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Wannier representation of Z2 topological insulators
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We consider the problem of constructing Wannier functions for Z2 topological insulators in two dimensions. It
is well known that there is a topological obstruction to the construction of Wannier functions for Chern insulators,
but it has been unclear whether this is also true for the Z2case. We consider the Kane-Mele tight-binding model,
which exhibits both normal (Z2-even) and topological (Z2-odd) phases as a function of the model parameters.
In the Z2-even phase, the usual projection-based scheme can be used to build the Wannier representation. In the
Z2-odd phase, we do find a topological obstruction, but only if one insists on choosing a gauge that respects
the time-reversal symmetry, corresponding to Wannier functions that come in time-reversal pairs. If, instead, we
are willing to violate this gauge condition, a Wannier representation becomes possible. We present an explicit
construction of Wannier functions for the Z2-odd phase of the Kane-Mele model via a modified projection
scheme, followed by maximal localization, and confirm that these Wannier functions correctly represent the
electric polarization and other electronic properties of the insulator.
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I. INTRODUCTION

In the past several years there has been a surge of interest in
topological insulators. These are materials that are gapped
in the bulk, just like ordinary insulators, but that cannot
be adiabatically connected to ordinary insulators without
closing the gap or breaking some specified symmetries. They
also exhibit chiral metallic edge states that are topologically
protected from disorder.1–3 Topological insulators can be
distinguished from normal ones based on the manner in which
the Bloch eigenfunctions are topologically twisted in k-space.

Two types of topological insulators have received the most
attention. First, Thouless et al.4 pointed out long ago that
a two-dimensional (2D) insulator is characterized in general
by a topological integer known as the “Chern number” or
“TKNN index.” A prospective insulator having a nonzero value
of this integer would be known as a “Chern” or “quantum
anomalous Hall” insulator. The latter name arises because
such a crystal would exhibit a quantum Hall effect even in
the absence of a macroscopic magnetic field and would have
chiral edge states just like the ordinary field-induced quantum
Hall effect. Haldane devised an explicit tight-binding model
realizing such a case.5 Since the Hall conductance is odd
under the time-reversal (T ) operator, Chern insulators can
only be realized in systems with broken T symmetry, for
example, insulating ferromagnets. Despite the fact that these
possibilities have been appreciated for almost three decades
now, no known experimental realizations of a Chern insulator
are yet known.

Second, a great deal of interest has surrounded the recent
discovery of a different class of topological insulators, known
as Z2 insulators, that realize the quantum spin Hall effect.6

Subsequent theoretical7–9 and experimental10–14 work has
succeeded in identifying several materials systems that realize
the case of a Z2 topological insulator. Unlike the Chern index,
which vanishes unless T is broken, the Z2 index (which takes
values of 0 and 1 or, equivalently, “even” and “odd”) is only
well defined when T is conserved. Z2 insulators are thus
nonmagnetic, although a spin-orbit or similar interaction is
needed to mix the spins in a nontrivial way. Because T is

preserved, the occupied states at k and −k form Kramers pairs,
and one can associate a Z2 invariant with the way in which
these Kramers pairs are connected across the Brillouin zone.15

Since the Z2 index cannot change along an adiabatic path that
is everywhere gapped and T symmetric, a Z2-even (normal)
insulator cannot be connected to aZ2-odd (topological) one by
such a path. In two dimensions there is a single Z2 invariant,
and T -invariant insulators are classified as even or odd, while
in three dimensions there are four Z2 invariants and the
classification is more complicated.16

Wannier functions (WFs) have proven to be a valuable tool
in working with semiconductors and insulators, providing a
real-space description that can be used to understand bonding,
construct model Hamiltonians, and directly compute certain
physical properties such as the electric polarization.17,18 Thus,
it is desirable to understand the construction of the Wannier
representation for topological insulators so that this useful set
of techniques can be applied to these novel materials.

For Chern insulators it has been shown that a nonzero Chern
number presents a topological obstruction that prevents the
construction of exponentially localized WFs.19,20 Conversely,
a general proof has been given that exponentially localized
WFs should exist in any 2D or 3D insulator having a vanishing
Chern index.21 In principle, this applies to Z2-odd as well
as Z2-even T -invariant insulators, suggesting that a Wannier
representation should be possible in both cases. However, it
is unclear whether the nontrivial topology of the Z2-odd case
has any effect on the Wannier representation. In particular, one
may wonder whether the procedure for obtaining WFs would
be the same as for ordinary insulators and, if not, how it should
be modified to get well-localized WFs in the Z2-odd regime.

In this paper we address this question using the model of
Kane and Mele6 (KM) as a paradigmatic system that exhibits
both Z2-odd and Z2-even phases. We demonstrate that the
usual projection scheme used for constructing the Wannier
representation is still applicable to the Z2-odd insulators, but
only for gauge choices that do not allow WFs to come in time-
reversal pairs. We present an explicit projection procedure for
constructing well-localized WFs in the topologically nontrivial
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phase and show that the WFs can be made even more localized
using the standard maximal-localization procedure.17 We also
discuss the electric polarization from both Berry-phase and
Wannier points of view, showing the relations between the
viewpoints and confirming that both give identical results.

The paper is organized as follows. In Sec. II we define
the Z2 topological invariant in two dimensions and briefly
discuss methods for determining it numerically. We review
the model of KM in Sec. III, and describe its spectrum and
phase diagram. In Sec. IV we present the projection scheme
used to construct WFs and explain how the application of this
scheme to Z2-odd insulators is different from that for ordinary
insulators. The localization properties of the constructed WFs
are described in Sec. V. The electric polarization properties
and locations of the Wannier charge centers are considered in
Sec. VI. Finally, we make concluding remarks in Sec. VII.

