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Within the framework of density functional perturbation theory, we implement and test a “metric wave”
response-function approach. It consists in the reformulation of an acoustic phonon perturbation in the curvilinear
frame that is comoving with the atoms. This means that all the perturbation effects are encoded in the first-order
variation of the real-space metric, while the atomic positions remain fixed. This approach can be regarded as the
generalization of the uniform strain perturbation of Hamann et al. [D. R. Hamann, X. Wu, K. M. Rabe, and D.
Vanderbilt, Phys. Rev. B 71, 035117 (2005)] to the case of inhomogeneous deformations, and greatly facilitates
the calculation of advanced electromechanical couplings such as the flexoelectric tensor. We demonstrate the
accuracy of our approach with extensive tests on model systems and on bulk crystals of Si and SrTiO3.
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I. INTRODUCTION

Theoretical attention to the fundamentals of mechanical
deformations is of growing importance due to a surge of
interest [1–3] in the flexoelectric effect, i.e., the polarization
(P) response of a generic insulator to a strain gradient defor-
mation. The renewed activity on flexoelectricity has mainly
been motivated by a number of promising experimental re-
sults, demonstrating its large potential in different applications
such as sensors and MEMS [4], memory storage [5], and re-
placement of piezoelectrics [6]. This experimental excitement
motivates the urgency of supporting the results with a robust
and predictive theory.

In this context, density functional theory (DFT) appears
as the most natural approach to study electromechanical re-
sponse properties with unbiased quantum-mechanical accu-
racy. Techniques for calculating piezoelectricity (P response
to uniform strain) are now well established [7,8]; however,
generalization to flexoelectricity is far from trivial, and viable
methodologies have started to appear only very recently [9–
13]. Their conceptual basis consists in the long-wave analysis
of acoustic phonon perturbations. This has the advantage of
recasting a strain gradient, which breaks translational symme-
try, into a periodic problem, by exploiting the standard treat-
ment of incommensurate perturbations within the context of
density functional perturbation theory (DFPT). Since we are
interested in the electric response of insulators to mechanical
deformations, the relevant quantity on which we have to focus
our attention is the polarization response. By taking its long-
wave expansion, we can systematically identify the lowest
orders in the wave vector q with specific electromechanical
couplings [10,14]. The zeroth-order term, related to rigid
translations of the lattice, vanishes due to the acoustic sum
rule; the first-order term is the piezoelectric coefficient; the
second-order term corresponds to the flexoelectric coefficient.

Generally speaking, the total polarization response of the
crystal includes both purely electronic and lattice-mediated
contributions. While the latter are relatively uncomplicated to
understand and calculate, as the corresponding formulas bear
many similarities to those that are valid for simplified point-
charge models [15], for the clamped-ion contribution to the
polarization the knowledge of the microscopic current-density
response [9,10] to the deformation is needed. Despite the
fundamental nature of this observable in quantum mechanics
[16], the current density is not routinely available in public
DFT codes. It is only recently that some of us established a
computationally tractable definition of the current density and
used it in the context of phonon perturbations to obtain the
flexoelectric coefficients of selected materials [12]. This strat-
egy represents a methodological breakthrough, as it allows the
calculation of all of the independent components of the bulk
flexoelectric tensor by using a primitive crystal cell.

There are further subtleties, however, that the approach of
Ref. [12] has addressed only partially. For example, it has
become clear in the past few years that flexoelectricity is not a
genuine bulk property: before attempting any comparison be-
tween ab initio results and experiments, the bulk flexoelectric
tensor needs to be combined with the relevant surface con-
tributions, i.e., those coming from “surface piezoelectricity”
[10,17]. Surface effects might appear, at first sight, irrelevant
in the context of a bulk theory; yet, the separation between
surface and bulk contributions to the flexoelectric response is
not unique.

A manifestation of this issue was illustrated in Ref. [13],
where it was shown that the electronic flexoelectric tensor
consists of two distinct physical contributions: a “static” and a
“dynamic” term. The latter, in particular, is related to rotation
gradients (a subset of the strain-gradient tensor components),
and is proportional to the orbital magnetic susceptibility
tensor. While both mechanisms contribute to the physical
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current-density field that is generated by a strain gradient, and
therefore are implicitly present in the bulk response as calcu-
lated via a standard phonon perturbation, only the former is
relevant to the electromechanical response of a finite sample.
(The rotation-gradient contribution, being a purely solenoidal
current, makes no contribution to the charge density in the
bulk, while its effect at the boundary is exactly canceled by
an equal and opposite surface term.) Therefore, in Ref. [12]
an independent calculation of the diamagnetic susceptibility
was performed in order to isolate the physically relevant static
part.

An alternative approach for calculating the electronic flex-
oelectric tensor consists in employing the time-dependent
Schrödinger equation rewritten in curvilinear coordinates
[13]. These coordinates are identified by the frame that is
comoving with the atoms. In such a frame, the atoms do not
move by construction, and all the information on the perturba-
tion is encoded in the macroscopic displacement field and its
gradients (e.g., the metric tensor). For this reason, we identify
the aforementioned representation of the acoustic phonon as a
“metric perturbation”; indeed, this constitutes a generalization
of the metric tensor formulation of the uniform strain [8] to
a spatially modulated perturbation. The curvilinear frame is
particularly convenient because it naturally separates the static
and the dynamic contributions to the electronic flexoelectric
tensor. Thus, one can readily use the metric perturbation to
calculate the static contribution directly, and thereby eliminate
the need for any post-processing step connected with the
diamagnetic correction. Moreover, the metric perturbation is
a computationally much more efficient approach to the calcu-
lation of the clamped-ion flexoelectric tensor since it avoids
the sum over individual sublattices which is implicit in the
phonon approach of Ref. [12]. A practical calculation of the
flexoelectric tensor that takes full advantage of the curvilinear
coordinates, however, has not yet been attempted.

Part of the reason lies in some points of principle that
were left unresolved in earlier works. First, the formalism of
Ref. [13] was derived under the assumption of an all-electron
description of the electronic structure, where the atoms are
treated as point charges. This is clearly ill suited to a numerical
implementation based on a plane-wave basis set. Prior to
its practical use, the formalism needs to be generalized to
the treatment of separable atomic pseudopotentials in the
Kleinman-Bylander [18] form, at the very least. Second, the
precise relationship between the first-order wave functions in
the curvilinear and laboratory frames need to be established
in order to firm up the conceptual foundations of the method.
Based on earlier derivations [13], for example, we know
the relationship between the relevant physical observables
(current density, flexoelectric tensor, and so forth). However,
this was obtained in an idealized context of a complete basis
set and continuous Brillouin-zone integration. This is not
enough to predict how results will converge as a function
of the common computational parameters, nor whether such
convergence will be at all different compared to the phonon
approach [12].

Here, we address the above issues in full by deriving
the missing pseudopotential terms in the metric wave per-
turbation. Remarkably, we establish a rigorous link between
the response in the Cartesian and comoving frames, which

shows that the respective first-order wave functions are related
by a simple geometric contribution (i.e., one that can be
expressed in terms of ground-state quantities). We analyze the
implications of this result for the observables of interest in the
present context (charge density and current), leading naturally
to a stringent numerical validation strategy.

Based on the aforementioned results, we then proceed to
the code implementation and testing of the monochromatic
metric perturbation, identified by a (generally) incommen-
surate wave vector q, in the context of DFPT. The wave-
function response to such a metric perturbation is then used as
input for calculating the current-density response, as recently
developed in Ref. [12]. The resulting methodology allows
flexoelectric coefficients to be calculated with unprecedented
accuracy and computational efficiency. In particular, our nu-
merical tests clearly demonstrate that the present method
yields faster convergence with respect to k-point mesh density
and other computational parameters when compared with
previous approaches. We rationalize this result in terms of
the aforementioned relationship between the first-order wave
functions in the curvilinear and laboratory frames.

From the formal point of view, this work also establishes
a direct link between the perturbative treatment of phonon
and uniform strain perturbations, which previously have been
regarded as two conceptually distinct subareas of DFPT.

