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Magnetoelectric responses are a fundamental characteristic of materials that break time-reversal and inver-
sion symmetries �notably multiferroics� and, remarkably, of “topological insulators” in which those symmetries
are unbroken. Previous work has shown how to compute spin and lattice contributions to the magnetoelectric
tensor. Here we solve the problem of orbital contributions by computing the frozen-lattice electronic polariza-
tion induced by a magnetic field. One part of this response �the “Chern-Simons term”� can appear even in
time-reversal-symmetric materials and has been previously shown to be quantized in topological insulators. In
general materials there are additional orbital contributions to all parts of the magnetoelectric tensor; these
vanish in topological insulators by symmetry and also vanish in several simplified models without time reversal
and inversion whose magnetoelectric couplings were studied before. We give two derivations of the response
formula, one based on a uniform magnetic field and one based on extrapolation of a long-wavelength magnetic
field, and discuss some of the consequences of this formula.
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I. INTRODUCTION

Understanding the response of a solid to applied magnetic
or electric fields is of both fundamental and applied interest.
Two standard examples are that metals can be distinguished
from insulators by their screening of an applied electric field
and superconductors from metals by their exclusion of mag-
netic field �the Meissner effect�. Magnetoelectric response in
insulators has been studied for many years and is currently
undergoing a renaissance driven by the availability of new
materials. The linear response of this type is the magneto-
electric polarizability: in “multiferroic” materials that break
parity and time-reversal symmetries, an applied electric field
creates a magnetic dipole moment and a magnetic field cre-
ates an electric dipole moment, and several applications have
been proposed for such responses. Such responses are ob-
served in a variety of materials and from a variety of
mechanisms.1,2 From a theoretical point of view, the most
intriguing part of the polarizability is that part due to the
orbital motion of electrons, because the orbital motion
couples to the vector potential rather than the more tangible
magnetic field.

The orbital magnetoelectric polarizability �OMP� has also
been studied recently in nonmagnetic materials known as
“topological insulators.” These insulators have Bloch wave
functions with unusual topological properties that lead to a
magnetoelectric response described by an E ·B term in their
effective electromagnetic Lagrangians,3 with a quantized co-
efficient. Qi, Hughes, and Zhang3 �QHZ� gave a formula for
the coefficient of this term. For the specific case of topologi-
cal band insulators, their result reproduces earlier formulas
for the relevant topological invariant4–6 but it is more gener-
ally valid: it describes a contribution to the magnetoelectric
polarizability not just in topological insulators but in any
band insulator. Their formula has a periodicity or ambiguity
by e2 /h that is related to the possibility of surface quantum
Hall layers on a three-dimensional sample and generalizes
the ambiguity of ordinary polarization.

The same E ·B coupling, known as “axion electrodynam-
ics” and originally studied in the 1980s,7 was obtained in a
previous paper by three of the present authors8 using a semi-
classical approach9 to compute dP /dB, the polarization re-
sponse to an applied magnetic field. However, in a general
material that semiclassical approach leads to an explicit for-
mula for only part of the orbital magnetoelectric polarizabil-
ity, the part found by QHZ.3 The remainder, which is generi-
cally nonvanishing in materials that break inversion and
time-reversal symmetries, is expressed only implicitly in
terms of the modification of the Bloch wave functions by the
magnetic field.

In this paper, we develop a more microscopic approach
that enables us to compute all terms in the orbital response
explicitly in terms of the unperturbed wave functions,
thereby opening the door to realistic calculations using mod-
ern band-structure methods �e.g., in the context of density-
functional theory�. Moreover, beyond its importance for
computation, this expression clarifies the physical origins of
the orbital magnetoelectric polarizability and resolves some
issues that arose in previous efforts to describe the “toroidal
moment” in periodic systems.

In the remainder of this introduction, we review some
macroscopic features of the magnetoelectric response while
subsequent sections will be devoted mainly to a detailed
treatment of microscopic features. The magnetoelectric ten-
sor can be decomposed into trace and traceless parts as

�Pi

�Bj =
�Mj

�Ei
= � j

i = �̃ j
i + ��� j

i , �1�

where �̃ is traceless and

�� =
�

2�

e2

h
�2�

is the trace part expressed in terms of the dimensionless pa-
rameter �; � has the physical dimension of conductance. The
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trace is the most difficult term to determine, as its physical
effects are elusive. It should be noted that equality between
�Pi /�Bj and �Mj /�Ei only holds in the absence of dissipation
and dispersion, which describes the low frequency, low-
temperature responses of an insulator.10,11 The placement of
the indices in Eq. �1� is not essential for the arguments and
calculations in this paper, and the reader can choose to treat
� as a Cartesian tensor �ij if desired.12 As a Cartesian tensor,
the traceless part decomposes further into symmetric and an-
tisymmetric parts

�̃ij
S =

1

2
��̃ij + �̃ ji�, �̃ij

A =
1

2
��̃ij − �̃ ji� = − �ijkTk, �3�

where Ti=−�ijk�̃ jk /2 is the toroidal response. �Unless other-
wise stated, in our work repeated indices are implicitly
summed.� The terminology reflects that this part of the or-
bital magnetoelectric response is related to the toroidal mo-
ment, which is an order parameter that has recently been
studied intensively; in a Landau effective free energy, the
toroidal moment and the toroidal part of the magnetoelectric
response are directly related.13,14

The primary goal of this paper is to compute the contri-
bution to � that arises solely from the motion of electrons
due to their couplings to the electromagnetic potentials ��
and −j ·A. We call this contribution the orbital magnetoelec-
tric polarizability or OMP for short. Other effects, such as
those mediated by lattice distortions or the Zeeman coupling
to the electron’s spin, are calculable with known methods.15

We shall only treat the polarization response to an applied
magnetic field here; concurrent work by Malashevich et al.16

obtain an equivalent formula by developing methods to com-
pute the orbital magnetization induced by an electrical field.