II. Z2 INVARIANT

Here we briefly review some of the equivalent ways of
determining the Z2 invariant in 2D insulators. In the work in
Ref. 22 the definition of the Z2 invariant was given in terms of
a function P (k) defined as

P (k) = Pf[〈ui(k)|θ̂ |uj (k)〉], (1)

that is, the Pfaffian of a certain k-dependent antisymmetric
N × N matrix, where N is the number of occupied bands.
Here |uj (k)〉 = e−ik·r |ψj (k)〉 is the periodic part of the Bloch
function of the j th occupied band and θ̂ = isyĈ is the time-
reversal operator (Ĉ is complex conjugation and sy is the
second Pauli matrix). If the zeros of P (k) are discrete, then
the Z2 invariant is odd if the number of zeros of the Pfaffian
within one-half of the Brillouin zone (BZ) (see Fig. 1) is odd
and even otherwise. If the zeros of the Pfaffian occur along
lines in the BZ, then the Z2 invariant depends similarly on
whether half the number of sign changes of P (k) along the
boundary of the half BZ is odd or even. Using � = 0 and 1 to

FIG. 1. (Color online) Sketch of the Brillouin zone. The Berry
curvature in Eq. (4) is calculated in the interior of the half-zone τ

(hatched region), while the Berry connection is evaluated along its
boundary ∂τ (arrows indicate direction of integration). Time-reversal
invariant points �i are shown.

represent evenness and oddness, respectively, the Z2 invariant
can equivalently be determined as6

� = 1

2iπ

∮
∂τ

dk · ∇k log[P (k + iδ)] mod 2, (2)

where the loop integral runs along the boundary ∂τ of the
half-BZ, and the δ term is included for convergence.

Another approach to the problem of defining � results
from considerations of “time-reversal polarization.”23 Here a
spin-pumping cycle is considered and it is shown that the Z2

index is given by the difference between the time-reversal
polarizations at the beginning and those at the midpoint of the
cycle. This approach leads to the formula

(−1)� =
4∏

i=1

√
det[w(�i)]

Pf[w(�i)]
, (3)

where wmn(k) = 〈um(−k)|θ̂ |un(k)〉 and �i are the four time-
reversal-invariant points of the BZ (i.e., those for which −�i =
�i + G, with G a reciprocal vector). Note that the matrix wmn

is not the same as that in Eq. (1).
The definition in Eq. (3) appears to require a knowledge

of the occupied wave functions at only four points in the BZ,
unlike Eq. (2), for which the wave functions must be known
at all points along the boundary of the half-BZ. However,
Eq. (3) is usually not suitable for numerical implementation in
practice, since the sign of the Pfaffian at any one of the four
points can be flipped by a relabeling of the Kramers-degenerate
states at that point. To be more explicit, there is a “gauge
freedom” in the choice of states |um(k)〉, corresponding to
a k-dependent N × N unitary rotation among the occupied
states. Equation (3) is only meaningful when a globally smooth
gauge choice enforces a relation between the labels at the
four special k points.23 This problem may be avoided in the
presence of some additional symmetry, which can be used to
establish the labels of the bands at these points. For example,
in Ref. 9 it is shown how the presence of inversion symmetry
allows for a simplified calculation of � from Eq. (3).

In the absence of inversion symmetry, one can use yet
another definition of the Z2 index, which takes the form23

� = 1

2π

[∮
∂τ

Ad
 −
∫

τ

Fdτ

]
mod 2, (4)

where A = i
∑N

n=1〈un|∇k|un〉 is the Berry connection of N
occupied states and F = ∇k × A is the corresponding Berry
curvature.24 Of course, if A and F are both constructed from a
common gauge that is smooth over τ , the result would vanish
by Stokes’ theorem. Thus, Eq. (4) is only made meaningful by
the additional specification23 that the boundary integral of A
must be calculated using a gauge that respects time-reversal
symmetry; that is,

|u2n−1(−k)〉 = θ̂ |u2n(k)〉,
(5)|u2n(−k)〉 = −θ̂ |u2n−1(k)〉.

For the case of the nontrivial Z2 state, it turns out to be
impossible to choose a gauge that satisfies both smoothness
over τ and constraint (5) over ∂τ . In other words, � = 1
signals the existence of the topological obstruction.
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To see how this works more explicitly, the contributions
to the integral of A over ∂τ are illustrated in Fig. 1. We
choose a gauge that is periodic, |uj (k)〉 = |uj (k + G)〉, in
addition to satisfying Eq. (5). The contributions of the top and
bottom segments [solid (blue) arrows in Fig. 1] then cancel
because they are connected by a reciprocal lattice vector G.
Thus, the gauge needs to be fixed only along the left and
right boundaries [composed of (red) dashed and (gray) dotted
arrows in Fig. 1], which are separated by a half-reciprocal
lattice vector. At each of the special points �i , one state
from each Kramers-degenerate pair is arbitrarily identified as
|u2n−1(�i)〉, and the other is constructed via

|u2n(�i)〉 = −θ̂ |u2n−1(�i)〉. (6)

Then we can make an arbitrary gauge choice along the
remaining portions of the (gray) dotted arrows in Fig. 1, for
example, accepting the output of some numerical diagonaliza-
tion procedure. Finally, the gauge should be transferred to the
(red) dashed-arrow segments using Eq. (5), where k and −k
belong to the dotted and dashed segments respectively.

Equation (4) can now be evaluated using a uniform
discretized mesh K covering the region τ , with the time-
reversal constraint applied to the boundary ∂τ as described
previously. To do so, define the link matrices Mμ,nm(k) =
〈un(k)|um(k + sμ)〉 and the unimodular link variables Lμ(k) =
det Mμ/| det Mμ|, where k ∈ K and s1 (s2) is the step of the
mesh in the direction of the reciprocal lattice vector G1 (G2).
By defining A1(k) = log L1(k) and

F (k) = log
[
L1(k)L2(k + s1)L−1

1 (k + s2)L−1
2 (k)

]
, (7)

one can write the lattice definition of the Z2 invariant as

�L = 1

2iπ

[∑
k∈∂τ

A1(k) −
∑
k∈τ

F (k)

]
mod 2. (8)

For a sufficiently fine mesh there will be no ambiguity in
the branch choice for the complex log in Eq. (7), since the
argument of the log must approach unity as the mesh becomes
dense. Moreover, a change in the branch choice determining
one of the boundary links As(k) has no effect (mod 2) on
Eq. (7), since each As(k) appears twice as a result of the
gauge-fixing on the boundary. Thus, once the mesh is fine
enough that the branch choices in Eq. (7) are all unambiguous,
Eq. (8) gives � exactly.25

III. THE KANE-MELE MODEL

In their remarkable paper introducing a Z2 topological
classification to distinguish a quantum spin Hall effect (Z2-
odd) insulator from an ordinary (Z2-even) insulator, KM6 also
introduced a model tight-binding Hamiltonian that describes
a 2D Z2-odd insulator in some of its parameter space. In
this section we describe some of the properties of the model
suggested therein.