The paper is organized as follows. In Sec. II we start
by briefly motivating the metric perturbation in the context
of flexoelectricity. We then analyze in depth its connections
with the established phonon and strain perturbations, while
highlighting a number of important technical details related
to the code implementation. In Sec. III we present the results
of our numerical tests, which we perform in the context of
DFPT by calculating, among other properties, the flexoelectric
tensor of selected representative crystals. Finally, in Sec. IV,
we present our summary and conclusions.

II. THEORY

A. Flexoelectric tensor

The main motivation for the development and implementa-
tion of the metric perturbation comes from the practical calcu-
lation of the clamped-ion (i.e., purely electronic) flexoelectric
tensor. Thus, to frame our arguments, in this section we shall
start by briefly reviewing the existing [9,10,12] theory of bulk
flexoelectricity and, in particular, the phonon-based current-
density approach of Ref. [12]. Subsequently, we shall point
out the advantages of the metric perturbation, which we shall
describe in further detail in Sec. II B.

The bulk flexoelectric (FxE) coefficients are given by

μI
αβ,ων = dPα

dηβ,ων

, (1)

where Pα is the polarization in direction α, and

ηβ,ων = ∂2uβ

∂rω∂rν

(2)

(i.e., defined as the second gradient of the displacement field
uβ). Alternatively, the FxE tensor can be written in type-II
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form as

μII
αβ,ων = dPα

dεων,β

, (3)

where εων,β = ∂εων/∂rβ is the first gradient of the sym-
metrized strain tensor,

εων = 1

2

(
∂uω

∂rν

+ ∂uν

∂rω

)
= hων + hνω

2
(4)

(hων = ∂uω/∂rν is the unsymmetrized strain, also known as
deformation gradient). Choosing one or the other representa-
tion is a matter of convenience, as the independent entries of
μI and μII are linearly related to one another. Neither of the
two definitions [Eq. (1) or (3)], however, lends itself easily
to a direct numerical implementation, as both involve an un-
bounded perturbation that breaks the translational symmetry
of the lattice.

1. Phonons

To address this issue, Refs. [9,10] based their formalism on
the cell average of the microscopic polarization response to a
monochromatic atomic distortion pattern

P
q
α,κβ = 1




∫
cell

d3r e−iq·r ∂Pα (r)

∂λκβ

, (5)

where the perturbation consists in a modulated displacement
of the sublattice κ at the cell l along the direction β (Rlκ

indicates the unperturbed lattice sites):

ul
κβ = λκβeiq·Rlκ . (6)

The clamped-ion type-I flexoelectric coefficients can then be
written as the second gradient with respect to the wave vector
q of the aforementioned polarization response [9,10]

μI
αβ,ων = −1

2

∑
κ

∂2P
q
α,κβ

∂qω∂qν

. (7)

(Throughout this section we shall consistently use the type-I
representation since it is the most convenient for performing
the calculations, and we shall drop the superscript for con-
ciseness. However, when presenting our results in Sec. III E,
we shall switch to type-II form, following the conventions of
earlier works.) Based on the current-density implementation
of Ref. [12], one can write P

q
α,κβ as a second-order matrix

element

P
q
α,κβ = 4

Nk

∑
nk

〈unk|Ĵ k,q
α

∣∣δu
τκβ

nk,q

〉
(8)

involving the ground-state Bloch orbitals |unk〉, the current-
density operator Ĵ k,q

α , and the adiabatic [12] wave-function
response to the perturbation of Eq. (6), |δuτκβ

nk,q〉. (The latter is
defined, in the context of adiabatic perturbation theory, as the
change in the wave function to first order in the rate of change
of the phonon mode amplitude.) In Ref. [12], some of us have
implemented and tested Eq. (8), and used it to calculate the
flexoelectric coefficients via Eq. (7); we refer the interested
reader to that work for the technical details.

2. Rotation gradients

Many types of strain gradient involve a spatial variation
in the local rotation as described by the antisymmetric part
of the deformation gradient Rων = (∂uω/∂rν − ∂uν/∂rω )/2.
It has recently become clear [12,13] that rotation gradients
produce, in addition to other effects, a divergenceless current-
density field, which contributes to the bulk flexoelectric ten-
sor proportionally to the diamagnetic susceptibility of the
material [13]. These contributions are implicitly present in
Eq. (7); however, since they ultimately will cancel out with
an equal and opposite surface term that originates from the
same physical mechanism, it is best to subtract them once
and for all. We can do this by defining the effective (type-I)
flexoelectric tensor

μ′
αβ,ων = μαβ,ων − 1

2

∑
γ λ

(εαωγ εβλν + εανγ εβλω )χmag
γ λ , (9)

where ε is the Levi-Civita symbol and χ
mag
γ λ = ∂Mγ /∂Hλ is

the magnetic susceptibility tensor (M is the magnetization
and H is the magnetic field). This was the approach taken
in Ref. [12], where an independent calculation of χ

mag
γ λ was

performed in order to the obtain μ′
αβ,ων .

3. Metric response

The procedure described in Secs. II A 1 and II A 2 presents
two drawbacks. First, an individual phonon response calcu-
lation needs to be performed for each sublattice κ . Second,
an additional calculation of χ

mag
γ λ needs to be performed.

Both drawbacks were resolved in Ref. [13] by establishing
an alternative formulation of the polarization response to an
acoustic phonon

P
′ q
α,β = 4

Nk

∑
nk

〈unk|Ĵ k,q
α

∣∣δu(β )
nk,q

〉
. (10)

Here, in contrast to Eq. (8), the ket is the adiabatic response to
a metric wave, i.e., an acoustic phonon perturbation described
in the comoving frame. Thus, the contributions from the indi-
vidual atomic sublattices have implicitly been summed over.
Furthermore, the resulting polarization is already free from
the rotation-gradient contribution described in the previous
paragraph, and therefore we can directly write

μ′
αβ,ων = −1

2

∂2P
′ q
α,β

∂qω∂qν

, (11)

eliminating the need for an explicit calculation of χ
mag
γ λ .

Note that the metric formalism introduces another technical
simplification at the level of the current-density operator. In
the phonon case, an expression for Ĵ k,q

α that is correct up to
second order in q was needed [12]. Here, by contrast, since
the wave-function response vanishes at q = 0, Ĵ k,q

α is only
needed up to first order,

Ĵ k,q
α = −

⎛
⎝ p̂k

α + qα

2
+ ∂V̂ k

NL

∂kα

+ 1

2

3∑
γ=1

qγ

∂2V̂ k
NL

∂kα∂kγ

⎞
⎠, (12)

where p̂k
α = −i∇̂α + kα is the cell-periodic momentum op-

erator and V̂ k
NL = eik·r̂V̂NLe−ik·r̂, where V̂NL nonlocal external
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(a) (b) (c)

FIG. 1. Illustration of the coordinate transformation to the comoving frame. (a) Unperturbed crystal lattice; black circles represent the
atomic sites, horizontal and vertical lines represent the coordinate system. (b) Transverse acoustic phonon in the laboratory frame. (c) The
same phonon in the curvilinear frame; note that the atoms do not move in this coordinate system: the mechanical deformation is described via
the metric.

potential operator. In this work, we will use the “straight-line
path” form of the current operator [19,20], although such a
choice is irrelevant for materials with cubic symmetry [12].

In the following, we shall delve into the technical details
of the metric perturbation within the general framework of
DFPT.

B. Metric perturbation

The starting ingredient for the metric perturbation is a
“clamped-ion” acoustic phonon. This is a collective lattice
mode where all atoms are perturbed according to Eq. (6) by
using the same displacement amplitude for all sublattices,
λκβ = λβ . Next, we describe such a monochromatic acoustic
wave in the curvilinear frame that is comoving with the atoms
(Fig. 1). This means that we combine the aforementioned
displacement pattern with a simultaneous coordinate transfor-
mation that brings every atom back to its original position

xβ (ξ) = ξβ + λβeiξ·q. (13)

It is easy to verify that in the curvilinear reference, spanned
by ξ, the atoms do not move; the perturbation now concerns
the metric of the deformation.

