in optical lattices [161,162]. Some
of these proposals were later verified experimentally [163].

band topologies. For the latter, the method allows iden-
tifying the presence of a topological phase by means of
defining and computing various invariants analogous to those
of topological insulators. In Weyl (Dirac) semimetals, for
example, the flow of HWF charge centers on certain surfaces
reveals the presence, location, and (for Weyl semimetals)
chirality of the Weyl (Dirac) points or lines. The universality of
this method allows us to develop a general strategy for finding
topological features in band structures.

The paper is structured as follows: A review of HWFs
is given in Sec. II, along with the representation of Chern
numbers in terms of HWF charge centers. In Sec. III, a general
strategy for identifying topological materials is described.
Illustrations for the application of this strategy to Chern,
TR-symmetric, and crystalline insulators are given in Sec. IV.
The extension of the HWF technique to topological semimetals
is developed and extensively illustrated in Sec. V. Finally,
we describe the numerical implementation of the method in
Sec. VI and present an outlook along with some concluding
remarks in Sec. VII.

II. HYBRID WANNIER CHARGE CENTERS
AND CHERN NUMBERS

Here, we review the definition and basic properties of HWFs
and their charge centers. A basic topological invariant, the
(first) Chern number, is cast in terms of the HWF charge
centers. The flow of HWF centers is introduced as the main
signature of nontrivial topology.

A. Hybrid Wannier functions

Electronic states in crystalline solids are most commonly
represented with Bloch functions ψnk(r) = 〈r|ψnk〉, which,
according to the Bloch theorem, take the form

ψnk(r) = eik·run(r), (1)

where n is the band index and

unk(r) = unk(r + R) (2)

is the lattice-periodic part of the wave function. Being essen-
tially modulated plane waves, Bloch functions are delocalized
in real space.

In many problems, however, the use of a local basis is
preferred. This basis is provided by Wannier functions (WFs)
wn(r − R) = 〈r|Rn〉 that are obtained from the Bloch states
by a Fourier transformation

|Rn〉 = V

(2π )d

∫
BZ

e−ik·R|ψn,k〉dk, (3)

where the superscript d stands for the space dimensionality,
V is the unit-cell volume, and the integral is taken over the
first BZ.
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Thus defined WFs are not unique. An isolated2 set of N

energy bands corresponding to the Bloch Hamiltonian eigen-
states |ψnk〉 can equivalently be described by an alternate set
of N Bloch wave functions that might not be the Hamiltonian
eigenstates, but span the same Hilbert space.3 That is, a general
unitary basis transformation, called gauge transformation, of
the form

|ψ̃mk〉 =
N∑

n=1

Unm(k)|ψnk〉 (4)

can be performed prior to constructing WFs for the given
set of bands. Depending on the gauge choice, the resultant
WFs can have different properties [78], in particular their
shape and localization in real space can differ significantly.
The construction of exponentially localized WFs wn(r − R)
requires the gauge to be smooth, meaning that the Bloch states
used to construct WFs are smooth and periodic in reciprocal
space. We will see below that such a gauge choice is not always
possible [79–83].

For the purposes of this paper, the most convenient basis is
that of HWFs [64,66], which are Wannier-like in one direction
but Bloch-like in the others. The formal definition is4

|n; �x,ky,kz〉 = ax

2π

∫ π/ax

−π/ax

eikx�xax |ψnk〉dkx, (5)

where �x ∈ Z and ax is the lattice constant along the x

direction, in which the resultant wave function is localized.
The HWF can be thought of as a WF of a one-dimensional
system, coupled to the external parameters ky and kz. It was
proven that in one dimension exponentially localized WFs
can always be found [84,85]. A nice generalization of this
procedure to three dimensions is given in Ref. [19].

B. Wannier charge centers

Given a set of Wannier functions, their charge centers are
defined as the average position of charge of a Wannier function
that resides in the home unit cell

r̄n = 〈0n|r̂|0n〉. (6)

Due to the ambiguity in the choice of the home unit cell, the
Wannier charge centers (WCCs) are defined only modulo a
lattice vector. Moreover, when the isolated group of bands in
question contains more than one band, individual WCCs are
not gauge invariant [78,86]. Only the sum of all WCCs is
gauge invariant modulo a lattice vector, and it is related to the
electronic polarization [86]. For a one-dimensional system,
this relation reads as

Pe = e
∑

n

r̄n, (7)

2A set of bands is called isolated when the energy gap separates it
from the bands above and below at each k point.

3This general rotation on the space of occupied eigenstates is an
exact symmetry of a “flat-band” Hamiltonian, where all occupied
energies have been set to a single value.

4Without loss of generality, we choose the x direction to be Wannier-
like and the others to be Bloch-like.

where e stands for the electronic charge. While Pe is defined
only up to a lattice vector, the continuous change �Pe under a
continuous deformation of the Hamiltonian is a well-defined
physical observable.

A geometric interpretation in terms of the Zak phase [87]
can be given to WCCs. To do this, a Berry potential is
introduced for the lattice-periodic part of the Bloch functions
as

An(k) = i〈unk|∇k|unk〉. (8)

In 1D, WCCs can be redefined in terms of Berry potential
using the transformations between Wannier and Bloch repre-
sentations of Ref. [88]:

x̄n = iax

2π

∫ π/ax

−π/ax

dkx〈unk|∂kx
|unk〉 = ax

2π

∫ π/ax

−π/ax

dkxAn(kx).

(9)

Similarly, the hybrid WCCs can be written as

x̄n(ky,kz) = 〈n; 0,ky,kz|r̂x |n; 0,ky,kz〉

= ax

2π

∫ π/ax

−π/ax

dkxA(kx,ky,kz). (10)

Thus, a hybrid WCC can be thought of as a WCC of a
1D system coupled to external parameters (kx,ky). Since
in crystalline systems H (k) = H (k + G), this coupling is
equivalent to a periodic driving of a 1D system coupled to
an external environment, as discussed in the context of charge
pumping [89]. The existence of topological classification for
such pumps was known long before the advent of topological
materials [23,89]. We show below that many topological
invariants of band structures can be obtained by studying
the pumping of hybrid WCCs. A numerical procedure for
constructing HWFs in a particular, “maximally localized
gauge,” is given in Appendix C.

C. Chern number via HWF

The gauge field arising from the Berry potential [Eq. (8)] in
a crystal is known as Berry curvature, and for a single isolated
band it is defined as

F = ∇k ∧ A(k), (11)

where the wedge product in 3D is a usual cross product. In
a multiband case, a non-Abelian Berry connection [90] is
introduced

Amn,α = i〈umk|∂α|unk〉, (12)

and the corresponding gauge-covariant formulation of Berry
curvature in a multiband case is

Fmn,γ = Fmn,γ − i

2
εαβγ [Aα,Aβ]mn. (13)

In 2D, or on a 2D cut of the 3D BZ, one can define a Chern
number [91] of a single isolated band as [23]

Cγ = 1

2π

∫
BZ

d2kFγ (k), (14)

where γ indicates the component normal to the 2D surface.
The corresponding equation for an isolated set of bands is
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given by

Cγ = 1

2π

∫
BZ

d2k Tr[Fγ ] = 1

2π

∫
BZ

d2k Tr[Fγ ], (15)

where the trace is taken over the band indices within the set.
It can be shown [68] that the same quantity can be written in
terms of the hybrid WCCs

C = 1

ax

(∑
n

x̄n(ky = 2π ) −
∑

n

x̄n(ky = 0)

)
. (16)

Here, the WCCs x̄(ky) are assumed to be smooth functions
of ky for ky ∈ [0,2π ]. This smoothness condition is fulfilled
by constructing hybrid WCC (HWCC) in the 1D maximally
localized gauge [67]. However, the periodicity condition is
satisfied only modulo a lattice vector Rx = nax , where n ∈ Z.

From this formulation, one can see [79–83] how a nonzero
Chern number becomes an obstruction for defining smooth and
periodic Bloch states for the set of bands in question. In 1D,
maximally localized WFs can always be constructed [84,85].
In particular, the parallel transport procedure described in
Appendix C produces WFs that are the eigenstates of the
projected position operator x̂ = P̂bX̂P̂b, where P̂b is the
projector onto the isolated bands [85]. In 2D, however,
the projected position operators for the x and y coordinates in
general do not commute [78], and no set of WFs can be chosen
to be maximally localized in both dimensions at the same time.
Exponential localization, though, can still be achieved in both
dimensions, unless the Chern number of the bands is nonzero
[78,80]. For a set of bands with a nonzero Chern number, it is
impossible to find a set of WFs exponentially localized in both
dimensions: at least one WF is bound to have a power-law
decay in at least one direction in this case [79].

As mentioned above, the hybrid WFs are analogous to 1D
WFs, but the 1D system here is coupled to external parameters
(momenta in the other directions). For such a 1D system,
the hybrid WF can still be chosen to be the eigenstate of
the projected position operator, hence being exponentially
localized in this direction. However, to analyze the charge
pumping driven by the external parameters, continuity of the
hybrid WCC in these parameters is required. If a Bloch band
has a nonzero Chern number, the corresponding wave function
ψk cannot be chosen to be a smooth function of k in the
interior of the BZ and still retain the periodicity condition
ψk+G = ψk, where G is a reciprocal lattice vector [92]. Thus,
if one insists on a smooth evolution of the hybrid WCC x̄(ky) as
a function of ky , the center of charge does not necessarily return
to the initial position after a period of evolution Gy . However,
crystalline periodicity guarantees that the center returns back
to its position modulo a lattice vector, that is,

x̄(ky) = x̄(ky + Gy) mod Rx. (17)

Thus, Eq. (16) illustrates how much charge is pumped through
the 1D system during one continuous adiabatic cycle of the
external parameter ky .

This charge pumping is best understood as an externally
induced change of electronic polarization of a 1D system in
Eq. (7). Using that expression of electronic polarization in
terms of WCCs of a 1D system, and generalizing it to hybrid

FIG. 1. Two examples (shaded) of possible closed 2D cuts in a
cubic Brillouin zone. Since periodicity is imposed at the Brillouin
zone boundary, the surface in panel (a) is topologically equivalent to
a torus.