The KM model is a tight-binding model on a honeycomb
lattice with one spinor orbital per site. The primitive hexagonal
lattice vectors are a1,2 = a/2(

√
3ŷ ± x̂) and sites A and B are

located at tA = aŷ/
√

3 and tB = 2aŷ/
√

3, respectively. The
KM Hamiltonian is

H = t
∑
<ij>

c
†
i cj + iλSO

∑
�ij�

νij c
†
i s

zcj

+ iλR

∑
<ij>

c
†
i (s × d̂ij )zcj + λv

∑
i

ξic
†
i ci , (9)

where the spin indices have been suppressed on the raising
and lowering operators, and t is the nearest-neighbor hopping
amplitude. In the second term, λSO is the strength of the spin-
orbit interaction acting between second neighbors, with νij =
(2/

√
3)[d̂1 × d̂2] = ±1 depending on the relative orientation

of the first-neighbor bond vectors d̂1 and d̂2 encountered by
an electron hopping from site j to site i, and sz is the z Pauli
spin matrix. Next, λR describes the Rashba interaction26 that
couples differently oriented first-neighbor spins, with s being
the vector of Pauli matrices. Finally, λv is the strength of the
staggered on-site potential, for which ξi is +1 and −1 on sites
A and B, respectively. Note that the symmetry of the problem is
lowered significantly compared to an ideal honeycomb lattice,
since the on-site staggered potential makes the A and B sites
inequivalent, while the Rashba term breaks sz conservation.

To proceed, we choose the tight-binding basis wave
functions to be

χjσk(r) = (1/
√

N )
∑

R

eik·Rφσ (r − R − tj ), (10)

where σ is a spin index, j = {A,B} denotes the atom type, tj is
a vector that specifies the position of the atom in the unit cell,27

and R is a lattice vector built from the primitive lattice vectors
a1 and a2. This allows the Hamiltonian to be written as a 4 × 4
matrix, Hjσ,j ′σ ′(k) = 〈χjσk|H |χj ′σ ′k〉, which can be cast in
terms of five Dirac matrices �α and their 10 commutators,
�αβ = [�α,�β]/(2i), as

H (k) =
5∑

α=1

dα(k) �α +
5∑

α<β=1

dαβ(k) �αβ, (11)

where the Dirac matrices are chosen to be �1,2,3,4,5 = (I ⊗
σx,I ⊗ σ z,sx ⊗ σy,sy ⊗ σy,sz ⊗ σy), with the Pauli matrices
σ k and sk acting in sublattice and spin space, respectively.
The dependence of the dα and dαβ coefficients on the wave
vector is detailed in Table I using the notation x = kxa/2 and
y = √

3kya/2, with the relationship of these variables to the
BZ sketched in Fig. 2.

Since θ̂�αθ̂−1 = �α and θ̂�αβ θ̂−1 = −�αβ , while dα(k) =
dα(−k) and dαβ(k) = −dαβ (−k), the Hamiltonian, Eq. (9), is
time reversal invariant, that is, θ̂H (k)θ̂−1 = H (−k). However,
it lacks particle-hole symmetry in the sense of Refs. 1–3,
because of the action of the on-site and spin-orbit coupling

TABLE I. Nonzero coefficients appearing in Eq. (11), using
the notation x = kxa/2 and y = √

3kya/2 (see also Fig. 2).

d1 t(1 + 2 cos x cos y) d12 −2t cos x sin y

d2 λv d15 2λSO(sin 2x − 2 sin x cos y)
d3 λR(1 − cos x cos y) d23 −λR cos x sin y

d4 −√
3λR sin x sin y d24

√
3λR sin x cos y
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FIG. 2. (Color online) Brillouin zone sketched using coordinates
x = kxa/2 and y = √

3kya/2. Primitive reciprocal lattice vectors
G1 = (2π/a)(1,1/

√
3) and G2 = (2π/a)(−1,1/

√
3) correspond to

g1 = (π,π ) and g2 = (−π,π ), respectively. The black rectangle
marks the boundary ∂ζ of the zone used for polarization calculations
in Sec. VI.

terms. In the general classification of topological insulators and
superconductors,1–3 therefore, the Kane-Mele model falls into
the AII symplectic symmetry class, which, in two dimensions,
has a Z2 classification. This means that by varying parameters
of the Hamiltonian in Eq. (9), one can switch between Z2-odd
and Z2-even phases, with the system experiencing a gap
closure and becoming metallic at the transition from one phase
to the other.

For the present purposes we assume λSO > 0 without loss
of generality. We also fix λv > 0. For this case, the transition
between Z2-odd and Z2-even phases is accompanied by a gap
closure at the K and K ′ points (the zone-boundary points of
threefold symmetry) in the BZ. The energy is independent
of t at these points, and λSO can be used as the energy
scale. The energy gap is then given by |6√

3 − λv/λSO −√
(λv/λSO)2 + 9(λR/λSO)2|, leading to the phase diagram

shown in Fig. 3. Note that when λR = 0 the model reduces
to two independent copies of the Haldane model;5 the Z2

invariant is odd when the Chern numbers are odd, and even
otherwise.28

In what follows we use t as the energy scale and fix the
values of the other parameters to be λSO/t = 0.6 and λR/t =
0.5. Varying the third parameter, λv/t , allows us to switch

FIG. 3. (Color online) Phase diagram of the Kane-Mele model for
λv/λSO > 0. The dashed arrow illustrates a path crossing the phase
boundary by varying λv while keeping other parameters fixed.

from the Z2-even to the Z2-odd phase. The phase transition
occurs at |λv|/t � 2.93, with the system in the Z2-odd phase
for −2.93 < λv/t < 2.93. As already discussed, the energy
gap closes at the phase transition and remains open in both the
Z2-odd and the Z2-even phases.