The unperturbed Kohn-Sham Hamiltonian reads as

Ĥ (0) = T̂ (0) + V̂ Hxc,(0) + V̂ psp,(0), (14)

where T̂ (0), V̂ Hxc,(0), and V̂ psp,(0) are the kinetic, exchange-
correlation, and pseudopotential terms, respectively.

The latter consists in a local and a separable contribution

V psp,(0)(r, r′) = V loc,(0)(r)δ(r − r′) + V sep,(0)(r, r′), (15)

both written as lattice sums of individual atomic contributions,
e.g.,

V loc,(0)(r) =
∑

lκ

vloc
κ (r − Rlκ ), (16)

where Rlκ = Rl + τκ . The separable pseudopotential term is
written in the Kleinman-Bylander (KB) form

V sep,(0)(r, r′) =
∑
lκμ

eμκζμκ (r − Rlκ )ζ ∗
μκ (r′ − Rlκ ), (17)

where ζμκ (r) are the KB projectors, indexed by μ, and eμκ are
the corresponding coefficients.

Subsequently to the change of coordinates, we shall write
the “static” first-order Hamiltonian in the curvilinear frame as

Ĥ(β )
k,q = Ĥ (β )

k,q + V̂ (β )
q , (18)

i.e., as the sum of an “external potential” Ĥ (β )
k,q plus a self-

consistent contribution

V (β )
q (r) =

∫
d3r′ KHxc(r, r′)eiq·(r′−r)n(β )

q (r′), (19)

that depends on the first-order charge density

n(β )
q (r) = 4

Nk

∑
mk

〈
u(0)

mk

∣∣r〉〈r∣∣u(β )
mk,q

〉
, (20)

via the Hartree and exchange-correlation kernel

KHxc(r, r′) = δVHxc(r)

δn(r′)

∣∣∣∣
n(0)

= δ2EHxc

δn(r)δn(r′)

∣∣∣∣
n(0)

. (21)

In contrast to most perturbations, however, the external poten-
tial here takes contributions from all individual pieces of the
Hamiltonian, including the kinetic, pseudopotential, Hartree,
and exchange-correlation terms. (The situation is analogous
to the strain perturbation introduced by Hamann et al. [8],
for which the same considerations hold.) In particular, loosely
following Ref. [13], we shall write

Ĥ (β )
k,q = T̂ (β )

k,q + V̂ psp,(β )
k,q + V̂ H0,(β )

q + V̂ XC0,(β )
q + V̂ geom,(β )

q .

(22)
In Eq. (22),

T̂ (β )
k,q = − i

2
[( p̂kβ + qβ ) q · p̂k + (p̂k + q) · q p̂kβ] (23)

is the kinetic term (p̂kβ = −i∂/∂ξβ + kβ is the canonical
momentum operator in curvilinear space). For notational pur-
poses, we shall write the remainder of the contributions as
matrix elements on two plane waves, e.g.,

W (β )
k,q (G, G′) = 〈G + k + q|Ŵ (β )

k,q |G′ + k〉 (24)

for an arbitrary operator Ŵ .
Regarding the pseudopotential term, we operate the same

decomposition as in Eq. (15),

V psp,(β )
k,q (G, G′) = V loc,(β )

q (G − G′) + V sep,(β )
k,q (G, G′), (25)
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i.e., we write it as the sum of a local

V loc,(β )
q (G) = iGβ

1




∑
κ

e−iG·τκ vloc
κ (G) − i(Gβ + qβ )

1




∑
κ

e−iG·τκ vloc
κ (G + q), (26)

and a nonlocal contribution

V sep,(β )
k,q (G, G′) = 1




∑
μκ

eμκe−i(G−G′ )·τκ

{
i

(
Gβ + kβ + qβ

2

)
ζμκ (G + k)ζ ∗

μκ (G′ + k) − i(Gβ − G′
β + qβ )

× ζμκ (G + k + q)ζ ∗
μκ (G′ + k) − i

(
G′

β + kβ + qβ

2

)
ζμκ (G + k + q)ζ ∗

μκ (G′ + k + q)

}
, (27)

where ζμκ (G + k) indicates the Fourier components of the
KB projectors.

The two terms

V H0,(β )
q (G) = 4π i

(
− Gβ + qβ

|G + q|2 + Gβ

G2

)
n(0)(G), (28)

V XC0,(β )
q (G) = −iqβV xc,(0)(G) (29)

are the “geometric” (i.e., only depending on the unperturbed
quantity n(0)) contributions to the Hartree (H) and exchange-
correlation (XC) potentials, respectively. Finally,

V geom,(β )
q = − i

4
qβ q2 (30)

is an additional geometric potential originating from the
change of coordinates, which we introduce here for complete-
ness (this structureless potential is irrelevant for either the
uniform strain or the strain-gradient response, as it is of third
order in q).

Explicit derivations of most of the above expressions can
be found in Ref. [13]. Regarding the pseudopotential pieces,
which have been derived here, some additional details can be
found in the Appendix.

Based on the above, it is now easy to demonstrate the
following points:

(i) For an arbitrary q, V H0,(β )
q (G) exactly matches the

metric contribution to the electrostatic potential as derived in
Ref. [13].

(ii) The external perturbation Ĥ (β )
k,q identically vanishes in

the limit q = 0.
(iii) The first q gradient of the above expressions recovers

the Hamann–Wu–Rabe–Vanderbilt (HWRV) [8] treatment of
the uniform strain

Ĥ(β )
k,γ

= iĤ(βγ )
k , (31)

and is symmetric under βγ exchange.
We have, therefore, achieved the desired generalization

of the HWRV metric tensor formalism to a monochromatic
displacement wave of arbitrary q.

C. Relationship to the response in the laboratory frame

In this section, we shall establish the explicit link between
the metric perturbation described in the previous subsection
(which, as we said, is defined in the comoving frame and
reduces to a uniform strain perturbation in the long-wave
limit) and the familiar phonon perturbation, which is defined

in the laboratory frame. In particular, we shall show that the
corresponding response functions (“metric” versus “phonon”)
differ by a geometric piece that depends on the ground-
state orbitals only. These analytical results will prove to be
important for testing our numerical implementation, as we
shall see shortly. They also provide an interesting formal
unification of two areas of DFPT (related to the response to
phonons and strains, respectively) that were formerly regarded
as conceptually distinct.

The first-order external potential for a phonon perturbation
consists of a local potential plus a separable contribution

H τκβ

k,q (G, G′) = V loc,τκβ

q (G − G′) + V sep,τκβ

k,q (G, G′), (32)

where

V loc,τκβ

q (G) = −i(Gβ + qβ )
1



e−iG·τκ vloc

κ (G + q), (33)

V sep,τκβ

k,q (G, G′) = −i(Gβ + qβ − G′
β )

1




∑
μ

e−i(G−G′ )·τκ

× eμκζμκ (k + q + G)ζ ∗
μκ (k + G′). (34)

Note that in Eqs. (33) and (34), the structure factors differ
slightly from those that are commonly implemented in DFPT
(e.g., Ref. [21]), which read as e−i(G+q)·τκ and e−i(G−G′+q)·τκ ,
respectively. This difference is a consequence of the fact
that here we have introduced an extra phase eiq·τ κ into the
monochromatic phonon perturbation [10].