WCCs, the expression for the Chern number takes the form

C = 1

ea

(
P h

e (2π ) − P h
e (0)

)
, (18)

where we introduced hybrid electronic polarization as

P h
e (ky) = e

∑
n

x̄n(ky). (19)

According to the above, the value of HWCC is not gauge
invariant. However, the hybrid polarization, and thus the Chern
number, are gauge invariant. The Chern number reflects the
obstruction for the possibility to construct maximally localized
HWFs. Thus, Eq. (18) can give a correct Chern number even
without maximally localized HWFs; other HWFs would work
as well.

In 3D, the Chern number can be defined for any closed 2D
cut of the BZ. Possible examples of such cuts are shown in
Fig. 1.

According to the discussion above, the hybrid WCC x̄(ky) is
defined only modulo a lattice vector, reflecting the periodicity
of the lattice in real space. It is thus convenient to put periodic
boundary conditions on the hybrid WCC of the form x̄(ky) =
x̄(ky) + Rx , so that x̄ represents a point on a circle S1 at each
ky . This point gives the position of the center of charge in
the unit cell for a given value of ky . Given that the WCCs
are assumed to be smooth functions of ky ∈ [0,2π ], the pump
can be visualized as the flow of WCCs on the surface of the
cylinder S1 × [0,2π ], as shown in Fig. 2. Since the hybrid
electronic polarization is a sum of all hybrid WCCs, it is also
defined on the surface of this cylinder. The Chern number is
then associated with the number of windings P h

e (ky) performs
around the cylinder when ky is changed from 0 to 2π [67,68].
Thus, the Chern number can be associated with the number
of unit cells traversed by the net center of charge of all bands
within the pumping cycle, which can be equivalently thought
of as the number of electronic charges pumped across one unit
cell in the course of a cycle. This interpretation makes the
relation between the Chern number and the Hall conductance
explicit.

D. Wilson loops and gauge choices

An alternative physical understanding of the hybrid WCCs
was proposed in Refs. [66,69], for the special case of
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FIG. 2. Sketch of some possible evolutions of polarization
[Pe(ky)] across the BZ, exhibiting different Chern numbers C.

TR-symmetric systems. It was shown that the eigenvalues of
the projected position operator represent the Wilson loop of
the U (2N ) non-Abelian Berry connection, where 2N is the
number of occupied states in a TR-symmetric insulator.5 This
Wilson loop approach was later generalized to other topo-
logical phases [17–19,70]. Here, we discuss the differences
between hybrid WCC and the Wilson loop approaches.

The Wilson loop for the noninteracting insulating systems
is defined [69] in terms of the projector onto the Nocc occupied
states as

P occ
k =

Nocc∑
j=1

|ujk〉〈ujk|. (20)

Given a closed curve C in k space, discretized in L points ki ,
i = 0, . . . ,L − 1, the Wilson loop is computed as

W (C) =
L−1∏
i=0

P occ
ki

(21)

and is a Nocc × Nocc matrix. Wilson loops are known to be
a gauge-invariant quantity in quantum field theory [93], and
this is still the case in the present definition. Indeed, the gauge
transformation of the form (4) leaves W (C) invariant. By taking
the log of the eigenvalues of the Wilson loop at an arbitrary
point on the loop C (and normalized by 2π ), one arrives at
a special gauge-invariant set of hybrid WCCs, which exactly
coincide with those obtained from the maximally localized
WCC construction outlined in Appendix C.

From the theory of polarization [86] reviewed above it is
known that the WCCs are in general gauge dependent. To
reconcile this with the gauge independence of the Wilson
loop, notice that the projector onto the occupied space can
be equivalently considered to be a sum of projectors onto

5This number has to be even as a consequence of Kramers theorem.

different subspaces comprising the occupied space

P occ
k =

D∑
�=1

P
(�)
k , (22)

where D is the number of subspaces. Various examples of such
splittings are discussed below, but the simplest of them is given
by a large set of isolated bands, that is composed of D smaller
isolated sets. Then, each of the sets can be treated separately,
and each of the projectors P

(�)
k can be used separately to

construct a Wilson loop W�(C) for each of the isolated sets
of bands separately.

The hybrid WCC obtained by diagonalizing the Wilson
loops W� are in general different from the ones obtained by
diagonalizing the full loop W . This can be seen by noticing
that when constructing W with the projector [Eq. (22)], cross
terms of the form P

(�)
ki

P
(�′)
ki+1

(� �= �′) will appear, while they
are absent when constructing W�’s separately. Note that in
accordance with the theory of polarization, both constructions
are physically equivalent since the sum of the hybrid WCCs
at each point on the curve C will be the same for the
two constructions (modulo a quantum), corresponding to 1D
electronic polarization.

At the risk of abuse of terminology we refer to the various
ways of constructing the WCCs as a gauge freedom. This is
motivated by the definition of the WFs and hybrid WFs: their
construction depends on a particular choice of representative
Bloch states ψnk used to represent the Hilbert space of interest.

III. GENERAL STRATEGY FOR IDENTIFYING
TOPOLOGICAL MATERIALS

While the net Chern number is protected by charge conser-
vation, less fundamental symmetries can exist and also induce
a topological classification. These topological classes are in
general not captured by the net Chern number. In this section,
we propose a general route to robust identification of such
topological states in both real materials and models based on
the notion of individual Chern numbers [92]. We first explain
what individual Chern numbers are, and then show how they
can be used to track down the presence of symmetry-protected
topological order in materials and calculate the corresponding
topological invariants. One of the clear examples of such a
procedure are the mirror Chern numbers [49].

A. Individual Chern numbers

The notion of individual Chern numbers [92] is based on
the idea of splitting the Hilbert space spanned by an isolated
set of bands Hset into a collection of Hilbert spaces

Hset =
N⊕

i=1

Hi (23)

in such a way that the Chern number associated with each of
these Hilbert spaces is an integer. This means that the projector
P set

k onto Hset is decomposed into projectors on the individual
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Hilbert spaces

P set
k =

N∑
i=1

P
(i)
k (24)

for any k on the 2D smooth and closed manifold M , on
which the bands are defined. The necessary condition for the
individual Chern numbers to be integral is that each projector
P

(i)
k is smooth on M [94].

The total Chern number of the set of bands [94]

Cset = i

2π

∫
M

Tr
{
P set

k

[
∂k1P

set
k ,∂k2P

set
k

]}
dk1 ∧ dk2 (25)

is then equal to the sum of individual Chern numbers (see
Appendix E)

Cset =
N∑

i=1

ci, (26)

where

ci = i

2π

∫
M

Tr
{
P

(i)
k

[
∂k1P

(i)
k ,∂k2P

(i)
k

]}
dk1 ∧ dk2. (27)

An important example of such splittings of the Hilbert
space is the one with each Hi containing only a single band
|uk,i〉. If the projectors |uk,i〉〈uk,i | are chosen to be smooth on
the manifold M , each band is assigned an integer individual
Chern number. However, an actual construction of a gauge
(projector choice) that results in integer individual Chern
numbers is a complicated task6 since the gauge (and hence
projectors) obtained from diagonalization of the Hamiltonian
numerically on the mesh of k points can have discontinuities
around degeneracy points in the energy spectrum. Moreover,
in accord with the above discussions of WCCs and Wilson
loops, one can manipulate the gauge choice to produce a
different decomposition of Hset with different values of ci’s,
as illustrated in Fig. 3.

Since the individual Chern numbers depend on a particular
splitting of the Hilbert space, they lack physical meaning,
unless some physical constraints on the subspaces Hi fix their
values. These constraints are provided by the symmetries of the
underlying Hamiltonian. If the gauge used to split the Hilbert
space into individual Bloch states respects the symmetry
(meaning that the projectors resulting from the splitting respect
the symmetry), a symmetry-protected topological phase could
have at least some nonzero individual Chern numbers. Thus,
choosing the subspaces according to their symmetry behavior
could allow for a classification of symmetry-protected topo-
logical states. Whether this classification is unique or complete
is, at the present time, unknown.

An illustrative example here is provided by time-reversal-
invariant systems [1,8], where Bloch bands come in Kramers
pairs. Consider the case of a single such pair. An individual
Chern number can be associated with each of the two
bands in the Kramers pair. This is equivalent to splitting

6See Ref. [92] for an example of such a construction for quantum
spin Hall systems, and Ref. [164] for a general construction in two
and three dimensions.

FIG. 3. Illustration of different gauge choices for a system with
N = 3 occupied bands and Cset = 1. Left panel: bands No. 1 and
No. 2 have individual Chern numbers c1 = 2 and c2 = −1. Right
panel: bands No. 2 and No. 3 have zero Chern number, and thus
c1 = Cset = 1.

the Hilbert space spanned by the Kramers pair into two
subspaces

Pk = P
(1)
k + P

(2)
k (28)

corresponding to projectors P
(i)
k that are smooth on M . In

the gauge that respects TR symmetry, the two projectors are
related by

P
(1)
k = θP

(2)
−kθ−1, (29)

for all k in M , where θ is the TR operator. Under this
constraint, the HWCCs need to come in pairs of TR-symmetric
momenta [67,95], and the individual Chern numbers of the
two bands must be opposite (c2 = −c1). In the quantum spin
Hall phase, they are constrained to be odd, while they are
bound to be even in the Z2-even phase [95], as illustrated in
Fig. 5. It is TR symmetry that enforces the distinction between
the two phases, and no splitting of the Kramers pair in the
Z2-odd phase subject to the TR constraint of Eq. (29) can
produce vanishing individual Chern numbers, thus proving the
robustness of topological phase protected by TR symmetry.
Due to the particular symmetry of the HWCCs, however, it
is possible to distinguish the Z2-even and -odd phases even
without explicitly calculating the individual Chern numbers
[66,69,95], as will be illustrated in Sec. IV B for a realistic
many-band case.