IV. GAUGE FREEDOM AND WANNIER FUNCTIONS

A. General considerations

We now consider the problem of constructing WFs for
the KM model. We emphasize that by this we mean a
set of localized functions spanning the same space as the
occupied Bloch bands. Several recent papers have discussed
the construction of WFs for an enlarged subspace including
also some unoccupied bands for 3D topological insulators such
as Bi2Se3,8,29 in which case there is typically no topological
obstruction, but this is not the context of the present work.

We start with the general definition of the WF in cell R and
with band index n in two dimensions,

〈r|Rn〉 ≡ Wn(r − R) = A

(2π )2

∫
BZ

dk e−ik·Rψnk(r), (12)

where A is the unit cell area and Bloch wave functions ψnk are
assumed to be normalized within the unit cell. This definition
is not unique; not only is there the usual U(1) gauge freedom
associated with a k-dependent phase twist of each band n, but
also there is more generally a U(N ) gauge freedom,

|ψnk〉 −→
∑
m

Umn(k) |ψmk〉, (13)

coming from the fact that the N occupied Bloch bands can be
mixed with each other by a k-dependent U(N ) transformation.
In fact, it is generally necessary to premix the Bloch states
using this U(N ) gauge freedom so that the resulting Bloch-
like states (and their phases) will be smooth functions of k.
However, having done this, there is still a large gauge freedom
associated with the application of a subsequent U(N ) gauge
rotation that is smooth in k.

This ambiguity in the gauge choice can be removed by
applying some criterion to the selection of the WFs. Since
electrons are expected to be localized in insulators,30 a
sensible criterion is that of Ref. 17, which specifies maximal
localization of the WFs in real space. In this approach, which
we adopt here, one chooses some localized trial functions, to
provide a starting guess about where the electrons are localized
in the unit cell, and obtains a fairly well-localized set of WFs
by a projection procedure described shortly. If desired, one can
follow this with an iterative procedure to make the resulting
WFs optimally localized.17

Consider an insulator withN occupied bands. We start with
a set of N trial states |τi〉 located in the home unit cell, and at
each k we project them onto the occupied subspace at k to get
a set of Bloch-like states:

|ϒik〉 = P̂k |τi〉 =
N∑

n=1

|ψnk〉〈ψnk|τi〉. (14)
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Since this set of states will not generally be orthonormal,
we make use of a Löwdin orthonormalization procedure that
consists of constructing the overlap matrix,

Smn(k) = 〈ϒmk|ϒnk〉, (15)

and obtaining the orthonormal set of Bloch-like orbitals,

|ψ̃nk〉 =
∑
m

[S(k)−1/2]mn|ϒmk〉. (16)

Note that the ψ̃nk are not eigenstates of the Hamiltonian, but
they span the same space, and have the same form, as the
usual Bloch eigenstates. For an insulator whose gap is not too
small, and for a set of trial functions embodying a reasonable
assumption about the character of the localized electrons,
the ψ̃nk will be smooth functions of k. In that case, by the
usual properties of Fourier transforms, the WFs constructed in
analogy with Eq. (12),

|Rn〉 = A

(2π )2

∫
BZ

dk e−ik·R |ψ̃nk〉, (17)

should be well localized.
Such a construction will break down if the determinant

of S(k) vanishes at any k. This is guaranteed to occur in a
Chern insulator, where time-reversal symmetry is broken and
the Chern index of the occupied manifold is nonzero; in this
case, construction of exponentially localized WFs becomes
impossible.19–21 For a Z2 insulator, however, the presence
of time-reversal symmetry guarantees a 0 Chern index, so
that exponentially localized WFs must exist.21 In this case,
we should be able to find a set of trial functions such that
det S(k) �= 0 throughout the BZ.

B. Z2-even phase

Let us first apply the method just described to the case of the
Z2-even phase of the KM model. This phase is topologically
equivalent to the ordinary insulator, so we anticipate a picture
in which the two electrons per cell are opposite-spin ones
approximately localized on the lower-energy (B) site. One
way to see this is to look at the weights of the basis states in
the occupied subspace. Figure 4(a) shows the distribution of
these weights along a high-symmetry line in the BZ for the
KM model in its Z2-even phase. From this figure it is obvious
that the two basis states on the B site dominate in the occupied
subspace over the whole BZ. It is then natural to choose the two
trial functions to be opposite-spin spatial δ functions localized
on the B site in the home unit cell. We choose these to be
spin-aligned along z, that is,

|τi〉 = ∣∣B; σ z
i

〉 = δ(r − tB)
∣∣σ z

i

〉
, (18)

where |σ z
1 〉 = |↑z〉 and |σ z

2 〉 = |↓z〉. Transforming to k space
we get

|τik〉 =
∣∣σ z

i

〉
√

N

∑
R

eik·Rδ(r − R − tB). (19)

The two occupied Bloch bands may be written as

|ψnk〉 =
∑




C
nk|χ
k〉, (20)

FIG. 4. (Color online) Sum of the weights of the projections into
the two occupied bands of the basis states |A; ↑z〉, |B; ↑z〉, |A; ↓z〉,
and |B; ↓z〉 plotted along the diagonal of the BZ for (a) λv/t = 5
(Z2-even phase) and (b) λv/t = 1 (Z2-odd phase). (a) Inset: BZ of a
honeycomb lattice.

where 
 is a combined index for sublattice and spin,

 = {1,2,3,4} ≡ {A↑ ,B ↑ ,A↓ ,B ↓}, and χ
k = χjσk are the
tight-binding basis functions of Eq. (10). With Eq. (19) the
projected functions become

|ϒ1k〉 = C∗
21k|ψ1k〉 + C∗

22k|ψ2k〉, (21)

|ϒ2k〉 = C∗
41k|ψ1k〉 + C∗

42k|ψ2k〉. (22)

The overlap matrix S is constructed from these functions, and
for the determinant one finds

det [S(k)] = (|C21k|2 + |C22k|2)(|C41k|2 + |C42k|2)

−|C21kC
∗
41k + C22kC

∗
42k|2. (23)

Recall that for the Löwdin orthonormalization procedure to
succeed, this determinant must remain nonzero everywhere
in the BZ. This is indeed the case for the Z2-even phase, as
illustrated in Fig. 5(a), where the solid (black) curve shows the
dependence of the determinant on k along the high-symmetry
line in the BZ.