In the laboratory frame, an acoustic phonon perturbation
can be readily constructed as a sublattice sum of the above:

Huβ

k,q(G, G′) =
∑

κ

H τκβ

k,q (G, G′). (35)

Here and in the following, we use the symbol uβ to indicate
a laboratory-frame acoustic phonon perturbation, not to be
confused with the corresponding metric perturbation labeled
by (β ). The corresponding first-order wave functions satisfy
the following Sternheimer equation [21]:(

Ĥ (0)
k+q + aP̂k+q − ε

(0)
mk

)∣∣uuβ

mk,q

〉 = −Q̂k+qĤuβ

k,q

∣∣u(0)
mk

〉
, (36)

where Ĥuβ

k,q is, as usual, the self-consistent counterpart of

Ĥuβ

k,q, P̂k+q, and Q̂k+q = 1 − P̂k+q are the projectors on the
valence and conduction band manifolds, respectively, and a is
a positive constant that makes the operator in the round brack-
ets nonsingular [22]. Note that an acoustic phonon physically
reduces to a rigid translation of the whole crystal lattice at
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O(q0). At O(q1) and O(q2), respectively, it should provide
complete information about the response to a uniform strain
and strain-gradient deformation.

To see the relationship between the laboratory and curvilin-
ear frame pictures, it is convenient to take one step back, and
consider the first-order Hamiltonians in the original Hilbert
space, i.e., without factoring out the incommensurate phases
that belong either to the Bloch orbitals or to the first-order
Hamiltonian. (Recall that the first-order Hamiltonian Ĥλ is
related to its periodic part in momentum space as Ĥλ

k,q =
e−i(k+q)·r Ĥλ eik·r). We shall postulate (and later prove that it
is consistent with the results derived so far) the relationship

Ĥuβ = Ĥ(β ) + i
[
Ĥ (0), 1

2 (eiq·r p̂β + p̂βeiq·r )
]
. (37)

One can recognize in the commutator the gauge-field contri-
bution to the perturbation in curvilinear coordinates discussed
in Ref. [13]:

Ĥλ̇β (q) = − 1
2 (eiq·r p̂β + p̂βeiq·r ). (38)

[By taking the momentum-space representation of the above

operator Ĥλ̇β

k,q = e−i(k+q)·rĤλ̇β (q)eik·r, one readily recovers
Eq. (90) of Ref. [13]]. This clarifies the physical interpretation
of Eq. (37) as being closely linked to the coordinate change
discussed in Ref. [13]. Then, after reverting to our previous
notation, the relation between laboratory-frame and metric
responses in Eq. (37) becomes

Ĥuβ

k,q = Ĥ(β )
k,q + iĤ (0)

k+q

(
p̂kβ + qβ

2

)
− i

(
p̂kβ + qβ

2

)
Ĥ (0)

k .

(39)

The correctness of this result can be verified by comparing
the explicit formulas for the perturbed Hamiltonians piece by
piece. In particular, the second and the third terms on the
right-hand side of Eq. (39) precisely cancel the kinetic and
geometric contributions in Ĥ(β )

k,q, and they also account for
the difference between the pseudopotential, Hartree, and XC
terms in Ĥ(β )

k,q and Ĥuβ

k,q.
If we now plug Eq. (39) into (36), we obtain an analogous

Sternheimer equation with Ĥ(β )
k,q replacing Ĥuβ

k,q, and with
the laboratory-frame first-order wave functions related to the
metric ones by ∣∣uuβ

mk,q

〉 = ∣∣u(β )
mk,q

〉 + ∣∣�uβ

mk

〉
, (40)

where |�uβ

mk〉 is a purely geometric (i.e., defined in terms of
the ground-state orbitals only) contribution∣∣�uβ

mk

〉 = −iQ̂k+q

(
p̂kβ + qβ

2

)∣∣u(0)
mk

〉
. (41)

This constitutes the main result of this section.
To illustrate its physical meaning it is useful, first of

all, to calculate the contribution of |�uβ

mk,q〉 to the first-
order electron density, and check whether it matches our
expectations for the relationship between its laboratory-frame
and curvilinear-frame representations. To this end, recall the
definition of the density response to a generic perturbation λ:

nλ
q(r) = 4

Nk

∑
nk

〈
u(0)

nk

∣∣r〉〈r∣∣uλ
nk,q

〉
. (42)

By combining Eq. (42) with (40), we find

nuβ

q (r) = n(β )
q (r) + �nβ

q (r), (43)

where �nβ
q (r) is, again, a purely geometric object. One can

arrive at an explicit formula after observing that Q̂k+q = 1 −
P̂k+q; this leads to two separate contributions to �nβ

q (r). The
part that contains the band projector P̂k+q vanishes identically,
which can be seen in the following way. Any physical scalar
field must be real, which implies

n(1)
−q(r) = n(1)∗

q (r). (44)

Thus, we can write the contribution of P̂k+q to �nβ
q (r) as

∑
m j

i
〈
u(0)

mk

∣∣r〉〈r∣∣u(0)
jk+q

〉〈
u(0)

jk+q

∣∣(p̂kβ + qβ

2

)∣∣u(0)
mk

〉

−
∑
m j

i
〈
u(0)

jk−q

∣∣r〉〈r∣∣u(0)
mk

〉〈
u(0)

mk

∣∣(p̂kβ − qβ

2

)∣∣u(0)
jk−q

〉
. (45)

After operating a translation in k space on the second line (this
is irrelevant, as the expression needs to be integrated over the
whole Brillouin zone), the result manifestly vanishes.

We are left in Eq. (41) with just the contribution of the
identity operator, which can be written as

�nβ
q (r) = −∂n(0)(r)

∂rβ

− iqβn(0)(r). (46)

The form of Eq. (46) might appear puzzling at first sight, but
in fact it accurately matches the known relationship between
the charge-density responses in the curvilinear and Cartesian
reference frames [14,23]. For example, at q = 0, we already
know that the metric perturbation (and, as a consequence, the
corresponding density response) must vanish,

Ĥ(β )
k,q=0 = 0, n(β )

q=0(r) = 0, (47)

since a uniform translation of the crystal has no effect in its
own comoving reference frame. Also, by translational sym-
metry one must have, for the laboratory-frame perturbation

Ĥuβ

k,q=0 = i
[
Ĥ (0)

k , p̂kβ

]
, (48)

which implies that

nuβ

q=0(r) = −∂n(0)(r)

∂rβ

. (49)

One can easily check that our formulas for Ĥ(β )
k,q, together with

the results (39), (43), and (46), are fully consistent with these
requirements.

In other words, Eq. (46) corroborates our interpretation of
the modified perturbation as a metric wave, where the atomic
displacements are expressed as a local modification of the
metric of space. From this perspective, |�uβ

mk,q〉 is essential
for ensuring that the first-order density response complies
with the established transformation laws.

D. Implementation considerations

The formulas derived in the previous section are for-
mal, but when implementing them we need to introduce

085107-6



METRIC WAVE APPROACH TO FLEXOELECTRICITY … PHYSICAL REVIEW B 99, 085107 (2019)

approximations in order to make the calculations tractable. In
particular, we make a set of choices concerning the discrete
sampling of the Brillouin zone (BZ) with a finite mesh,
and the plane-wave energy cutoff used in the wave-function
expansion. It is therefore important to clarify which of the
above relations remain exact in principle, once such a set of
choices has been made, and which should be expected to show
discrepancies (of course, these will diminish as more highly
converged choices are made).

Our main focus will be on Eq. (46), describing the dif-
ference between the electron-density response to a phonon
perturbation in the laboratory frame, already available within
the existing DFPT implementations, and the metric response
introduced in this work.

First of all, note that, in order to obtain Eq. (46), we have
used the fact that the expression in Eq. (45) vanishes; this, in
turn, relies on the fact that it must be integrated over the whole
Brillouin zone. If the BZ is sampled by a discrete number of
k points, then Eq. (45) is only approximately satisfied; in fact,
one can see that it holds exactly only if the set of k points is
invariant under a translation by q, i.e., q is commensurate with
the k points.