More illustrations of symmetry-protected individual Chern
numbers are provided below. The general approach is to
construct HWCCs on certain surfaces in the BZ in a gauge
that respects a symmetry of the Hamiltonian, to see whether
this symmetry protects nonzero individual Chern numbers.
As shown below, this approach can be readily used to
identify the known topological phases of noninteracting
systems.
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B. Application to the search for topological materials

Based on the properties of individual Chern numbers, we
outline several cases of this procedure that can potentially
predict topological materials. As previously discussed, for a
symmetry-protected topological phase, the gauge that respects
the symmetry protecting the topology results, in all the
cases studied so far, in nonzero individual Chern numbers.
This implies a gapless flow of HWCCs on some symmetry-
respecting surfaces in the BZ. While a robust confirmation
of the possible presence of the gapless HWCC flow (and
hence, a topological phase) might require additional analysis
in some cases, its absence is often easy to see. Consequently,
possible candidate materials can be identified by screening the
high-symmetry planes in the BZ for the presence of a gapless
flow of the WCCs constructed in the symmetry-preserving
gauge.

Once a candidate material is identified, the next step is to
uniquely define its topology. In some (but not all) cases, this
is simply a matter of calculating the total Chern number or the
Z2 invariant on specific surfaces in reciprocal space. In a more
general case, this is done by splitting the Hilbert space into
subspaces according to their symmetry behavior, as described
in Appendix F.

IV. APPLICATION TO INSULATORS

In this section, we discuss and illustrate how the Wannier
center’s flow is applied to insulators. The discussion covers
the cases of Chern (quantum anomalous Hall) insulators,
TR-symmetric Z2 topological insulators, and crystalline topo-
logical insulators, including those where topology is protected
by rotational symmetries.

A. Chern insulator

Chern insulators are 2D materials with broken TR sym-
metry, in which the occupied Bloch bands have a nonzero
total Chern number, which is the topological invariant char-
acterizing this phase [21–23]. The Chern number takes on
integer values, and these values correspond to the integer
Hall conductance in units of 2e2/h exhibited by the material
in the absence of an external magnetic field. Due to the
presence of robust chiral edge states, these materials are
expected to be useful in many technological applications .
Several compounds were predicted to host this phase [96–105],
and experimental evidence of its existence in some of them
was found experimentally [106]. However, no stoichiometric
crystalline material was experimentally identified yet, and the
quest for a wide-gap Chern insulator material is still ongoing
at the time of writing.

The search strategy, supplemented by Z2Pack, has what we
hope will be two promising directions. One is to simulate
thin films of magnetic materials directly and compute the
Chern number of such effectively 2D systems. The total hybrid
polarization is tracked and plotted as a function of momentum,
giving the value for the topological invariant via the hybrid
Wannier function approach described above in Sec. II C. Such
a route to search for Chern insulators should also be taken
when simulating heterostructures, such as quantum wells, or
interfaces that are candidate for this phase. Another candidate

FIG. 4. Sketch of a cubic Brillouin zone. In an insulator, the Chern
numbers C1, . . . ,CN associated with surfaces 1, . . . ,N orthogonal to
the kz direction (shown in red) are all equal. The same is true for
surfaces perpendicular to kx or ky .

platform for realizing a Chern insulator is provided by thin
films of magnetic (semi)metals, where quantum confinement
due to finite size can lead to a bulk gap opening, making the thin
film insulating. Such simulations require the use of supercells,
so the direct implementation can be computationally expensive
when a realistic description of the system requires the use of
methods beyond the standard density functional theory, such
as hybrid functionals [107–110] or GW [111]. In such cases,
one can use Z2Pack to identify the Chern numbers for the
corresponding tight-binding models.

A different approach, especially suitable for the search for a
stoichiometric crystalline Chern insulator, does not require the
use of supercells and consists in finding a 3D material with a 3D
quantum Hall effect, which is necessarily a layered compound
of 2D Chern insulators. It is motivated by the observation that
in an insulating material, 2D cuts of the 3D BZ represent a BZ
of some imaginary 2D insulator. Thus, Chern numbers can be
defined on different 2D cuts in the BZ, giving a classification
of magnetic materials in terms of a set of 3 Chern numbers
[112].

For example, consider a cubic magnetic insulator with a
cubic BZ as shown in Fig. 4. Taking 2D square cuts of the BZ
at fixed values of ki , i = x,y,z, allows to define a 2D Chern
number on any of these cuts. Moreover, one can argue that
the cuts taken at ki and ki + δki have the same Chern number
since in going from the 2D cut at ki to the one at ki + δki ,
the band gap does not close on the 2D cut, and thus the 2D
systems at these two momenta represent 2D systems that can
be adiabatically connected without closing the band gap. Thus,
the Chern number of all the 2D cuts taken for a certain ki have
to be the same.

More generally, the Chern number is invariant under an
adiabatic change in the manifold. Also, the Chern number
of a union of disjoint manifolds is the sum of their Chern
numbers. Using these two simple rules, the Chern number
of other closed manifolds can be inferred from the three
described above. For example, the plane defined by kx =
ky can be smoothly transformed into a sum of the two
planes at kx = 0 and ky = 2π/a. Once a BZ cut with a
nonzero Chern number is identified, the surfaces of the
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crystal that exhibit the quantum anomalous Hall effect are
known.

While these two methods so far represent wishful thinking
in terms of finding materials, we hope that a thorough search
of databases based on these methods and using our code to
compute Chern numbers will lead to the discovery of the first
Chern insulator.

B. Z2 phases

Here, we discuss the numerical determination of the Z2

topological phases in materials. The numerical method for
computing this topological invariant was first introduced
in Ref. [67] in the context of TR-symmetric topological
insulators [1]. However, it can be equally applicable to any
system, in which the Hilbert space of interest can be split
into two symmetry-related subspaces, each of which has an
odd individual Chern number. We summarize the method of
Ref. [67] below, and put it in the context of individual Chern
numbers.

1. Z2 classification due to TR symmetry

For 2D systems, the Z2 classification distinguishes two
topological phases. There are only two classes of gapped
Hamiltonians that cannot be adiabatically connected without
closing the band gap or breaking the classifying symmetry.

The standard example here is given by TR-symmetric
topological insulators. These are classified into two distinct
classes [1] depending on the number of Kramers pairs of edge
states appearing at a semi-infinite 1D edge of such an insulator.
By changing the Hamiltonian adiabatically while preserving
TR symmetry, these Kramers pairs can only be removed from
the edge spectrum in pairs. Thus, Hamiltonians hosting an odd
number of Kramers pairs of edge states at the boundary are
topologically distinct from those that host an even number of
such pairs [1].

The bulk bands in these insulators come in Kramers pairs of
states related by TR symmetry. The case of a single occupied
Kramers pair was briefly mentioned above in Sec. III A. For an
arbitrary number of Kramers pairs, the occupied Hilbert space
Hset is split into two subspaces H1,2, such that the projectors
onto each of them are smooth and related by TR symmetry, as
in Eq. (29). Now, however, both P1 and P2 are projectors onto
a set of bands, rather than just a single band. In TR-symmetric
systems, the net Chern number has to vanish since it is odd
under TR. Thus, the two subspaces related by TR symmetry
necessarily have opposite individual Chern numbers.

When choosing H1,2, each Kramers pair is split into two
states that are assigned to different subspaces. As long as the
two states are mapped onto each other by TR symmetry, it
does not matter how this assignment of states to the subspaces
is done. Indeed, the states can exchange subspaces. Since the
states carry opposite Chern numbers, this exchange can only
change the individual Chern numbers C1,2 of the subspaces by
an even number. Thus, a Z2 invariant can be defined as

� = (C1 − C2)/2 mod 2. (30)

For the topological quantum spin Hall phase, C1,2 are odd,
so that TR symmetry does not allow for the construction of
smooth Bloch states spanning both these subspaces [66,113].

Since the Chern numbers of the subspaces represent the change
of their corresponding electronic polarizations, the invariant �
can be defined via the notion of TR polarization, defined in
Ref. [95].

The Z2 phases of 3D materials are classified by a set of
indices [9–12]

ν; (νx,νy,νz), (31)

defined through the 2D invariants on the TR-invariant planes
in the BZ:

ν = �(ki = 0) + �(ki = 0.5) mod 2, (32)

νi = �(ki = 0.5), (33)

where ki is in reduced coordinates. A system is called a weak
topological insulator if any of the νi are nonzero but ν = 0,
while a system with ν = 1 is referred to as a strong topological
insulator [9].

Note that the definition is in terms of invariants � of those
cuts of the 3D BZ that can be considered as BZs of some 2D
TR-symmetric insulators. A 2D Z2 invariant � can be defined
on any plane in the BZ that for each point k also contains its
TR image −k.

2. Z2 phase in terms of hybrid Wannier functions

In practice, splitting the two occupied space of a TR-
symmetric insulator into two subspacesH1,2 related by TR and
spanned by smooth projectors is a nontrivial task. While in the
presence of additional symmetries [114,115] such a splitting
is possible, it is preferable to have a numerical method for
computing �, which does not require an explicit splitting of
the Hilbert space. Such a formulation is given in terms of
HWCCs [67], and we recap it here.

In a gauge that respects TR symmetry, the HWCC come in
pairs

x̄2j−1(ky) = x̄2j (−ky) mod ax, (34)

for any given ky . Consequently, they are equal up to a lattice
constant at the special points ky = 0, π/ay , and 2π/ay . This
condition allows for two distinct topological phases, illustrated
in Fig. 5 for a single Kramers pair.