In contrast, the dashed (red) curve in Fig. 5(a) shows the
behavior of det [S(k)] in the Z2-odd regime. The determinant
can be seen to vanish at the K and K ′ points in the BZ.
Clearly, this choice of trial functions is not appropriate for
building the Wannier representation in the Z2-odd phase.
Indeed, as we shall see in Sec. IV C, any choice of trial
functions that come in Kramers pairs is guaranteed to fail in
the Z2-odd case. There we also investigate alternative choices
of trial functions that allow for a successful construction
of WFs.

C. Z2-odd phase

To gain some insight into the appropriate choice of trial
functions in the Z2-odd regime, consider the weights of the
basis functions in the occupied space shown for this case in
Fig. 4(b). Unlike the normal insulator, the Z2-odd phase does
not favor any particular basis states. Instead, different basis
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(b)

(a)

FIG. 5. (Color online) Plot of det[S(k)] along the diagonal of
the BZ for λv/t = 5 (Z2-even phase) and λv/t = 1 (Z2-odd phase).
(a) Trial functions are |B; ↑z〉 and |B; ↓z〉. (b) Trial functions are
|A; ↑x〉 and |B; ↓x〉.

states dominate in different portions of the BZ. For example,
at points K and K ′ the occupied space is represented by only
two of the four basis states; at each of these points the two
participating basis states have opposite spin and sublattice
indices, and none appear in common at both points. (The
states at K are, of course, Kramers pairs of those at K ′.)
It follows that if any of the trial states is simply set equal
to one of the four basis states, then at least one of the |ϒ〉
would vanish either at K or at K ′, and the determinant
would vanish there too. This explains the failure of the naive
Wannier construction procedure for theZ2-odd phase; with the
naive choice of trial functions as in Eq. (18), the determinant
vanishes at both K and K ′, as shown by the (red) dashed curve
in Fig. 5(a).31

In fact, this failure can be understood from a general point
of view. If the two trial functions form a Kramers pair, then the
projection procedure of Eqs. (14)–(16) will result in Bloch-like
functions obeying

|ψ̃1(−k)〉 = θ |ψ̃2(k)〉,
(24)|ψ̃2(−k)〉 = −θ |ψ̃1(k)〉.

The WFs obtained from Eq. (17) will then also form a Kramers
pair. But Eq. (24) is nothing other than the constraint of
Eq. (5) defining a gauge that respects time-reversal symmetry,
and it has been shown23,32,33 that an odd value of the Z2

invariant presents an obstruction against constructing such a
gauge. In other words, in the Z2-odd phase a smooth gauge
cannot be fixed by choosing trial functions that are time-
reversal pairs of each other, and the choice of WFs as time-
reversal pairs is not possible. Hence, to construct the Wannier
representation in the Z2-odd regime, one should choose trial
functions that do not transform into one another under time
reversal.

Following these arguments, we choose the two trial func-
tions to be localized on different sites in the home unit cell.
Moreover, so that they will have components on states with
spins both up and down along z, we choose the spins of the

trial states so that one is along +x and the other along −x.34

In k space this becomes

|τik〉 =
∣∣σx

i

〉
√

N

∑
R

eik·Rδ(r − R − ti), (25)

where t1 = tA and t2 = tB , leading to

|ϒ1k〉= [(C∗
11k+C∗

31k)|ψ1〉+(C∗
12k+C∗

32k)|ψ2〉]/
√

2 (26)

and

|ϒ2k〉= [(C∗
21k−C∗

41k)|ψ1〉+(C∗
22k−C∗

42k)|ψ2〉]/
√

2. (27)

The determinant takes the form

det[S] = (|C11k + C31k|2 + |C12k + C32k|2)(|C21k − C41k|2
+ |C22k − C42k|2)/4 − |(C11k + C31k)(C∗

21k − C∗
41k)

+ (C12k + C32k)(C∗
22k − C∗

42k)|2/4. (28)

The dependence det[S(k)] is shown along the diagonal
of the BZ for this choice of trial functions in Fig. 5(b). In
the Z2-odd phase [dashed (red) line] the determinant remains
nonzero everywhere in the BZ.35 Not surprisingly, the same
trial functions are very poorly suited to the normal-insulator
phase, as shown by the solid (black) line in Fig. 5(b). In this
case det[S(k)] almost vanishes at K and K ′ and remains quite
small throughout the rest of the BZ, so that one should clearly
revert to the time-reversed pair of trial functions in Eq. (18)
and Fig. 5(a) to get well-localized WFs.

We made an arbitrary choice previously in selecting the two
trial functions to be up and down along x. In fact, if we repeat
the entire procedure using trial functions that are spin-up and
spin-down along any unit vector n̂ lying in the xy plane, we
find that det[S(k)] changes very little, with only small changes
in the size of the dip near the � point. Thus, we find that the
choice of trial functions in Eq. (25) is not unique. Instead, there
is a large degree of arbitrariness in the choice of WFs in the
Z2-odd case.

To conclude, we have established that the choice of a
time-reversal pair of trial functions, Eq. (18), that allows for the
construction of well-localized WFs in the ordinary-insulator
phase cannot be used in the Z2-odd phase. For the usual
projection method for constructing the Wannier representation
to work in this topologically nontrivial phase, the trial
functions should explicitly break time-reversal symmetry; that
is, they should not come in time-reversal pairs.