Next, as we shall see in the following, commensuration
between q and the k mesh does not automatically guarantee
that Eq. (46) is exact. To see why, it is useful to write the
explicit expression for the charge-density difference as

�nβ
q (r) = − 4i

Nk

∑
mk

〈
u(0)

mk

∣∣r〉〈r|Q̂k+q

(
p̂kβ + qβ

2

)∣∣u(0)
mk

〉

= − 4i

Nk

∑
mk

〈
u(0)

mk

∣∣r〉〈r|( p̂kβ + qβ

2

)∣∣u(0)
mk

〉
, (50)

where Nk is the number of k points (a uniform mesh is
assumed), and the second equality relies on the assumed com-
mensuration between q and the mesh (see above discussion).
Equation (50), however, only satisfies Eq. (46) in the limit of
a complete plane-wave basis set, i.e., for an infinitely large
plane-wave cutoff Ecut. In practice, a finite basis set is always
used, which means that plane waves with a kinetic energy
that is larger than Ecut are discarded from the calculation.
Crucially, the kinetic energy of a plane wave is calculated
as |G + k|2/2, which implies that different k points are char-
acterized by different cutoff spheres in reciprocal space, and
hence by different basis sets. For example, the wave function
u(0)

k (r) has nonzero coefficients only inside a cutoff sphere
centered in −k, while the sphere of both the phonon and
metric response functions u(1)

k,q(r) is centered in −(k + q) (see

Fig. 2). Now, note that the function |�uβ

mk,q〉 that we have used

to define �nβ
q (r) “belongs” to the point k + q, and hence it

will not, in general, be represented on the same basis set as
|u(0)

mk〉; this is the reason why Eq. (46) is generally violated
when a finite Ecut is used.

To illustrate this point more clearly, we can write the
charge-density difference, as it is computed in practice start-
ing from nβ and nuβ , as

�nβ
q (r) = − 4i

Nk

∑
mk

〈
u(0)

mk

∣∣r〉〈r|(p̂kβ + qβ

2

)∣∣ũ(0)
mk

〉
. (51)

-k

-q-k

FIG. 2. Representation of the Fourier space in 2D. The small
black crosses are the G vectors; the black dotted circle identifies
the cutoff sphere centered on �; the blue continuous circle identifies
nonzero Fourier coefficients of u(0)

k ; and the dashed green circle
identifies the Fourier coefficients of ũ(0)

k .

Here, ũ(0)
mk(r) is the same as u(0)

mk(r) in Eq. (50) except that
it has nonzero Fourier components only in the intersection
between the green and blue circles of Fig. 2, while u(0)

mk(r) is
defined inside the whole blue solid circle. Since the first-order
wave functions are obtained through a self-consistent process,
this error will propagate to the potentials and back to the
density; thus, at the end of the calculation even the “revised”
relationship (51) will not be exactly fulfilled. In any case, we
can expect that the error will be roughly linear in |q|, and
should rapidly vanish upon increasing the plane-wave cutoff;
we shall see that both expectations are nicely fulfilled in our
tests. As we shall show shortly, this discrepancy between
the phonon and metric approach results in a faster numerical
convergence of the latter with respect to plane-wave cutoff and
k-point sampling.

III. RESULTS

To test our implementation, we have compared the results
of the metric perturbation against response functions that
are already present in publicly available DFPT codes: the
phonon perturbation [24] and the uniform strain perturbation
[8]. The quantities that we used to gauge the accuracy of
the implementation are either based on the first-order charge
density (a fundamental linear-response quantity), or on the
cell-averaged polarization. In particular, we have performed
four independent tests:

(i) In Sec. III B, we compare the electron density response
of a “clamped-ion acoustic phonon” to the electron density
response to a metric perturbation, following the guidelines of
Sec. II C.

(ii) In Sec. III C, we compare the electron density re-
sponse of a uniform strain perturbation to the electron density
response of a metric perturbation at first order in q. We
have already demonstrated in Eq. (31) the relation that must
hold between the uniform strain Hamiltonian and the metric
perturbation. In the same way, the response density to a metric
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and the associated uniform strain perturbation are related by

−in1,β
α = nstrain

αβ , (52)

where n1,β
α is the first derivative of the microscopic metric

perturbation response, n1,β , respect to the qα . Note that, by
time-reversal symmetry, n1,β

α is a pure imaginary function.
(iii) In Sec. III D, we compare the octupolar response

calculated via the phonon to that from metric perturbation.
The octupolar tensor components can be extracted via the
long-wave expansion of the macroscopic (i.e., cell-integrated)
charge-density response

Q(3,αβγ )
δ =

∫
cell

d3r
∂3n(δ)

q (r)

∂qα∂qβ∂qγ

∣∣∣∣∣
q=0

, (53)

where δ indicates the atomic displacement direction. Clearly,
since the geometrical term �nβ averages to zero, both the
phonon and metric calculations must yield the same values
of Q(3,αβγ )

δ . The q derivative can be performed by fitting the
cell-integrated density as a function of q in a vicinity of q = 0,
as described in Ref. [14]. Testing this quantity is particularly
interesting in the context of this work because the longitudinal
octupole QL = Q(3,ααα)

α is directly related to the longitudinal
FxE coefficient by μL = QL/(6
).

(iv) In Sec. III E, we compare FxE coefficients calculated
via the phonon method [Eqs. (7)–(9)] and the metric wave
method [Eqs. (10) and (11)].

Note that, whenever a 3D scalar field is involved (first and
second tests), we shall use the “distance”

d ( f , g) = 1




∫
cell

d3r | f (r) − g(r)| (54)

to gauge their overall difference, where functions f and g
identify the left- and right-hand sides of the given relation that
is to be verified.

A. Computational setup

We have used two types of systems for our benchmark tests
in the following sections: isolated noble-gas atoms in large
boxes and cubic bulk solids. Regarding the isolated atoms, we
have tested three different noble gases: He, Ne, and Kr. As for
the cubic solids, we have used crystalline Si in the diamond
structure, and the cubic perovskite phase of SrTiO3.

Our calculations are performed in the framework of den-
sity functional theory, using the local-density approxima-
tion (we have employed the Perdew-Wang 92 parametriza-
tion [25] of the exchange and correlation). The core-valence
interactions are described by Troullier-Martins [26] norm-
conserving pseudopotentials, which we have generated via
the FHI98PP [27] code with the following electronic configu-
rations: He = 1s2; Ne = 2s22p6; Kr = 4s24p6; Si = 3s23p2;
Sr = 4s24p5s2; Ti = 3s23p63d24s2; O = 2s22p4. Note that
the He pseudopotential only contains a local part.

The noble-gas atoms have been simulated in cubic boxes
large enough to avoid interaction between the replicas. For
the tests in Secs. III B, III C, and III D, the size of such box
are 5 bohrs for He, 7 bohrs for Ne, and 14 bohrs for Kr, with
(unless specified) Monkhorst-Pack (MP) k meshes [28] of 8 ×
8 × 8 for He and Ne, and 4 × 4 × 4 for Kr. For the calculation

FIG. 3. Plot of d (nuβ

q (r), n(β )
q (r) + �nβ

q (r)) [cf. Eq. (54)] as a
function of wave vector q (reduced coordinates), for different cut-
offs. All the results refer to longitudinal perturbations. From top to
bottom: He, Ne, and Kr.

of flexoelectric constants in Sec. III E, 14-bohr boxes were
used for all atoms, with a 4 × 4 × 4 k mesh and a plane-wave
cutoff of 120 Ha.

The relaxed cubic lattice parameters obtained for Si and
SrTiO3 are 10.102 and 7.267 bohrs, respectively. Calculations
are performed under short-circuit electrostatic boundary con-
ditions (see Refs. [10,12] for details). For Si and SrTiO3, MP k
meshes from 4 × 4 × 4 to 16 × 16 × 16 and plane-wave cut-
offs from 20 to 100 Ha were tested to explore the convergence
properties of the metric and phonon implementations. For
the calculations of flexoelectric coefficients, a 12 × 12 × 12 k
mesh and 80-Ha plane-wave cutoff were used.