The Z2 invariant is computed by considering the HWCCs
x̄(ky) for only half of the momentum values (that is, ky ∈
[0,π/ay]) since the other half is symmetric in the TR-
respecting gauge (for each HWCC at ky there exists its TR
image at −ky). The invariant is given by the number of times
L any line xcut(ky) crosses a HWCC line when going from
ky = 0 to ky = π/ay [67,69] (see Fig. 5). This number will be
even if the system is in a Z2 trivial state and odd otherwise.
Thus, the Z2 invariant is simply

� = L mod 2. (35)

For reasons of numerical convergence and to avoid plotting the
HWCCs, it is best to define xcut(ky) as the largest gap between
any two HWCCs at a given ky [67]. The situation is illustrated
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FIG. 5. Different possible WCC evolutions (red and blue lines)
for a system with two occupied bands and time-reversal symmetry.
TheZ2 invariant can be calculated from the number of WCC crossings
L of an arbitrary line xcut(ky) (dotted green line) across half the
BZ. (a) Both WCC have winding number 0, corresponding to a Z2

trivial state (L = 0, � = 0). (b) WCC with winding numbers ±1,
corresponding to a Z2 nontrivial state (L = 1, � = 1). (c) WCC with
winding numbers ±2. Because the crossings at momenta other than
ky = 0,π are not protected, the system is adiabatically connectable
(dashed black lines) to the one in (a) (L = 2, � = 0).

in Fig. 6 for a single Kramers pair, where a color scheme shows
the possible splitting of the occupied Kramers pair into two
TR-related states with opposite individual Chern numbers.

On a discrete mesh, L is computed by counting the number
of HWCC lying between neighboring values of the largest gap

FIG. 6. Sketch of a Z2 calculation. (a) Continuous illustration of
HWCCs. The largest gap (blue line) between any two HWCC (dashed
lines) crosses a single HWCC (red dot). (b) Discrete illustration of
HWCCs. The crossing between HWCC (circles) and the largest gap
(blue rhombi) is found by searching for a HWCC lying between
neighboring gaps.

FIG. 7. Evolution of HWCCs (circles) and their largest gap
function (blue rhombi) for ky = 0 (a) and ky = 0.5 (b) planes for
Bi2Se3. The plane at ky = 0 is topologically nontrivial.

xcut [67]. The details of the numerical calculation are described
in Appendix B.

For completeness, we illustrate the use of Z2Pack (see
Sec. VI for particular details) on the prototypical example of
Bi2Se3. The Z2 invariant is calculated for the planes at ky = 0
and 0.5, with HWCCs calculated along kz, and kx acting as a
pumping parameter. Because Bi2Se3 is symmetric with respect
to permutations of the unit-cell vectors, this is sufficient to fully
determine the topological state [67].

This calculation was performed with the VASP software
package [116], using the generalized-gradient approximation
of the PBE [117] type, and the PAW potentials [118,119]
supplied by VASP. The self-consistent calculations were
performed with a 12 × 12 × 12 k mesh, an energy cutoff of
300 eV, and the experimental lattice parameters [120]. The
results, shown in Fig. 7, illustrate a nontrivial � for the ky = 0
plane and a trivial one for the ky = 0.5 plane. Thus, Z2Pack
identifies Bi2Se3 as a strong topological insulator, in agreement
with previous calculations [47] and the parity-eigenvalue
argument of Ref. [121]. Note that the illustration is provided
here for clarity only, and no manual inspection of the plot is
needed. The calculation of the Z2 invariant is fully automated
in the code in accord with the method of Ref. [67], giving the
invariant value as an output.

C. Crystalline topological materials

We now discuss the topological phases protected by crys-
talline symmetries. In principle, any crystalline symmetry can
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induce a topological classification, however, to date only few
such classifications are known [15–19]. We expect Z2Pack to
be most useful for identification of materials with yet unknown
topologies, which, in turn, would accelerate the progress
towards full classification of possible crystalline topological
phases and the corresponding low-energy excitations. The two
examples of crystalline topological phases we consider below
are those of the mirror-symmetric and fourfold rotational (C4)
topological insulators.

1. Mirror-symmetric topological phases

The presence of mirror symmetry in the crystal structure of
a material results in the presence of planes in the BZ that are
mirror symmetric. This means that the Bloch states on these
planes are eigenstates of a unitary matrix M that describes
the action of mirror symmetry. In the presence (absence) of
spin-orbit coupling this matrix squares to −1 (1), due to spin
rotation. This means that the eigenvalues of M are ±i (±1) for
spinor (scalar) Bloch states on the mirror-symmetric planes.

Thus, one can split the occupied subspace Hset on the
mirror-symmetric planes into two subspaces, according to their
mirror eigenvalue. For example, with spin orbit accounted
the two projectors P̂±i split Hset into H±i consisting of
Bloch states with M eigenvalues ±i correspondingly. The
individual Chern numbers C±i are then defined for each of
these subspaces. Note that the splitting according to the mirror
eigenvalue fixes the individual Chern numbers uniquely, and
each of the subspaces has Z classification. This is different
from the case of TR symmetry considered above, where all
even/odd individual Chern numbers were equivalent from the
point of view of the Z2 classification.

The work of Ref. [49] introduced the mirror Chern number
defined as nM = (C+i − C−i)/2. This number can be used as
a Z topological invariant for the systems with TR symmetry,
where Ci = −C−i (assuming the mirror-symmetric plane is
also TR symmetric). In magnetic systems, however, the two
individual Chern numbers are not necessarily equal, so that
the invariant can be given by two integers (Ci,C−i) and the
corresponding classification is Z × Z.

A TR-symmetric example of a mirror-symmetric crystalline
topological insulator is SnTe, in which the topological phase
is protected by the mirror symmetry of its rocksalt structure
[122,123]. The mirror Chern number was predicted to be nM =
2 for this material [122]. The individual Chern numbers C+i

and C−i are defined on a mirror-invariant plane (�L1L2) shown
in Fig. 8(a).

The presence of a topological phase can immediately be
inferred by computing HWCCs (running Z2Pack) on the
mirror plane. The result of this calculation is shown in Fig. 8(b).
The absence of a gap in the full HWCCs spectrum, which is
a superposition of the HWCCs of both +i and −i mirror
eigenstates, is indeed a strong indicator for the presence of a
topological phase.

To compute the individual Chern numbers C+i and C−i

with Z2Pack, it is first necessary to classify each Hamiltonian
eigenstate according to the mirror eigenvalues +i or −i.
This is done by computing and diagonalizing at each k the
matrix 〈ψn(k)|M̂|ψm(k)〉, where M̂ is the mirror operator,
for all occupied states ψj (k). Using the unitary transfor-
mation U (k) which diagonalizes this matrix, a set of states

FIG. 8. (a) Brillouin zone of SnTe showing the mirror planes
along which the HWCCs are computed. (b) HWCCs in the mirror
plane. (c), (d) HWCCs (circles) and their sum (rhombi) for the i and
−i eigenstates in the mirror plane.

with definite mirror eigenvalues is constructed as |ψ̃m(k)〉 =∑
m Umn(k)|ψ̃n(k)〉. These states are then separated into two

groups corresponding to the ±i eigenvalues, and Z2Pack is
applied to each subspace to compute C+i = +2 and C−i = −2
as shown in Figs. 8(c) and 8(d), using the numerical procedure
described in Appendix A.

For this illustration, ab initio calculations based on
density-functional theory (DFT) [124,125] were performed,
employing the generalized-gradient approximation (GGA)
and Perdew-Burke-Ernzerhof exchange-correlation function-
als [117] as implemented in the QUANTUM ESPRESSO
package [126]. Spin-orbit effects were accounted for using
fully relativistic norm-conserving pseudopotentials acting on
valence electron wave functions, represented in the two-
component spinor form [127]. The self-consistent field cal-
culation was performed with a 10 × 10 ×10 k mesh, a plane-
wave cutoff of 50 Ry, and experimental lattice parameters of
Ref. [128].

2. C4 topological insulator

Certain topological phases are protected by rotation point-
group symmetry [15,17–19,129]. The first model to realize
such a phase was proposed by Fu [15], and it considered
spinless fermions with TR symmetry supplemented with an
additional fourfold rotational symmetry C4. The Z2 classi-
fication proposed in Ref. [15] arises for bands that belong
to two-dimensional representations along the high-symmetry
lines �-Z and A-M of the BZ shown in Fig. 9(a) (the C4 axis
is assumed to coincide with the z direction). For the particular
model of Ref. [15], these bands were obtained by considering
px and py orbitals on a tetragonal crystal lattice with two
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FIG. 9. (a) The Brillouin zone for the model of Ref. [15]. The
C4 ∗ τ symmetry maps one leg of the indicated bent plane onto the
second. (b) HWCCs (circles) and the largest gap function (rhombi)
shown for the C4-symmetric plane of panel (a).

inequivalent sites, and it was argued that the consideration
is also relevant for the bands formed by the dxz and dyz

orbitals.
In real materials, such a phase may occur for systems with

weak spin-orbit coupling, where the bands near the Fermi level
have primarily px-py or dxz-dyz character. No real example for
this phase was reported to date, and we hope that Z2Pack will
encourage people to perform a thorough search of existing
materials for the emergence of this novel topology.

The product of a rotation Ĉ4 and spinless TR operator
τ 2 = 1 forms a symmetry that is antiunitary and ensures
double degeneracy of bands at high-symmetry points due to
the constraint (Ĉ4τ )2 = −1 for bands of C4 eigenvalue ±i

[15]. This is analogous to the case of spinful TR-symmetric
insulators, where the antiunitary TR operator θ , subject to
the condition θ2 = −1, guaranteed Kramers degeneracy at
TR-symmetric momenta in the BZ. To continue this analogy,
notice that the Z2 invariant of the TR insulators is defined on
a plane connecting TR-invariant lines. Thus, the plane for the
definition of the invariant in this case should connect lines that
are invariant under the product symmetry C4 ∗ τ .

Such a plane is given by the one shown in Fig. 9 since the
double degeneracy of bands is present at the high-symmetry
points � = (0,0,0), M = (0.5,0.5,0), Z = (0,0,0.5), and A =
(0.5,0.5,0.5). Due to the C4 ∗ τ symmetry, the HWCCs
constructed along lines in kz, corresponding to �-Z and M-A
directions, are degenerate [17]. Hence, the Z2 classification
on the plane for this model is analogous to that of a single
Kramers pair of TR-symmetric insulator on a TR-symmetric
plane, as considered in Sec. IV B.