V. LOCALIZATION OF WANNIER FUNCTIONS IN THE
Z2-ODD INSULATOR

Now that we know how to construct WFs for the Z2-odd
insulator, we discuss their localization properties. As noted
in the preceding section, the choice of the trial functions,
Eq. (25), is not unique; there are other gauge choices arising
from different trial functions that also produce well-defined
sets of WFs. Since different gauge choices lead to different
degrees of localization of the resulting WFs, it is natural to fix
the gauge by the condition of maximal possible localization of
the WFs.
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The problem of constructing maximally localized WFs was
studied by Marzari and Vanderbilt.17 They considered the total
quadratic spread,

� =
N∑

n=1

[〈0n|r2|0n〉 − 〈0n|r|0n〉2], (29)

as a measure of the delocalization of WFs in real space and
developed methods for iteratively reducing the spread via a
series of unitary transformations, Eq. (13), applied prior to
WF construction. The spread functional was decomposed into
two parts, � = �I + �̃, with

�I =
N∑

n=1

[
〈0n|r2|0n〉 −

∑
Rm

|〈Rm|r|0n〉|2
]

(30)

being the gauge-invariant part and

�̃ =
N∑

n=1

∑
Rm�=0n

|〈Rm|r|0n〉|2 (31)

the gauge-dependent part of the spread. Discretized k-space
formulas for Eqs. (30) and (31) were also derived for the case
where the BZ is represented by a uniform k mesh. The resulting
expression for the gauge-invariant spread is, for example,

�I = 1

N

∑
k,b

ωb

N∑
m,n=1

(
δmn − ∣∣M (k,k+b)

mn

∣∣2)
, (32)

where

M (k,k+b)
mn = 〈unk|umk+b〉 =

4∑

=1

C∗

nkC
mk+be

−ib·t
 (33)

are overlap matrices and b are “mesh vectors” connecting
each k point to its nearest neighbors. The latter are chosen,
together with a set of weights ωb, in such a way as to satisfy
the condition ∑

b

ωbbibj = δij . (34)

A corresponding expression for �̃ and a description of
steepest-descent methods capable of minimizing � are also
given in Ref. 17. Note that, to avoid getting trapped in false
local minima, the iterative procedure is normally initialized
using the trial-function projection procedure described in
Sec. IV.

We now apply this method to the KM model. The lattice
is hexagonal, and in this case six bj vectors are needed
to satisfy condition (34), namely, b1 = −b4 = G1/q, b2 =
−b5 = (G1 + G2)/q, and b3 = −b6 = G2/q. All six have the
same length b and weight ωb = 1/(3b2). We start with the WFs
obtained with the projection method using the trial functions
of Eq. (25), appropriate for the Z2-odd phase.

The resulting spreads, both before and after the iterative
minimization, are shown in Fig. 6. (�I , being gauge-invariant,
is the same before and after.) The left part of the figure shows
the behavior in the Z2-odd phase, where the trail functions
are the appropriate ones. The results in this region were not
strongly sensitive to the k-point mesh density. The facts that
�̃ is similar in magnitude to the unminimized �I , and that the

0.0

0.5

1.0

1.5

0 1 2 3 4 5

λv/t

ΩI

Ω initial 
Ω final 
 ~ 
 ~ 

FIG. 6. (Color online) Wannier spreads �I and �̃ for the Kane-
Mele model on a 60 × 60 k mesh, initialized using the trial functions
of Eq. (25). “Initial” and “final” values are those computed before
and after the iterative minimization, respectively. The system is in the
Z2-odd phase for λv/t � 2.93.

localization procedure reduces �̃ by only 20%–30%, provide
additional evidence that the choice of trial functions was a good
one. The Wannier charge centers were almost unchanged by
the minimization procedure; the x coordinates were 0, while
r̄1y � a/

√
3 and r̄2y � 2a/

√
3 (see Sec. VI for details), in

good agreement with our initial assumption about the WFs
being localized on A and B sites.

The right part of Fig. 6, for λv/t � 2.93, shows what
happens when we attempt to use the same trial functions in
the normal phase. �I is, of course, unaffected by the choice
of trial functions, and the fact that it has a smaller value in
this region indicates, not surprisingly, that the insulating state
is simpler and more localized in the normal state. (For large
λv/t the WFs approach spatial � functions, explaining the
fact that �I asymptotes to 0 in that limit.) Not surprisingly,
however, using the trial functions appropriate for the Z2-odd
phase in the Z2-even regime results in very poor localization
of the WFs as measured by �̃. Our data also suggest that in the
Z2-odd phase, maximally localized WFs are less localized than
maximally localized WFs in the Z2-even phase. For example,
the use of trial functions (18) with λv/t = 5 and a 60 × 60 k
mesh results in �I = 0.02770 and �̃ = 0.00025. We also find
that the results are more sensitive to the choice of k mesh in
the Z2-odd regime.

To summarize the results of this section, we studied the
construction of maximally localized WFs in the Z2-odd phase
using the KM model as an example. We have seen that our
initial guess of Sec. IV about the localization of WFs in
this topological regime is very good, and that the maximal
localization procedure does not greatly reduce the spread.

VI. HYBRID WANNIER CHARGE CENTERS AND
POLARIZATION

In this section we discuss the polarization in Z2-odd
insulators using the example of the KM model and see what
insights into the topological insulating phase can be obtained
by inspecting this property. The electronic polarization in a 2D
system can be defined either in terms of the Berry phase,36

P = |e|
(2π )2

Im
N∑

n=1

∫
dk〈unk|∇k|unk〉, (35)
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or via the summation of Wannier charge centers,18

P = − |e|
A

N∑
n=1

r̄n, (36)

where e is the electronic charge and A is the area of the unit
cell. The two definitions are identical and define electronic
polarization modulo a polarization quantum |e|R/A, where
R is a lattice vector. This ambiguity can be understood as a
freedom in the choice of branch in Eq. (35) or in the choice of
unit cell in Eq. (36). The definition via Wannier charge centers
makes the dependence of P on the choice of origin obvious.
As described in Sec. III, the origin of the KM model is chosen
such that atoms are located along the y axis at tA = ξ ŷ/3
and tB = 2ξ ŷ/3, where ξ = |a1 + a2| = a

√
3. Because the

Hamiltonian has threefold symmetry, we expect the rescaled
polarization (A/|e|)P to lie at the origin, at tA, or at tB . To
distinguish among these possibilities it is sufficient to compute
Py , which is well defined modulo |e|/a.