B. Charge-density response: Phonon vs metric

First, we check the validity of Eq. (43), which connects
the metric and phonon charge-density response functions via
a geometric term. To make this test quantitative, we have
taken advantage of the distance function defined in Eq. (54),
with f (r) = nuβ

q (r) and g(r) = n(β )
q (r) + �nβ

q (r). [We con-

struct �nβ
q (r) in terms of the ground-state density, following

Eq. (46).] Tests are conducted on He, Ne, and Kr atoms. Due
to periodic boundary condition, these systems can be regarded
as crystals of isolated atoms, intended as a computational
analog to the toy model of Ref. [14], and discussed further
in Sec. III E 1. The perturbations considered here are longi-
tudinal, and they propagate along one of the three equivalent
Cartesian axis. In Fig. 3 we report the values of d ( f , g) as a
function of the wave-vector amplitude |q| for different energy
cutoffs.

The first interesting observation is the almost perfect linear
trend shown by the function d ( f , g). As we anticipated in
Sec. II D, this is a direct consequence of using a finite plane-
wave basis set: the larger the wave vector, the larger the shift
of the cutoff sphere, and hence one expects a discrepancy that
is roughly proportional to |q|.
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Next, one can clearly appreciate, by comparing the slopes
of the curves shown in Fig. 3, that the discrepancy between
the phonon and metric results decreases as we increase the
plane-wave cutoff. This happens because the discrepancy
depends on the magnitude of the plane-wave coefficient at the
boundary of the cutoff sphere (i.e., those falling outside the
intersection of the two circles in Fig. 2); this is expected to
decrease quickly with the cutoff, consistent with our results.
Also, we see that the discrepancy between the metric and
phonon charge-density responses is an order of magnitude less
for Kr than He and Ne; This is a direct consequence of the
much softer pseudopotential associated to Kr as compared to
Ne and He.

As a final comment, we look at the calculated values
corresponding to wave vectors q that are not necessarily
commensurate with the k mesh. (For example, we have used
an 8 × 8 × 8 MP k mesh for He and Ne systems, so the point
q = 0.1 does not match the k mesh.) The perfect linear trend
of the distance function for all q values, irrespective of the
exact or inexact cancellation in Eq. (45) (see discussion in
Sec. II D), is a clear proof that the k mesh is dense enough, so
that the finiteness of the plane-wave cutoff is the main source
of error in this test.

We stress that the “discrepancies” that we discussed above
are perfectly in line with the expected trends, and thus confirm
the correctness of the implementation.

C. Charge-density response: Metric vs uniform strain

A second test of the metric implementation is based on
its relationship with the response to a uniform strain. Indeed,
the first derivative respect to the wave vector q of the metric
perturbation should coincide with the strain perturbation of
Hamann et al. [8], which is already implemented in the official
release of the ABINIT code [see Eq. (31)]. To prove this point,
here we use the distance function of Eq. (54) to compare
the charge-density response functions f (r) = −in1,β

α (r) and
g(r) = nstrain

αβ (r), which should coincide according to Eq. (52).
The derivative respect to q of the metric response is performed
by finite differences, and using two different spacing values:
�q = (2π/a0){0.01; 0.001}, where a0 is the lattice parameter
of the primitive cubic cell. In Fig. 4 we show d ( f , g) for the
crystal of noninteracting He atoms as function of the energy
cutoff Ecut. As expected, the discrepancy rapidly goes to zero
at larger values of Ecut, again proving the correctness of the
implementation. We also note that, by reducing the spacing
value for the numerical calculation of the q derivative, the
consistency between the metric and strain results increases by
one order of magnitude.

D. Octupoles

We now compare the longitudinal octupoles calculated
either using the metric or the standard acoustic phonon per-
turbation. Following the procedure described in Ref. [11], we
interpolate the total density response of both the phonon and
metric perturbations with a cubic polynomial as a function of
q. For this test we have employed the three noble-gas atoms
(He, Ne, and Kr), Si in the diamond structure, and cubic
SrTiO3. The directions chosen to calculate the longitudinal

FIG. 4. Cell-integrated difference d (−in1,β
α (r), nstrain

αβ (r)) be-
tween the first-order term of the long-wave expansion applied to the
metric response density and the uniform strain response, calculated
as in Ref. [8], for a He atom in a box undergoing a longitudinal
mechanical perturbation. The two curves refer to two different values
of the finite-difference increment used for obtaining n1,β

α (r).

octupole are [100] and [110] for Si and SrTiO3, respectively,
while the wave-vector amplitudes that we use for the cubic fit
are qi = {0.01; 0.02; 0.03} (in reduced units of 2π/a0). Note
that, in the case of the phonon response, the electronic charge
also has a nonzero linear term as a function of q, whose slope
gives the electronic contribution to the Born effective charge
of the displaced sublattice. Such a linear term is not present
in the metric response, as the atoms are not moving in the
curvilinear frame.

In Table I we report the values of QL/6 for the He, Ne,
and Kr atoms, while the corresponding values for bulk Si and
SrTiO3 are shown in Table II. As expected, the agreement
between the metric and the phonon results increases with
increasing the plane-wave cutoff; such an agreement becomes
essentially perfect in the case of the isolated noble-gas atoms
at an energy cutoff of 100 Ha. The metric results converge
much faster as a function of Ecut than the phonon results.
Moreover, the test between the silicon octupole calculated
with a 12 × 12 × 12 and a 16 × 16 × 16 MP k mesh shows
that the metric calculation also converges much faster with
respect to the number of k points.

The relatively worse convergence behavior in the phonon
case can be tracked down to the quantity �nβ

q (r). Indeed, if

TABLE I. QL/6 for He and Ne atoms, in e bohrs2 (short-circuit
electrostatic boundary conditions).

Cutoff He (5 bohrs) Ne (7 bohrs) Kr (14 bohrs)

(Ha) metr phon metr phon metr phon

40 0.4392 0.4660 1.7338 1.7928 5.8433 5.8382
60 0.4392 0.4322 1.8129 1.8208 5.8635 5.8618
80 0.4396 0.4418 1.8135 1.8111 5.8635 5.8635
100 0.4398 0.4398 1.8135 1.8135 5.8635 5.8635
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TABLE II. QL/6 along the [100] direction for Si and along the
[110] direction for SrTiO3. Values are in units of e bohrs2 (short
circuit (SC) electrostatic boundary conditions). The two different
columns for Si refer to two different k meshes used: 12 × 12 × 12
and 16 × 16 × 16, respectively.

Cutoff Si(12) Si(16) STO3

(Ha) metr phon metr phon metr phon

20 478.379 478.456 478.391 478.409
40 478.597 478.644 478.597 478.605
60 478.601 478.653 478.601 478.612 111.793 111.658
80 478.601 478.653 111.662 111.666
100 478.601 478.653 111.684 111.673

Eq. (46) were exactly satisfied, the cell integral of �nβ
q (r)

would vanish identically, and would not contribute to the
calculated octupolar moment. However, as we have seen in
Sec. II D, in practical calculations Eq. (46) is violated, and
more so at lower-energy cutoffs or coarser k-point samplings.
This can introduce an additional, spurious O(q3) contribution
to the macroscopic density response, and since �nβ

q (r) is
rather large, this can have a negative impact on the over-
all convergence. Thus, our numerical tests reveal a further
(and formerly unexpected) advantage of the metric perturba-
tion presented here, i.e., a significant economy in terms of
computational resources compared with the standard phonon
treatment. This can be important when dealing with larger
systems; we shall come back to this point later on.

E. Flexoelectric coefficients

We will now perform calculations of FxE coefficients
for our test cases, comparing the phonon implementation of
Ref. [12] [Eqs. (7)–(9)] and the metric-wave method imple-
mented in this work [Eqs. (10) and (11)]. We will report
the flexoelectric tensor components in type-II form (types
I and II are linearly related to one another), following the
convention that was established in earlier works. Moreover, as
we are dealing with cubic crystals, the flexoelectric tensor has
only three independent components, which are indicated as
the longitudinal (μL ≡ μ11,11), transverse (μT ≡ μ11,22), and
shear (μS ≡ μ12,12) flexoelectric coefficients henceforth (also
remind that in cubic crystals the diamagnetic susceptibility is
isotropic, χ

mag
γ λ = δγλχ

mag). In all cases, the second deriva-
tives with respect to q necessary for Eqs. (7) and (11) will be
taken numerically with �q = (2π/a0)0.005.