The methods developed above for computing Z2 topolog-
ical invariants are applicable in this case. The corresponding
HWCCs flow is shown in Fig. 9(b) for the topological phase of
the model of Ref. [15]. From the gapless flow of the HWCCs,
one can see that the individual Chern numbers C1,2 = ±1
can be assigned to two subspaces mapped onto each other by
Ĉ4 ∗ τ .

The search for a real material candidate for such a phase
can proceed as follows. A scalar-relativistic band structure cal-
culation is first performed for compounds of light atoms with
small spin-orbit coupling with crystal structures that contain
a C4-rotational axis. The spectrum of HWCCs is obtained on
a plane shown in Fig. 9(a). Since bands with characters other
than px-pz and dxz-dyz are usually overlapping with these ones,

the topological phase can become not immediately visible in
the HWCC spectrum. However, if the HWCCs exhibit strong
winding in the spectrum (see Sec. V A for a discussion of
this indication of the existence of the topological phase in
metals), this might be a hint of the C4 topology buried under
HWCCs coming from the nontopological part of the spectrum.
In this case, a tight-binding model can be derived, for example
using the wannier90 software package [130,131] or based on
symmetry arguments and parameter fitting, that projects the
band structure onto the relevant orbitals (px-py or dxz-dyz),
and the WCCs analysis of the tight-binding model will uncover
the phase.

Finally, we notice that the C4 phase illustrated above is only
one of the possible phases protected by rotational point-group
symmetry operations. We refer the reader to the works of
Refs. [15,17–19] for a thorough discussion of these phases
and the corresponding Wilson loops.

V. APPLICATION TO METALS

Here, we discuss how the HWCC technique and Z2Pack can
be used to identify topological phases in metallic band struc-
tures. The discussion is illustrated with the examples of Dirac
[132,133], type-I and type-II Weyl semimetals [72,73,134],
as well as those of some higher-order topologically protected
crossings [135,136].

The Weyl [44,63,71,137–139] semimetal phase is charac-
terized by a pointlike crossing of bands with a linear spectrum.
Topologically, this crossing is characterized by a quantized
topological charge, meaning that it is either a source or sink
of Berry curvature, depending on its chirality [140]. As such,
Weyl nodes can only form or annihilate in pairs of opposite
chirality. The presence of Weyl nodes in the bulk leads to
the appearance of Fermi arcs on a surface of the material,
connecting the projections of the bulk points of opposite
chirality onto the surface. In the presence of a magnetic field,
Weyl points exhibit a chiral Landau level [36,141,142], which
can be a source of the reduced or negative magnetoresistance
observed in Weyl semimetals [43,143–145].

Recently, a new, type-II, kind of Weyl semimetal has been
proposed [72]. These type-II Weyl nodes appear at the touching
points of electron and hole pockets. As a consequence, they are
expected to exhibit an anisotropic chiral anomaly [72]. That
is, the presence or absence of a chiral anomaly depends on
the direction of the applied magnetic field, aligned with the
electric field.

In Dirac semimetals [61,62,77,133,146], the nodal points
are formed by doubly degenerate bands in systems, symmetric
under the product of TR and inversion P ∗ T . This symmetry
maps a Weyl point onto itself, but with opposite chirality, so
that a Dirac point consists of two superimposed Weyl fermions
of opposite Chern numbers that are protected from annihilation
by lattice symmetries such as Cn, where n > 2.

Other pointlike topological degeneracies can exist in
metallic spectra [76,147–149]. However, all of these phases
can be viewed as either a certain superposition of Weyl
points, just like insulating topological phases can be viewed
as symmetry-dictated superpositions of bands with nonzero
individual Chern numbers, or as Weyl points, intersected
by an additional band. The methodology outlined below
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FIG. 10. (a) HWCCs of WTe2 for ky = 0 plane [72]. A nearly
gapless flow of HWCCs indicates the presence of topologically non-
trivial features in the band structure close to this plane. (b) HWCCs
of MoTe2 for kz = 0 plane [73]. The presence of a band gap closure
is visible as a discontinuity in the HWCCs evolution, and occurs at a
momentum, corresponding to the position of a type-II Weyl point in
this material.

is suited to identify such types of topologically protected
degeneracies.

A. Generalized topological classification

In semimetals, the existence of a direct band-gap closure
means that the manifold formed by the occupied bands is
not well defined. This seemingly contradicts the definition of
topologically distinct states because the notion of topologically
equivalent states requires them to be adiabatically connectible
without a direct band-gap closure. This problem is avoided
by restricting the consideration to a specific 2D manifold
M within the BZ, which does not contain a direct band-
gap closure. Two states are then considered topologically
equivalent on M if they can be adiabatically connected
without a direct band-gap closure occurring on M . Using this
generalized notion of topological classification, the methods
discussed previously for identifying a general topological
phase in insulators can be generalized to the Fermi surfaces of
metals.

The search for manifolds in metallic BZs, on which the
bands have topologically nontrivial features, can be a challeng-
ing task. It is aided a lot by the fact that the HWCC technique
often reveals hints of nontrivial topology on manifolds, where
the band structure is topologically trivial, but close to a phase
transition. For example, Fig. 10(a) illustrates HWCCs obtained
on the ky = 0 plane in WTe2. While the spectrum of HWCCs
is gapped, the presence of kinks and the narrow gaps hints at
the possible presence of the topologically nontrivial features
nearby. Indeed, it was shown in Ref. [72] that type-II Weyl
points exist in this material in the close vicinity of this plane.

Furthermore, the presence of a band gap closure within
the manifold M is revealed as a divergence in the HWCC
calculation, which can be detected by Z2Pack. This is
illustrated for another type-II Weyl semimetal, MoTe2 [73],
in Fig. 10, which shows the divergence of the HWCCs lines
obtained with Z2Pack on the kz = 0 plane in the BZ. This
divergence is due to the four type-II Weyl points that appear in
this plane owing to the existence of the product symmetry of a

C2 rotation around z and TR θ [150]. The way of finding Weyl
points and other degeneracies in the high-symmetry planes by
tracking divergencies in the Z2Pack calculation is especially
useful for a high-throughput search of topological metals.

B. Chern and Z2 invariants in metals

The first and most straightforward way to examine metallic
band structures for the presence of nontrivial topologies is
to compute the Chern and Z2 invariants described above for
insulators on planes in the metallic BZ where the bands are
gapped.

For magnetic metals, for example, one should compute
Chern numbers on various planes (see Fig. 4). A change in
the value of the Chern invariant when going between the
adjacent planes in k space indicates the presence of a topo-
logically protected degeneracy in-between the planes, such as
a Weyl point. An example of such a material is HgCr2Se4

[151].
A similar argument holds for TR-symmetric metals. TheZ2

number can be computed on the standard TR-symmetric planes
(ki = {0,0.5}), and for inversion-(a)symmetric materials a
change in its value suggests the presence of a Dirac point
(a pair of Weyl points) in-between the planes. We illustrate
this point here by showing the use of Z2Pack to identify the
Dirac semimetal phase. We use BiNa3 [61,62] as a material
example.

This material crystallizes in the centrosymmetric hexagonal
P 63/mmc structure and exhibits a band inversion at �,
similar to the band inversion observed in the Z2 topological
insulators Bi2Se3 and Bi2Te3 [47]. However, this material is not
gapped; its Fermi surface consists of two fourfold-degenerate
Dirac points located at kd = (0,0, ± 0.29π

c
) [see Figs. 11(a)

and 11(b)] corresponding to two overlapping Weyl points of
opposite chirality.

The Dirac points are formed since the Weyl points of
opposite chirality are protected from gapping each other by a
rotational symmetry [61,152]: the two doublets crossing along
�-A belong to different irreducible representations of the little
group of the k vectors k = (0,0,u) (C6v). The topology of
such materials can be captured with Z2Pack by computing the
Z2 topological invariants of two TR-invariant planes located
above and below the 3D Dirac points as shown in Figs. 11(c)
and 11(d).

For TR-symmetric materials with no inversion symmetry,
the change in the Z2 value on the TR-symmetric planes in
the BZ indicates the presence of Weyl points. An example
of such a Weyl semimetal is TaAs [44,63,138,139]. This
material crystallizes in the noncentrosymmetric body-centered
tetragonal I41md structure. It is a semimetal possessing
24 Weyl points near the Fermi level [44,63,138,139]. Due
to TR symmetry, these 24 points come in 12 pairs. Four
symmetry-related pairs reside in the kz = 0 plane and the
remaining eight are located symmetrically about the [100] and
[010] mirror planes at kz = ±0.59k�Z [marked with crosses
and stars in Fig. 12(b)].

The presence of Weyl points in the TR-symmetric band
structure can be identified with Z2Pack. For TaAs, HWCCs
were obtained for the ky = 0 plane [shown as [100] in
Fig. 12(b)] and the result is shown in Fig. 12(c). The
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FIG. 11. (a) Brillouin zone of BiNa3. The red crosses show the
position of the two 3D Dirac points. (b) Band structure ofBiNa3

BiNa3. (c), (d) HWCCs (circles) and the largest gap function (rhombi)
for the BZ cuts kz = 0 and π/c.

FIG. 12. (a) Brillouin zone of TaAs. (b) Top view of the Brillouin
zone showing the position of the 24 Weyl points with chirality +1
(red) and −1 (blue) (crosses are used for Weyl points in the kz = 0
plane, and stars designate Weyl points with kz = ±0.59k�Z). (c), (d)
HWCCs (circles) and the largest gap function (rhombi) along the
[100] mirror plane and [110] glide plane shown in (b).