A. Total polarization

A direct computation of electronic polarization via Eq. (35)
in the Z2-even phase results in Py = |e|/3a mod |e|/a,
consistent with the fact that both Wannier centers in Eq. (36)
lie at tB (since −4|e|ξ/3A = −8|e|/3a = |e|/3a mod |e|/a).
In the Z2-odd phase, in contrast, Eqs. (35) and (36) lead
to Py = 0 mod |e|/a. Again, this is consistent with the
locations of the WFs. As indicated in Sec. V, the Wannier
centers r̄n in this phase lie approximately at tA and tB . More
precisely, we find that they are located at r̄1 = (1 − δ)ξ ŷ/3
and r̄2 = (2 + δ)ξ ŷ/3, where δ is a small correction (e.g.,
δ = 0.0018 at λv/t = 1). Thus, the sum of the Wannier centers
is just ξ ŷ, or 0 modulo a lattice vector.

It is interesting to note that, in retrospect, the computation
of the polarization via Eq. (35) would have given a strong hint
about the appropriate choice of trial functions in the Z2-odd
insulator. That is, knowing only that Py = 0, one might have
guessed that both WFs should be centered halfway between tA
and tB , or both at the center of the honeycomb ring, or one at
tA and the other at tB . The latter possibility becomes the most
likely when we also take into account that in the Z2-odd phase
the two WFs cannot form a Kramers pair.

B. Hybrid Wannier decomposition

To obtain a deeper understanding of the origin of the polar-
ization and expose some qualitative differences in the behavior
of its k-dependent decomposition in Z2-even and Z2-odd
phases, it is useful to use a hybrid representation in which the
Wannier transformation is carried out in one direction only. As
indicated previously, we know from symmetry considerations
that we can set Px = 0 and characterize the polarization by
Py mod ξ |e|/A. To compute Py , it is convenient to choose
the BZ to be a rectangle extending over kx ∈ [0,2π/a] and
ky ∈ [0,4π/ξ ] (corresponding to the region ζ in Fig. 2). We
can then define hybrid WFs

|nkxly〉 = ξ

4π

∫ 4π/ξ

0
dky e−iky ly |ψ̃nk〉 (37)

in terms of which the usual WFs are

|Rn〉 = |nlxly〉 = a

2π

∫ 2π/a

0
dkx e−ikx lx |nkxly〉. (38)

The hybrid Wannier centers are defined as

ȳn(kx) = 〈nkx0|y|nkx0〉, (39)

and the total electronic polarization is

Py = − |e|
πξ

∑
n

∫ 2π/a

0
dkx ȳn(kx). (40)

In practice, the kx integral is discretized by a sum over a
mesh of kx values, and at each kx the ȳn(kx) are calculated
by considering the corresponding string of k points along ky .
In the case that the gauge has been specified by a particular
set of 2D WFs |Rn〉 or, equivalently, by the corresponding
Bloch-like functions |ψ̃nk〉, this is done straightforwardly using
the discretized Berry-phase formula,

ȳn(kx) = − ξ

4π
Im log

∏
j

M (j )
nn , (41)

where M (j ) is shorthand for the overlap matrix M (kj ,kj+1) of
Eq. (33) connecting ky points j and j + 1 along the string.

As emphasized in Sec. IV, the ψ̃nk carry the information
about the gauge choice. Thus, different gauge choices—that
is, different choices of WFs—will result in different hybrid
WFs and different ȳn(kx). However, the sum

∑
n ȳn(kx) at a

given kx is gauge invariant, and as a result, Py of Eq. (40) must
remain the same in any gauge.

Of special interest is a gauge choice in which, at each
kx , the hybrid WFs |nkxly〉 are maximally localized in the
y direction. It was shown in Ref. 17 that in one dimension, the
Wannier charge centers can be obtained by a parallel-transport
construction using the overlap matrices M (j ). Specifically,
the “unitary part” M̃ (j ) of each overlap matrix is obtained by
carrying out the singular-value decomposition M = V �W †,
where V and W are unitary and � is real-positive and diagonal,
and then setting M̃ = V W †. This is reasonable because, for
a sufficiently fine mesh spacing, � is almost the unit matrix.
Then the unitary matrix � = ∏

j M̃ (j ) describes the transport
of states along the string. The eigenvalues λn of this matrix are
all of unit modulus, and their phases define Wannier centers
via37

ȳn(kx) = − ξ

4π
Im log λn. (42)

Note that no iterative procedure is needed. Inserting this
equation into Eq. (40), one gets a discretized formula for Py

that is consistent with Eq. (35).

C. Results

We now illustrate these ideas for the KM model in its
normal and Z2-odd phases. In each case we present results for
ȳn(kx) for two choices of gauge: the maximally localized one
along ŷ, as discussed in the previous paragraph, and the one
corresponding to the WFs constructed from the trial functions
of Eq. (18) for the Z2-even phase or from those of Eq. (25)
for the Z2-odd phase. In what follows, we refer to these as the
“maxloc” and “WF-based” gauges, respectively.
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FIG. 7. (Color online) Hybrid Wannier centers ȳn(kx), in units of ξ/2, for the Kane-Mele model. Z2-even phase (λv/t = 3): (a) maxloc
gauge; (b) WF gauge of Eq. (18). Z2-odd phase (λv/t = 1): (c) maxloc gauge; (d) WF gauge of Eq. (25). In each case, several periodic images
are shown.