1. Isolated spherical atoms

In order to test the metric implementation for calculating
FxE coefficients, we consider the toy model of a material
made of isolated (i.e., noninteracting), spherical charge den-
sities that was explored in Refs. [13,14,23]. In earlier works,
this was denoted as the isolated rigid charge (IRC) model,
and we shall follow such naming convention here. Of course,
such a material is fictitious since it would have no interatomic
forces to hold it together. However, it serves as an interesting
test case since its FxE properties can be determined analyti-
cally and compared to our numerical calculations. As before

TABLE III. Clamped-ion flexoelectric coefficients calculated
using the metric and phonon implementations, as well as the
quadrupole moments of the ground-state charge density. In the case
of the phonon perturbation, the dynamic contribution, proportional
to χmag, has been removed. All quantities are in units of pC/m.

μ′
L μ′

T μ′
S (10−3)

metr phon metr phon εQNG/2
 metr phon

He −0.479 −0.479 −0.479 −0.479 −0.479 0.0 −0.3
Ne −1.843 −1.844 −1.841 −1.842 −1.842 −0.7 −0.6
Kr −6.477 −6.470 −6.476 −6.476 −6.479 −0.3 −0.5

[12], we can approximate this model by performing DFT
calculations on noble-gas atoms in large enough simulation
cells (filled with vacuum) that they do not interact with
their periodic images. As pointed out in Ref. [12], however,
in practical calculations atoms are not “rigid” but slightly
polarizable, and the model needs to be revised to account for
this fact.

Based on the revised IRC model, for the metric implemen-
tation (under short circuit boundary conditions) we expect that
the flexoelectric coefficients will be [12,13]

μ′
NG,L = μ′

NG,T = ε
QNG

2

(55)

and

μ′
NG,S = 0, (56)

where the subscript “NG” indicates a DFT calculation on
a noble-gas atom, ε is the isotropic clamped-ion dielectric
constant, and QNG is the quadrupole moment of the ground-
state charge density of the noble-gas atom. The presence of ε

accounts for the fact that the noble-gas atoms (in contrast to
the IRC model charge densities) are slightly polarizable [12],
as we mentioned above.

Table III gives the clamped-ion FxE coefficients calculated
for noble-gas atoms using the metric and phonon implementa-
tions. By comparing the μ′

L, μ′
T, and εQNG/2
 columns, we

see that Eq. (55) is satisfied to within our numerical accuracy
for both the metric and phonon methods. In addition, μ′

S
vanishes (within our numerical accuracy). The main source
of error is the numerical differentiation of the induced po-
larization with q in order to obtain Eqs. (7) and (11). The
results of Table III indicate that the metric implementation is
an accurate method for calculating flexoelectric coefficients,
with increased efficiency as discussed above.

2. Cubic materials

We will now apply the metric implementation to calculate
the bulk, clamped-ion FxE coefficients for two prototypical
materials: SrTiO3 (in the high-temperature cubic phase) and
Si. As with the isolated atoms, we calculate the primed FxE
coefficients from the phonon method by calculating χmag

and using Eq. (9); the metric implementation gives us the
prime coefficients directly. We can see from Table IV that the
agreement between the metric and phonon implementations is
excellent.
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TABLE IV. Flexoelectric constants for SrTiO3 and Si calculated
using the phonon and metric implementations (units are nC/m); their
orbital magnetic susceptibilities χmag are, respectively, −8.3 × 10−3

and 10.2 × 10−3 nC/m.

μ′
L μ′

T μ′
S

metr phon metr phon metr phon

SrTiO3 −0.885 −0.884 −0.826 −0.826 −0.082 −0.083
Si −1.411 −1.410 −1.049 −1.050 −0.189 −0.190

As observed in previous calculations of the clamped-ion
FxE coefficients [11,12], we see that μ′

L � μ′
T 	 μ′

S, which
is similar to the behavior of the isolated atoms. However, a dis-
tinct difference is the importance of the dynamic contribution.
We saw in Sec. III E 1 that for the isolated atoms, χmag was
the same order as the longitudinal and transverse coefficients,
whereas in the case of the cubic materials, the χmag is two
orders of magnitude smaller.

In spite of the small magnitude of χmag, our results are
sufficiently converged to see clearly that the rotation-gradient
correction is required for accurate agreement between the
metric and phonon implementations. If we neglect this cor-
rection, i.e., calculating μ with the phonon approach instead
of μ′ [see Eq. (9)], we obtain μT = −0.810 and μS = −0.091
for SrTiO3, and μT = −1.070 and μS = −0.180 for Si, which
have clear discrepancies with the metric results in Table IV.

In Fig. 5 we show the convergence of the FxE coefficients
of SrTiO3 and Si as a function of k-point mesh. We find
that the metric implementation shows significantly more rapid
convergence than the phonon implementation (they have sim-
ilar convergence behavior with respect to plane-wave cutoff).
The slower convergence of the phonon approach may have
several possible origins. First, there may be additional numeri-
cal errors associated with the separate calculation of χmag [see
Eq. (9)] that is needed for the phonon implementation but not
for the metric. Also, as mentioned in Sec. II A 3, the expansion
of the nonlocal contribution to the current density operator
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FIG. 5. Convergence of the FxE coefficients of SrTiO3 and Si
with k-point mesh for the phonon and metric implementations.

in the case of the metric implementation can be truncated
to a lower order in q than in the phonon case. Finally, the
two implementations differ with respect to the behavior of the
local potential at q = 0, as will be discussed in Sec. III F.

These calculations clearly demonstrate the superiority of
the metric implementation for determining the clamped-ion
FxE coefficients. For the case of SrTiO3, for example, a
calculation of the induced transverse polarization for a per-
turbation of a given q [i.e, Eqs. (8) and (10)] using the metric
implementation took less than 17% of the CPU time of the
phonon implementation, mostly because separate calculations
for the different sublattices were not required. Additional
savings in the calculation of the FxE coefficient also come
from the fact that a calculation of χmag is not required for the
metric implementation.

F. Discussion

Here, we discuss a series of technical points related to the
metric perturbation, together with possible future generaliza-
tions to other physical properties.

The first observation concerns the behavior of the “external
potential” in the limit of q → 0. It is well known that the
phonon perturbation diverges therein, and such divergence is
carried by the G = 0 Fourier component of the local potential
[sum over sublattices of Eq. (33)]∑

κ

V loc,τκβ

q (G = 0) = −iqβ

1




∑
κ

vloc
κ (q), (57)

where the contribution of each individual sublattice goes like

vloc
κ (q) ∼ 4π

Zκ

q2
. (58)

(Recall that Zκ is the total pseudopotential charge.) The lo-
cal pseudopotential contribution to the metric perturbation,
Eq. (26), is characterized by an analogous divergence, but the
latter is exactly canceled by an equal and opposite divergence
in the geometric Hartree term (28):

V H0,(β )
q (G = 0) = 4π i

qβ

q2
n(0)(G = 0) (59)

[recall that n(0)(G = 0) = (1/
)
∑

κ Zκ , as the cell must be
overall charge neutral]. The fact that Ĥ (β )

k,q remains finite (in
fact, it vanishes) in the limit q → 0 might also help explain
the superior numerical behavior of the metric perturbation in
the convergence tests.