FIG. 13. (a) Cut through the BZ of WTe2 at kz = 0. The eight
WPs are indicated, as well as the curved surface used to calculate
the Z2 invariant (blue line). The surface extends in kz direction. (b)
Evolution of WCC (blue dots) and their largest gaps (red rhombi)
along the curved surface indicated in panel (a), exhibiting a nontrivial
Z2 invariant.

corresponding Z2 invariant is nontrivial. Note that while in the
context of TR-symmetric topological insulators the TR planes
used to compute the topological invariants are those defined by
ki = {0,0.5}, the Z2 invariant is well defined on any section of
the BZ that for any point k also contains the point −k, and that
connects lines related by a reciprocal lattice vector. Thus, one
can define a Z2 invariant on a kx = ky plane [shown as [110]
in Fig. 12(b)]. The corresponding invariant is trivial in TaAs,
as illustrated by the evolution of the HWCCs on the half-plane
from � to the TR-invariant point X in Fig. 12(d).7

Moreover, the cuts of the BZ do not need to be planar to
define a Z2 invariant. As mentioned previously in Sec. IV C 2,
the only requirement for a Z2 invariant is that the surface
connects three TR-invariant lines, making the HWCC on these
lines doubly degenerate. This allows for a more complete
characterization of the Z2 topology using curved surfaces. In
fact, identifying topological invariants on such planes allows
to guess the possible connectivities of the Fermi arcs on the
surfaces of topological semimetals.

As an example, consider the case of WTe2 [72]. Figure 13(a)
illustrates the locations of the type-II Weyl points in the kz =
0 plane, of which this material has 8. The Z2 invariant is
trivial on all TR-invariant planes ki = 0 and 0.5 except kz = 0,
where it is undefined due to the presence of band-gap closures.
Additionally, theZ2 invariant was calculated on a TR-invariant
curved surface passing in-between Weyl points, as illustrated
in Fig. 13(a), where it was found to be nontrivial. Thus, this
topology cannot be characterized from the planes at ki = 0,0.5
alone.

7The band structure calculations for BiNa3 and TaAs were per-
formed with QUANTUM ESPRESSO, following the same method-
ology as described above for the SnTe calculations. The SCF
calculations were performed with a 10 × 10 × 10 k mesh, a plane-
wave cutoff of 50 Ry, and experimental lattice parameters taken from
Refs. [133,134].
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C. Existence and chirality of Weyl fermions

Next, we show that the chirality of a Weyl point, as well as
other topological point crossings, can be calculated directly as
the Chern number on a closed surface enclosing the node. This
provides a simple and reliable way of determining the nature
of nodal points.

Let us first calculate the Chern number on a sphere
enclosing a Weyl point. The Hamiltonian for an isotropic (upon
possible rescaling and rotations) 3D type-I Weyl point located
at the origin is

H (k) =
3∑

i=1

kiσi (36)

with two energy states ±k. The lower-energy eigenstate
(E = −k) as a function of the momentum (kx,ky,kz) =
k(sin θ cos φ, sin θ sin φ, cos θ ) is

ψk = 1√
2(1 − cos(θ ))

(
1 − cos θ

− sin θeiφ

)
. (37)

Note that the eigenstate is smooth and well defined everywhere
except for θ = 0. Since

lim
θ→0+

sin θ√
1 − cos θ

=
√

2, (38)

the eigenstate takes the following form at the north pole k =
(0,0,1):

ψk=(0,0,1) =
(

0
−eiφ

)
(39)

which means it is multivalued. In other words, different values
of φ, although describing the same momentum, correspond
to unequal values for the wave function. The wave function
is thus ill defined in this gauge at the north pole; this is also
the point where the Dirac string between the monopole (Weyl
fermion) in the center of the sphere and infinity crosses the
Fermi surface. Of course, this is just a gauge choice; by
making a gauge transformation we can move the position of
the intersection of the Fermi surface with the Dirac string to
wherever we want on the sphere.

The existence of a Weyl fermion can be verified by
calculating the flux of Berry curvature through a surface
enclosing it. Choosing a sphere of unit radius, the Berry vector
potential is given by

A(θ,φ) = i〈ψk|∇k|ψk〉 = − sin θ

2(1 − cos θ )
eφ. (40)

The Chern number is thus given by

C = 1

2π

∫
�

[∇ × A] · dS (41)

= 1

2π

∫ 2π

0
dφ

∫ π

0
dθ

[
∂

∂θ

(
− sin2 θ

2(1 − cos θ )

)]
= 1. (42)

Since the Chern number cannot change under smooth defor-
mations of the surface as long as the bands remain gapped
on it, the argument can be generalized to any closed surface.

FIG. 14. Loops around a sphere on which WCC are computed.
Each loop circles the sphere in mathematically positive direction
at a constant azimuthal angle θ . The loops go from the south pole
(θ = −π ) to the north pole (θ = 0).

The same is true for adiabatic changes in the Hamiltonian,
which cannot change the Chern number on the surface without
closing the band gap on the surface. Consequently, the Chern
number on a sphere can be used to confirm the existence of
a Weyl point within the sphere, and determine its chirality.
This illustrates that Weyl points can be viewed as a quantized
topological charge, which acts as a source or sink of Berry
curvature.

As described in Sec. II C, a Chern number on any closed
2D manifold can be calculated by tracking the evolution of
the sum of HWCC. In the case of a sphere, the HWCC can be
computed on loops around the sphere, as illustrated in Fig. 14.
The sum of HWCC is then tracked as a function of the angle
θ . For θ = −π and 0, the loop is just a single point. As a
consequence, the bands do not acquire any phase in the parallel
transport, and the sum of HWCC must be zero. This ensures
the values for θ = −π and 0 to be the same, even though the
two loops are not equivalent lines in the BZ.

This method also works for topological crossings other
than standard Weyl points. For example, consider an effective
Hamiltonian [135,136]

Heff(k) =
(

kz (k−)n

(k+)n −kz

)
, (43)

where n ∈ N and k± = kx ± iky . The two bands will have an
nth-order touching point at the origin in the kz = 0 plane, while
the crossing is linear in the kz direction. The results for linear,
quadratic, and cubic touching points are illustrated in Fig. 15.
Using the method of computing HWCCs on a sphere described
above, as implemented in Z2Pack, we found that the Chern
number for such an effective Hamiltonian is C = n, which
agrees with theoretical considerations of Refs. [135,136]. A
few particular cases are illustrated in Fig. 15.

In type-II Weyl points [72], the energy spectrum is tilted in
such a way that their Fermi surface becomes open. Unlike for
type-I Weyl point, where the FS is a sphere around the node,
the topological charge of the FS cannot be used to determine its
chirality. However, the method described above is not linked
to the Fermi surface topology. Indeed, the chirality of a type-II
Weyl point can still be determined by considering the lower-
lying bands on a surface enclosing the point. In fact, type-II and
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FIG. 15. The evolution of polarization around linear [(a), n = 1],
quadratic [(b), n = 2], and cubic [(c), n = 3] touching points in Heff.

type-I Weyl points of the same chirality can be adiabatically
connected, which means the associated Chern number of the
surface must be the same. On the other hand, this means that
the type of a Weyl point cannot be determined by means of
calculating topological invariants.

Figure 16 shows the evolution of polarization on a sphere
around two of the type-II Weyl points in WTe2. The HWCCs
were calculated from a tight-binding model derived from first
principles, with full spin-orbit coupling.

D. Dirac semimetals

In Dirac semimetals, the nodal point consists of two
degenerate Weyl nodes of opposite chirality, mapped into
each other by the product of time reversal and parity. An
additional symmetry is required to keep the two Weyl nodes
from gapping. Since each of the two Weyl nodes contributes
an individual Chern number ±1, we expect to see a gapless
flow in the HWCC evolution on a sphere enclosing a Dirac
point.

FIG. 16. Change in charge polarization on a sphere surrounding
Weyl points in WTe2, indicating their chirality. (a) Sphere of
radius r = 0.005 around a Weyl point of negative chirality at
k = (0.1203,0.05232,0.0). (b) Sphere of radius r = 0.005 around
a Weyl point of positive chirality at k = (0.1211,0.02887,0.0).

We exemplify this by studying Cd3As2, which was recently
shown to be a Dirac semimetal [59,132]. The modified four-
band k · p Hamiltonian used to study this material is given by
[59,153]8

H(k) = ε0(k)I ⊗ I + M(k)τz ⊗ I

+ [
Akx + Bk3

x + Fkxk
2
y + Gk2

z kx

]
τx ⊗ σz

− [
Aky + Bk3

y + Fkyk
2
x + Gk2

z ky

]
τy ⊗ I

+ n1kz

(
k2
x − k2

y

)
τx ⊗ σx + n2kxkykzτx ⊗ σy, (44)

where

M(k) = m0 +
√

m2
3 + m1k2

z + m2
(
k2
x + k2

y

)
(45)

and

ε0(k) = c0 + c1k
2
z + c2

(
k2
x + k2

y

)
. (46)

The parameters from Ref. [132]

m0 = −0.06 eV, m1 = 96 eV2Å
2
,

m2 = 18 eV Å
2
, m3 = 0.05 eV,

(47)
c0 = −0.219 eV, c1 = −30 eV Å

2
,

c2 = −16 eV Å
2
, A = 2.75 eV Å

were used, and different values for B,F,G,n1,n2 were studied
to investigate the properties of the Dirac point when higher-
order corrections are included.

As expected, the HWCC evolution on a sphere surrounding
one of the two Dirac points appears gapless [see Figs. 17(a) and
17(c)]. However, from this consideration alone it is not clear
whether these HWCC indeed form a crossing, or whether there
may be some small gap. Unlike the case of theZ2 classification
described above, there is a priori no symmetry which enforces
the HWCC to be degenerate at some θ . To prove the existence
of a Dirac node, then, it is necessary to consider the effect
of the symmetry stabilizing the Dirac fermion on the HWCC.
This can be done by calculating the symmetry expectation
value of the Wilson loop eigenstates v which correspond to
the given HWCC (see Appendix G for details). As can be
seen in Figs. 17(b) and 17(d), the eigenstates have different C4

expectation values at the point where the HWCC cross. This
means small perturbations cannot gap the HWCC flow.