In the ordinary insulating regime, the maxloc and WF-based
ȳn(kx) curves look very similar to each other. Figures 7(a) and
7(b) show the calculated results for the case of λv/t = 3, very
close to the transition on the insulating side (recall that the
critical value is at λv/t = 2.93). Three of the infinite number
of periodic images along y are shown. The “bumps” in the
curves near the K and K ′ points in the BZ are the result of
the proximity to the transition; as one goes deeper into the
insulating phase, the curves flatten out and become smooth
functions of kx . The solid and dashed curves are mirror images
of each other; in the maxloc construction in Fig. 7(a) this just
reflects the time-reversal invariance of the Hamiltonian, while
in Fig. 7(b) it follows from the fact that the WFs form a
Kramers pair. When averaged over kx , each curve is found to
have a mean ȳ value of 2ξ/3 to numerical precision, or ξ/6
modulo ξ/2, consistent with the discussion in Sec. VI A.

The corresponding results for the Z2-odd phase are shown
in Figs. 7(c) and 7(d) for λv/t = 1. As expected, there is
again a mirror symmetry visible in the curves for the maxloc
construction in Fig. 7(c), but the connectivity of the curves
is qualitatively different: in going from kx = 0 to π/a, we
see that the nth solid curve goes up to cross the (n + 1)th
dashed curve, while the nth dashed curve goes down to cross
the (n − 1)th solid curve. This is exactly the kind of behavior
that was exhibited in Fig. 3(a) of Ref. 23 as a signal of the
Z2-odd phase. Moreover, if we follow the nth dashed curve
all the way across the BZ, we find that it wraps to become
the (n + 1)th one when kx = 2π/a wraps back to kx = 0.
This is precisely the kind of behavior that is characteristic
of a Chern (or quantum anomalous Hall) insulator,38 which
implies that we can assign a Chern number of +1 to the Bloch
subspace spanned by the eigenvectors corresponding to the
dashed bands. However, since we are studying here a system
with time-reversal symmetry, we find also a partner subspace
corresponding to the solid curve in Fig. 7(c) having a Chern
number of −1. As a result, of course, the overall occupied

space has a total vanishing Chern number, as it must due to
the time-reversal symmetry. Evaluation of the polarization Py

through Eq. (40) again yields Py = 0 mod |e|/a, consistent
with the direct calculation of Sec. VI A.

Finally, Fig. 7(d) shows the ȳn(kx) curves for the same
Z2-odd parameters as in Fig. 7(c), but using the WF-based
gauge determined by the trial functions of Eq. (25). At any
given kx , we confirm that ȳ1 + ȳ2 is the same in Fig. 7(d)
as in Fig. 7(c), and the total polarization is therefore the
same. However, because the two WFs do not form a Kramers
pair in this case, the dashed and solid curves do not map
into each other under time-reversal symmetry, and there is
no degeneracy at kx = π/a. Moreover, the Chern number of
each band is individually 0, consistent with the fact that each
one is derived from a WF. The average ȳ values for the solid
and dashed curves are 0.978ξ/3 and 2.022ξ/3 mod ξ/2, very
close to the nominal locations of the trial functions at tA and
tB , respectively.

To recap, in both the Z2-even and the Z2-odd cases, we
find that the occupied Bloch space can be cast as the direct
sum of two subspaces that map into one another under the
time-reversal operation, corresponding to the solid and dashed
curves in Figs. 7(a)–7(c). These subspaces are built not from
Hamiltonian eigenstates, but from suitable k-dependent U(2)
rotations among the Hamiltonian eigenstates. In the Z2-even
case the Chern index of each of these subspaces is separately 0,
so that we can also provide a Wannier representation for each
subspace separately. This is essentially the case in Fig. 7(b),
and since the spaces form a time-reversal pair, the WFs form
a time-reversal pair as well. In contrast, for the Z2-odd phase,
the decomposition into two subspaces that are time-reversal
images of each other necessarily results in subspaces having
individual Chern numbers of ±1, and these are not individually
Wannier representable. Only by violating the condition that the
two spaces be time-reversal partners, as done in Fig. 7(d),
can we decompose the space into two subspaces having
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0 Chern indices individually. By doing so, we can find a
Wannier representation of the entire space, but only on the
condition that the two WFs do not form a Kramers pair.

VII. CONCLUSIONS

In this paper we have considered the question of how to
construct a Wannier representation for Z2-odd topological
insulators in two dimensions. We have shown that the usual
method based on projection onto trial functions fails because of
a topological obstruction if one imposes the condition that the
trial functions should come in time-reversal pairs. In contrast,
the projection method can be made to work if this condition is
not imposed, resulting in WFs that do not transform into one
another under time reversal.

Such a Wannier representation may have some formal
disadvantages. For example, if one writes the Hamiltonian
as a matrix in this Wannier representation, its time-reversal
invariance is no longer transparent, and the presence of
other symmetries may become less obvious as well. In
contrast, it does satisfy all the usual properties of a Wannier
representation, as, for example, the ability to express the
electric polarization in terms of the locations of the Wannier
centers, and there is every reason to expect that the maximally
localized WFs are still exponentially localized.21

The generalization of our findings to the 3D case should be
relatively straightforward. Certainly the topological obstruc-
tion to the construction of Kramers-pair WFs remains for both

weak and strongZ2 topological insulators in three dimensions.
To see this, consider in turn each of the six symmetry planes
in k space (k1 = 0, k2 = 0, k3 = 0, k1 = π/a, etc.) on which
Hk behaves like a 2D time-reversal-invariant system. For both
weak and strong topological insulators, at least one of these
six planes must have a Z2-odd 2D invariant. But if a gauge
exists obeying the time-reversal condition of Eq. (5) in the
3D k space, then it does so, in particular, on the 2D plane,
in contradiction to the 2D arguments about a topological
construction.

Thus, the general strategy for constructing WFs for 3D
topological insulators should be very similar to the one
presented here in two dimensions. Namely, one has to choose
pairs of trial functions that do not transform into one another
by time-reversal symmetry, and to do it in such a way that
the projection of these trial functions onto the Bloch states
does not become singular anywhere in the 3D BZ. While it
may be interesting to explore how this might best be done
in practice for real 3D topological insulators, for example, in
the density-functional context, the choice is likely to depend
sensitively on details of the particular system of interest. Thus,
an investigation of these issues falls beyond the scope of the
present work.
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