The second point we want to stress concerns the elec-
trostatic boundary conditions used in this work. Throughout
this work we have implicitly adopted short-circuit electro-
static boundary conditions (EBC) because we were mainly
interested in long-wave expansions of the polarization (or
charge-density) response; to do this, it is essential to deal
with an analytic function, and the short-circuit EBC precisely
remove the nonanalyticity generated by the presence of the
macroscopic electric field [10]. This, however, differs from the
physical electrostatic conditions (“mixed” EBC) that charac-
terize the phonon response at nonzero q [9]. (The difference
between the two cases only concerns the longitudinal defor-
mations since with the mixed EBC the mechanical deforma-
tion generates a macroscopic electric field.) Thus, if the metric
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perturbation is to be employed for the realistic simulation of
a finite-q acoustic phonon, such longitudinal fields must be
incorporated in the calculation [11]. For a metric wave the
short-circuit EBC are obtained by simply removing the G =
0 component from the self-consistent part of the first-order
Hartree potential response V̂ (β )

q ; by plugging this contribution
back into the first-order Hamiltonian, we readily recover the
correct electrostatics. Thus, switching from short-circuit to
standard electrical boundary conditions is even simpler in the
metric case than in the standard phonon case.

We conclude this section by briefly sketching other possi-
ble applications of the metric wave perturbation. In this work
we have focused our attention on two response functions to the
metric wave: the charge density [Eq. (46)] and the electronic
polarization [Eq. (10)]. However, the knowledge of the wave
functions |u(β )

nk,q〉 can be used to calculate other useful physical
quantities. An obvious candidate is the force-response tensor,
defined by the force induced on the individual atomic sublat-
tices by an acoustic phonon propagating along q. This can be
used [10] to calculate the lattice-mediated contributions to the
flexoelectric tensor via an appropriate long-wave expansion in
q. To see how, we can use a similar strategy as in the electronic
polarization case, by exploiting the connection between the
phonon and metric response functions. For example, we can
write the “variational” contribution to the force experienced
by the sublattice κ in direction β induced by an acoustic
phonon as [21]

f (var,q)
κβ,α = 4

Nκ

∑
nk

〈
uuα

nk,q

∣∣H τκβ

k,q

∣∣u(0)
nk

〉
, (60)

where |uuα

nk,q〉 = ∑
κ ′ |uτκ′α

nk,q〉 is the response to an acoustic
phonon in the laboratory frame, defined as usual as the sublat-
tice sum of individual atomic displacement. Then, |uuα

nk,q〉 can
be replaced, by using Eq. (40), with the metric response func-
tion |u(α)

nk,q〉, plus an additional piece that only depends on the
ground-state wave functions, and can therefore be reabsorbed
into the “nonvariational” part. Similar considerations could be
used, in principle, to get the acoustic activity tensor [29] or the
strain-gradient elastic tensor [30], which correspond to third
and fourth orders in q of the metric-metric response.

IV. CONCLUSIONS

In this work, we have implemented and tested a metric
wave perturbation, defined as an acoustic phonon described
in the frame that is comoving with the atoms, in the context
of DFPT. It is aimed at calculating the physical response of
a crystalline material to a generic mechanical deformation,
and formally bridges the gap between the already available
“phonon” [21] and “uniform strain” [8] perturbations. By
focusing on the calculation of the flexoelectric tensor com-
ponents, we have demonstrated, via extensive numerical val-
idation, its clear advantages in terms of efficiency and ease
of use with respect to earlier approaches. We also study its
convergence properties with respect to various computational
parameters, and find them to be very favorable. We rationalize
this finding by comparing (both analytically and numerically)
the charge-density response to the metric and standard phonon
perturbations. We anticipate that, going forward, the method-

ology presented here can become a standard approach for
the first-principles computation of flexoelectric and related
properties of materials.
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APPENDIX: DERIVATION OF THE
PSEUDOPOTENTIAL TERMS

Here, we carry out explicitly the derivation of the first-
order pseudopotential terms in curvilinear coordinates (26)
and (27). The curvilinear coordinates are defined by Eq. (13).
Following the results of Ref. [13], a generic (nonlocal) pseu-
dopotential operator in the curvilinear coordinates is

Ṽ psp,(0)(ξ, ξ′) =
√

h(ξ)V psp,(0)(r(ξ), r(ξ′))
√

h(ξ′), (A1)

where h(ξ) is the determinant of the deformation gradient
tensor hαβ = ∂xα

∂ξβ
, that in the linear approximation is

h(ξ) = 1 + iq · λeiξ·q. (A2)

1. Local potential

By using the transformation properties of the Dirac delta
[see local term in Eq. (15)], one can easily verify that the
factors of

√
h cancel out in the local part

Ṽ loc,(0)(ξ) = V loc,(0)(r(ξ)). (A3)

Using Eqs. (16) and (13), this immediately leads to

Ṽ loc,(0)(ξ) =
∑

lκ

vloc
κ [ξ − Rlκ + λ (eiξ·q − eiRlκ ·q)]

= V loc,(0)(ξ) + eiξ·q ∑
lκ

[1 − ei(Rlκ−ξ)·q]

×λ · ∇vloc
κ (ξ − Rlκ ) (A4)

and, therefore, for the cell-periodic part of the first-order
contribution

V loc,(β )
q (ξ) =

∑
lκ

[1 − ei(Rlκ−ξ)·q]
∂

∂ξβ

vloc
κ (ξ − Rlκ ). (A5)

Note the fact that the first-order potential vanishes identically
at q = 0, which is a consequence of adopting the curvilinear
reference system.
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To evaluate the Fourier transform, it is useful to bring the
derivative sign out of the lattice sum in V loc,(β )

q (ξ), obtaining
the following three pieces:

V loc,(β )
q (ξ) = ∂

∂ξβ

∑
lκ

vloc
κ (ξ − Rlκ )

− ∂

∂ξβ

{∑
lκ

eiq·(Rlκ−ξ)vloc
κ (ξ − Rlκ )

}

− iqβ

∑
lκ

eiq·(Rlκ−ξ)vloc
κ (ξ − Rlκ ). (A6)

By defining [Ref. [21], Eq. (A16)] the Fourier transform of
the local atomic potential,

vloc
κ (K) =

∫
d3r e−iK·rvloc

κ (r), (A7)

we can readily evaluate the reciprocal-space expression for the
perturbed local potential, which is precisely Eq. (26).

2. Separable potential

To evaluate the separable part, first recall that

√
h = 1 + i

2
λ · q eiξ·q, (A8)

ζμκ [r(ξ) − r(Rlκ )] = ζμκ (ξ − Rlκ ) + eiξ·q [1 − ei(Rlκ−ξ)·q]

×λ · ∇ζμκ (ξ − Rlκ ). (A9)

It is also useful to remind some basic properties of the Fourier
transformation of separable operators. Assume that we wish
to express, in Fourier space, the following cell-periodic
function:

F (r, r′) =
∑

l

f (r − Rlκ )g∗(r′ − Rlκ ). (A10)

We have, following Eq. (A19) of Ref. [21],

F (G + k, G′ + k) = 1



ei(G′−G)·τκ f (G + k)g∗(G′ + k).

(A11)

Another basic relationship that we need is∫
d3r f ∗(r)eiK′ ·r =

(∫
d3r f (r)eiK′ ·r

)∗
= f ∗(K′). (A12)

We get, after some algebra,

V sep,(β )
k,q (G, G′) = 1




∑
κμ

eμκei(G′−G)·τκ f (β,q)
κμ (K, K′), (A13)

with (the first two terms come from the volume factors, third
and fourth from the linear variation of ζ , fifth and sixth
from ζ ∗)

f (β,q)
κμ (K, K′)

= i

2
qβ ζ (K) ζ ∗(K′) + i

2
qβ ζ (K + q) ζ ∗(K′ + q)

+ iKβ ζ (K) ζ ∗(K′) − i(Kβ + qβ ) ζ (K + q) ζ ∗(K′)

− i(K ′
β + qβ ) ζ (K + q) ζ ∗(K′ + q)

+ iK ′
β ζ (K + q) ζ ∗(K′). (A14)

This expression can be further simplified as follows:

f (β,q)
κμ (K, K′) = i

(
Kβ + qβ

2

)
ζ (K) ζ ∗(K′)

− i
(

K ′
β + qβ

2

)
ζ (K + q) ζ ∗(K′ + q)

− i(Kβ − K ′
β + qβ ) ζ (K + q) ζ ∗(K′).

(A15)

The final result is precisely Eq. (27).
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