Furthermore, in the case of n1 = n2 = 0, the two HWCC
belong to two different subspaces V± spanned by the
eigenstates with eigenvalues {e+iπ/4, e+i3π/4} and {e−iπ/4,
e−i3π/4}, respectively. The individual Chern numbers c± = ∓1
corresponding to each of these subspaces reveal the presence
of Weyl points of opposite chirality. When higher-order terms
are included in the Hamiltonian [see Figs. 17(c) and 17(d)],
the Wilson loop eigenstates no longer belong to one of the two
subspaces V± since they are mixed by the τx ⊗ σx and τx ⊗ σy

terms. However, the mixing term, being quadratic in kx,ky ,
becomes vanishingly small, when the radius of the sphere
surrounding the Dirac point is taken to be small.

8The Hamiltonian used here differs from that of Ref. [59] in that
terms up to third order are explicitly taken into account.

075146-15



DOMINIK GRESCH et al. PHYSICAL REVIEW B 95, 075146 (2017)

We thus conclude that the presence of topological nodal
points, comprised of several overlapping Weyl points, like
Dirac point, can be revealed by the flow of Wannier charge
centers, provided one tracks the expectation values of the
symmetry that protects the Weyl points from annihilating
for the corresponding eigenstates of the non-Abelian Berry
connection (Wilson loop) to make sure that they are distinct
at the crossing point in the WCC spectrum. In this case, the
WCC spectrum is gapless and the topological phase is proven.

VI. NUMERICAL IMPLEMENTATION

Here, we outline the numerical implementation of the
methodology described in the previous sections. The method
of calculating (individual) Chern numbers and Z2 invariants
on different manifolds in the BZ is implemented in the
Z2Pack code package, which is an open-source Python [154]
module. The code and documentation, including tutorials and
examples, are available in the Supplemental Material to this
paper [155].

One-dimensional maximally localized hybrid Wannier
charge centers are computed directly from the overlap matrices
as defined in Appendix C 2. The Chern andZ2 invariants can be
automatically extracted from the WCC, by using the methods
described in Appendixes A and B. The numerical calculations
are performed with help of the NUMPY [156] and SCIPY
[157] packages.

FIG. 17. (a) WCC evolution on a sphere of radius r = 0.001 Å
−1

enclosing one of the two Dirac points in Cd3As2 with n1 = n2 = 0.
The WCC are colored according to the C4 expectation values of the
corresponding Wilson loop eigenstates. The expectation values are
mapped on the complex plane in panel (b). (c), (d) WCC evolution
and C4 expectation values on the same sphere around one of the Dirac

points, for n1 = n2 = 106 eVÅ
3
.

Z2Pack is compatible with any method or software, which
can provide the overlap matrices or eigenstates for a given
path of k points. Tools for computing the overlap matrices for
tight-binding and k · p models are included in the module. For
first-principles computations, an interface to the WANNIER90
[130,131] code is provided, and the overlap matrices are com-
puted by the first-principles codes that support WANNIER90,
making Z2Pack compatible with any such code. For example,
widely used VASP [116], QUANTUM ESPRESSO [126],
and ABINIT [158,159] codes can be straightforwardly used
with Z2Pack. Appendix H shows the runtime for example
calculations for k · p and tight-binding models, and each of
the first-principles codes.

Furthermore, Z2Pack features a rich set of convergence
criteria to ensure the correct evaluation of the topological
indices. This is especially important because of the quantized
nature of the topological invariants, making it impossible to
approximate their value iteratively. In all but the most delicate
cases,9 Z2Pack will converge automatically using only the
provided default parameters. This makes the code ideally
suited for high-throughput applications by minimizing the
need for manual intervention.

Finally, Z2Pack provides methods for plotting the results.
Figures showing the WCC and their largest gap (such as in
Fig. 7), the sum of WCC (see Fig. 15), and the WCC colored
according to a symmetry expectation value (see Fig. 17)
can be produced. The plotting functions are based on the
MATPLOTLIB [160] package, and their appearance can be
fully customized.

VII. CONCLUSIONS

We introduced and enumerated the known approaches to
identifying topological states in both insulators and semimetals
and provided an easy-to-use package for the evaluation of
topological invariants such as Chern numbers, Z2 invariants,
mirror Chern numbers, and semimetal monopole charges. The
approach is based on the calculation of hybrid WCCs from the
overlap matrices constructed with Bloch states. We showed
how the method can be used to classify part of the known
symmetry-protected topological states of noninteracting sys-
tems, based on the notion of individual Chern numbers. The
proposed scheme is suited for high-throughput search for
materials with nontrivial topology and can point to materials
that have yet undiscovered nontrivial topologies.

We also presented a numerical implementation of the
method in the Z2Pack software package. Examples were
provided for materials with various topologies. For insulators,
the Chern and Z2 topological phases were illustrated, as
well as some crystalline TIs. For semimetals, we illustrated
approaches for classifying and identifying topological nodal
points. Generalizations to nodal lines are straightforward.

9If the direct band gap becomes very small, the WCC tend to move
very quickly. It is then necessary to use a more stringent convergence
criteria. However, it is still possible to achieve automatic convergence
with Z2Pack.
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APPENDIX A: NUMERICAL COMPUTATION OF THE
CHERN NUMBER

The straightforward way to compute the Chern number is to
integrate the gauge-invariant Berry curvature over the (section
of) BZ. A numerical calculation using the hybrid WCCs is
also possible. In this case, the Chern number is computed by
evaluating electronic polarization at discrete points ky = ki ∈
[0, 2π

a
]:

Pe(ki) = e

(∑
n

x̄n(ki) mod ax

)
. (A1)

Because the polarization is defined only modulo ea, the same
is true for the change in polarization, whose possible values
are

�Pe,i = Pe(ki+1) − Pe(ki) + l(ea) (A2)

for l ∈ Z. Assuming that the k points ki are dense enough such
that the true change in polarization is less than ea

2 between any
two steps, the correct choice of l is the one that minimizes the
absolute value of �Pe,i . The Chern number is then given by

C = 1

ea

∑
i

�Pe,i (A3)

= 1

ea

∑
i

min
k∈Z

[Pe,i+1 − Pe,i + k(ea)]abs, (A4)

where min [. . .]abs denotes the minimum with respect to the
absolute value.

APPENDIX B: NUMERICAL COMPUTATION
OF THE Z2 INVARIANT

Here, we describe how the Z2 invariant is calculated for a
given set of WCC

{x̄i
n := x̄n(ki),n ∈ {1,...,N},i ∈ {1,...,M}}, (B1)

where we assume the WCC to be normalized to [0,1). We
define gi := g(ki) as the largest gap between any two WCC
xi

n. That is, gi is such that the distance to the nearest WCC

min
n

d
(
gi,xi

n

)
(B2)

is maximized, where d is the periodic distance. This distance
can be numerically evaluated as

d(x,y) = min(|1 + x − y| mod 1,|1 − x + y| mod 1).

(B3)

For each step i → i + 1, the number ni of WCC x̄i+1
n for

which

min(gi,gi+1) � x̄i+1
n < max(gi,gi+1) (B4)

is counted. This is equivalent to the number of crossings
between the largest gap and the WCC between ki and ki+1.
Thus, the Z2 invariant is given by

� =
(

M−1∑
i=1

ni

)
mod 2. (B5)

APPENDIX C: COMPUTATION OF 1D MAXIMALLY
LOCALIZED HYBRID WANNIER CHARGE CENTERS

1. Single-band systems

Numerically, the Berry phase of a single-band system can
be computed as a product of overlaps 〈uki

|uki+1〉 along a string
of k points ki going across the BZ:

N−1∏
i=0

〈
uki

∣∣uki+1

〉 = cNe−iϕ̃B (N) −−−→
N→∞

e−iϕB , cN ∈ R (C1)

⇒ ϕ̃B(N ) = − arg

[
N−1∏
i=0

〈
uki

∣∣uki+1

〉]
. (C2)

This can be cast in terms of the parallel transport of the Bloch
state across the BZ. For this, in going from ki to ki+1, the state
|uki+1〉 is rotated such that it is parallel to |uki

〉, so that their
overlap is real and positive:∣∣ũki+1

〉 = e−i arg[〈uki
|uki+1 〉]∣∣uki+1

〉
(C3)

⇒ 〈
uki

∣∣ũki+1

〉 ∈ R+. (C4)

Doing this procedure along the closed loop from k0 to kN (see
Appendix D for the explicit expressions for overlaps), a total
phase ϕ̃B(N ) is picked up, which converges to the exact Berry
phase for large N .

2. Multiband systems

The same principle of rotating the states along a closed
path keeping them parallel to each other in consecutive steps
is applied when more than one band is present. However, the

075146-17



DOMINIK GRESCH et al. PHYSICAL REVIEW B 95, 075146 (2017)

overlap is now defined as a matrix

M (ki ,ki+1)
m,n = 〈

um,ki

∣∣un,ki+1

〉
. (C5)

The states at ki+1 must be rotated in such a way that the
resulting overlap matrix is Hermitian. From a singular value
decomposition M = V �W †, this rotation can be obtained as
WV † [78]. Along a closed path, the states pick up a non-
Abelian phase [90]

� = Wn−1V
†
n−1 . . . W0V

†
0 (C6)

whose eigenvalues λi are connected to WCCs by

x̄i = −arg(λi)

2π
. (C7)

Note that this construction gives the WCC normalized to [0,1).

APPENDIX D: PHASE SHIFT ORIGINATING FROM
ATOMIC POSITIONS IN TIGHT-BINDING MODELS

Tight-binding models are defined as a system of orbitals
|φα〉, α ∈ {1, . . . ,N}, localized at positions tα within the unit
cell, and a set of onsite energies Eα , as well as hoppings
between the orbitals. A hopping between orbitals |φα〉 and
|φβ〉, located in unit cells specified by lattice vectors Rα and
Rβ correspondingly, is in general given by a complex number
s ∈ C. A hopping matrix can be introduced with entries at
(α,β) and (β,α):

A(α,β,s) = (seik·Tα,β δα,iδβ,j )i,j + H.c., (D1)

where Tα,β = Rα − Rβ is the vector connecting the positions
of the two orbitals.

We make a gauge convention such that the total Hamiltonian
matrix is given by

H (k) = diag(E1, . . . ,EN ) +
∑

i

A(αi,βi,si). (D2)

This guarantees that H (k + G) = H (k), where G is a recip-
rocal lattice vector.

Given the Hamiltonian, its eigenvectors |ψn(k)〉 =∑
α cn

α(k)|φα〉 can be computed. An overlap matrix element
in the adopted convention is given by

M (k,k+b)
m,n =

occ.∑
α

cm
α (k)∗cn

α(k + b)e−ib·tα , (D3)

assuming the orbitals |φα〉 are perfectly localized at tα .
Unlike the Hamiltonian itself, the overlap matrices depend

on the orbital positions tα , which act as a phase factor.
However, both the symmetry of the system and its spectrum
are determined by the Hamiltonian alone. It is thus possible to
adiabatically move the orbital positions to the origin without
changing the topology of the system, provided the hoppings
are kept unchanged and the space group of the system is sym-
morphic. In this case (but not for nonsymmorphic systems), the
phase factor originating from the orbital positions in the unit
cell can be ignored when computing topological invariants (but
not electronic polarization, which is not quantized in general).

APPENDIX E: PROJECTOR EXPRESSION FOR THE
INDIVIDUAL CHERN NUMBERS

Here, we show that the total Chern number associated with
an isolated set of bands is decomposed into the sum of individ-
ual Chern numbers as defined in Sec. III A. Let H be a Hilbert
space spanned by the bands {|i〉 := |uk,i〉, i ∈ {1,...,N}},
which are defined on a smooth and closed 2D manifold M .
The family of projectors

Pk =
N∑

i=1

|i〉〈i| (E1)

onto H , as well as the families of projectors

P
(i)
k = |i〉〈i| (E2)

onto the individual bands are all assumed to be smooth on the
manifold.

The Chern number associated with these bands is then given
by [Eq. (25)]

C = i

2π

∫
M

Tr
{
Pk

[
∂k1Pk,∂k2Pk

]}
dk1 ∧ dk2. (E3)

By using Tr {A} = ∑
n 〈n|A|n〉 and 〉i|n〉 = δi,n we find

C = i

2π

∫
M

N∑
i=1

〈i|[∂k1Pk,∂k2Pk
]|i〉dk1 ∧ dk2. (E4)

The summand can be simplified as follows:

〈i|[∂k1Pk,∂k2Pk
]|i〉

=
N∑

m,n=1

〈i|[∂k1 |n〉〈n|,∂k2 |m〉〈m|]|i〉
=

N∑
m,n=1

〈i|(∂k1 |n〉〈n|∂k2 |m〉〈m| − ∂k2 |m〉〈m|∂k1 |n〉〈n|)|i〉
=

N∑
n=1

(〈i|∂k1 |n〉〈n|∂k2 |i〉 − 〈i|∂k2 |n〉〈n|∂k1 |i〉
)

= i

N∑
n=1

2 Im
[〈i|∂k1 |n〉〈n|∂k2 |i〉

]
. (E5)

For cases where n �= i,

Im
[〈i|∂k1 |n〉〈n|∂k2 |i〉

]
= Im

[ 〈
i
∣∣∂k1n

〉︸ ︷︷ ︸
=0

〈n|∂k2 i〉 + 〈i|n〉︸︷︷︸
=0

∂k1

〈
n
∣∣∂k2 |i

〉] = 0, (E6)

where we used the fact that

〈i|n〉 = δin, (E7)

and thus

0 = ∂k1〈i|n〉 = 〈
∂k1 i

∣∣n〉 + 〈
i
∣∣∂k1n

〉 = 2
〈
i
∣∣∂k1n

〉
. (E8)

From this, it follows that

〈i|[∂k1Pk,∂k2Pk
]|i〉 = 〈i|[∂k1P

(i)
k ,∂k2P

(i)
k

]|i〉 (E9)
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and, hence,

C = i

2π

∫
M

N∑
i=1

〈i|[∂k1Pk,∂k2Pk
]|i〉dk1 ∧ dk2

=
N∑

i=1

i

2π

∫
M

〈i|[∂k1P
(i)
k ,∂k2P

(i)
k

]|i〉dk1 ∧ dk2

=
N∑

i=1

i

2π

∫
M

Tr
{
P

(i)
k

[
∂k1P

(i)
k ,∂k2P

(i)
k

]}
dk1 ∧ dk2

=
N∑

i=1

ci . (E10)

This proves Eq. (26) for the special case where the Hi each
consist of a single band. Using this special case, the result can
be generalized to any splitting of the Hilbert space

H =
N⊕

i=1

Hi. (E11)

Let {|ij 〉, i ∈ {1,...,N},j ∈ {1,...,Ni}} be a basis of H such
that {|ij 〉, {j ∈ 1,...,Ni}} is a basis of Hi for all i. It is well
known that such a basis always exists. Applying Eq. (E10) first
on H and then on each of the Hi , we get

C =
N∑

i=1

Nj∑
j=1

cij =
N∑

i=1

ci, (E12)

thus proving Eq. (26) for a general splitting of the Hilbert
space.

APPENDIX F: SPLITTING OF THE HILBERT SPACE INTO
SUBSPACES ACCORDING TO THEIR

SYMMETRY BEHAVIOR

Here, we discuss how the Hilbert space can be split into
subspaces according to their symmetry, for the cases of unitary
and antiunitary symmetry operations. In the case of a unitary
symmetry operation, the Hilbert space can uniquely be split
into subspaces which correspond to the eigenspaces of the
symmetry operator. For the case of an antiunitary symmetry
operation A, the same is true for the eigenspaces of the squared
symmetry operator � = A2, which is again unitary. For any
ω �= 1, the eigenstates of � come in pairs, with eigenvalues ω

and ω∗ [165]. This creates a special case for ω = −1, where
ω = ω∗ is true. It is then possible to split the eigenspace in two
in such a way that for each such pair, only one state is contained
in each subspace. However, this splitting is not unique because
the two states in a pair may be switched. Consequently, the
individual Chern number of the two subspaces is meaningful
only if the symmetry relates the individual Chern numbers
of the two states in a pair. An important example of such a
symmetry is time reversal, where the two states in a pair must
have opposite individual Chern numbers, and thus a switching
of states can change the individual Chern number of the two
subspaces only by an even number.

APPENDIX G: CALCULATION OF SYMMETRY
EXPECTATION VALUES OF THE WILSON

LOOP EIGENSTATES

Here, we discuss how the symmetry expectation values are
calculated for the Wilson loop eigenstates. The Wilson loop
[Eqs. (20) and (21)] can be written as a product of overlap
matrices [Eq. (C5)]

W (C) =
L−1∏
i=0

Nocc.∑
j=1

∣∣uj,ki

〉〈
uj,ki

∣∣

=
∑
j1,j2

∣∣uj1,k0

〉(L−2∏
i=0

Mki,ki+1

)
j1,j2

〈
uj2,kL−1

∣∣. (G1)

Since the loop C is closed and thus |uj,k0〉 = |uj,kL−1〉, the
Wilson loop in the basis {uj,k0}j is simply given by the product
of overlap matrices

W =
L−2∏
i=0

Mki ,ki+1 (G2)

and its eigenstates |vi〉, fulfilling W |vi〉 = λn|vi〉 can be

calculated.
Knowing the symmetry representation C in the basis of the

Hamiltonian (that is, the basis in which the |uj,k0〉 are written),
the symmetry expectation values of |vi〉 can be calculated by

〈vi |Ĉ|vi〉 = vT
i ST CSvi, (G3)

where S is the basis-transformation matrix which contains
|uj,k0〉 as its columns.

In the limit of large L, W = �†, where � is defined as
in Eq. (C6). This means the eigenvalues λn are related to the
(normalized) WCC by

x̄i = arg(λi)

2π
, (G4)

and the symmetry expectation values can thus be assigned to
corresponding WCCs.

APPENDIX H: RUNTIME OF EXAMPLE CALCULATIONS

In the following, the runtime of example calculations for
k · p and tight-binding models, and the different first-
principles codes is shown. Unless specified otherwise, the
calculations were performed with the standard settings of
Z2Pack, on an Intel Core i7-4700MQ with 16 GB of RAM.

It is worth noting that these example calculations are not
directly comparable. The k · p and tight-binding examples
describe entirely different systems, but also the first-principles
calculations were not calibrated to have the same accuracy.
Consequently, the runtime values given below should be
interpreted as an order of magnitude estimation. The following
examples were tested:
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k · p model 0.09 s

Chern number of the Haldane model. The example can be found in the Supplemental Material [155] in
z2pack-2.0.3/examples/hm/haldane.

Effective tight-binding model 0.06 s

Z2 invariant for an effective four-band tight-binding model, with nearest- and next-nearest-neighbor interaction. The
example can be found in z2pack-2.0.3/examples/tb/effective_tb.

Tight-binding from first-principles 23 s

Chern number on a sphere around a Weyl node in a first-principles derived model of WTe2 (see Sec. V C, Fig. 16).
The model has 88 bands, and overlap elements to 1000 surrounding unit cells are included.

First-principles with QUANTUM ESPRESSO 5 min

Z2 invariant for bismuth, with 16 bands. The input files can be found in z2pack-2.0.3/examples/fp/Bi_qe.

First-principles with ABINIT 41 min

Z2 invariant for bismuth, with 16 bands. The input files can be found in z2pack-2.0.3/examples/fp/Bi_abinit.

First-principles with VASP 5 min

Z2 invariant for bismuth, with 15 bands. This calculation was performed on an AMD Opteron 6174, using 5 cores.
The input files can be found in z2pack-2.0.3/examples/fp/Bi_vasp.
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