The magnetoelectric tensor’s physical consequences arise
through the bound current and charge,3,11 given by �b=
−div P and Jb=�tP+curl M. Besides having a ground-state
value, each moment responds �instantaneously and locally, as
appropriate for the low-frequency response of an insulator�
to applied electric and magnetic fields, e.g., Pi= P0

i +	E
ijEj

+� j
iBj; we will concentrate on the magnetoelectric response.

It is useful to allow � j
i, a material property, to vary in space

and time by allowing the electronic Hamiltonian to vary; this
leads to a formula that covers the effects of boundaries and
time-dependent shearing of the crystal, for example. Then
the relevant terms are

Jb
i = ��̃ j

l�ikj − �̃ j
i� jkl��kEl + ��t� j

i�Bj + �ijk�� j�k
l �El, �4a�

�b = − �̃ j
i�iB

j − ��i� j
i�Bj . �4b�

We have used two of Maxwell’s equations to simplify the
first term in each line. The most important point to notice
here is that �� does not appear except in derivatives so that
any uniform and static contribution to � has no effect on
electrodynamics. Hence in a uniform, static crystal, the com-
ponents of �̃ can be computed or measured from the current
or charge response to spatially varying fields, given by the
first term in each line. On the other hand, if we wish simi-
larly to obtain �� from charge or current responses to applied
fields, we need to consider a crystal that varies either spa-

tially or temporally so that E or B will couple to �i�� or �t��,
as in the second terms of Eqs. �4a� and �4b�. These consid-
erations, which we will elaborate later, motivate our theoret-
ical approach to the OMP in this paper.

We will proceed as follows. In Sec. II, we present the
results of our calculation of the OMP in the independent-
electron approximation. This section includes a review of
known results, followed by a discussion of the additional
contributions we compute and when those contributions can
be expected to vanish �so that the OMP reduces to the form
found in the literature previously�. We follow these discus-
sions with a detailed presentation of the calculation in Sec.
III. This calculation involves a useful method for dealing
with a uniform magnetic field in a crystal. An alternative
derivation is presented in the Appendix.

II. GENERAL FEATURES OF ORBITAL
MAGNETOELECTRIC RESPONSE

In this section we discuss properties of the OMP and its
explicit expression in the independent-electron approxima-
tion. There is a natural decomposition into two parts, which
is, however, not equivalent to the standard symmetry decom-
position given in Eq. �1� of Sec. I.

The first part is the scalar “Chern-Simons” term �CS ob-
tained by QHZ �Ref. 3� that contributes only to the trace part
��. It is formally similar to the Berry-phase expression for
polarization17 in that it depends only on the wave functions,
not their energies, which explains the terminology “magne-
toelectric polarization” introduced by QHZ for �CS.3 The
second part of the response is not simply scalar. It has a
different mathematical form that is not built from the Berry
connection, looking like a more typical response function in
that it involves cross-gap contributions and is not a “mo-
ment” determined by the unperturbed wave functions. We
label this term �G because of its connection with cross-gap
contributions. This term does not seem to have been obtained
previously although its physical origin is not complicated.

A. OMP expression and the origin of the cross-gap
term �G

First we give the microscopic expression of the new term
in the OMP and discuss its interpretation. The later parts of
this section explain why the new term vanishes in most of
the models that have been introduced in the literature to
study the OMP and discuss to what extent the two terms in
the OMP expression are physically separate. The OMP ex-
pression that we discuss here will be derived later in Sec. III
as follows: we compute the bulk current in the presence of a
small, uniform magnetic field as the crystal Hamiltonian is
varied adiabatically. The result is a total time derivative
which can be integrated to obtain the magnetically induced
bulk polarization.

The most obvious property of the new term �G in the
response is that, unlike the Chern-Simons piece, it has off-
diagonal components; for instance, �Px /�By �0. To motivate
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the expression for �G intuitively, we note that it is very simi-
lar to what one would expect based on simple response
theory: an electric dipole moment, er, is induced when a
magnetic field is applied. This field couples linearly to the
magnetic dipole moment �e /4��r
v−v
r� �this form takes

care of the operator ordering when we go to operators on
Bloch states�. The expression we actually get for the OMP is
expressed in terms of the periodic part of the Bloch wave
functions ulk and the energies Elk describing the electronic
structure of a crystal,

� j
i = ��G� j

i + �CS� j
i , �5a�

��G� j
i = �

n occ

m unocc

�
BZ

d3k

�2��3Re� �unk�er”k
i �umk��umk�e�vk 
 r”k� j − e�r”k 
 vk� j − 2i � Hk�/�Bj�unk�

Enk − Emk
	 , �5b�

�CS = −
e2

2�
�abc�

BZ

d3k

�2��3 tr
Aa�bAc −
2i

3
AaAbAc� . �5c�

Here the Berry connection Ann�
a �k�= i�unk ��ka

un�k� is a ma-
trix on the space of occupied wave functions unk and the
derivative with an upper index �a=�ka

is a k derivative, as
opposed to the spatial derivative �i in Eqs. �4�.18 The velocity
operator is related to the Bloch Hamiltonian, �vi�k�=�iHk,
while the operator r”k

i is defined as the derivative �iPk of the
projection P onto the occupied bands at k. This operator is
closely related to the position operator; its “cross-gap” ma-
trix elements between occupied and unoccupied bands are
�umk�r”k

i �unk�= �unk�r”k
i �umk��=−i�umk�ri�unk� while its “interior”

matrix elements between two occupied bands or two unoc-
cupied bands vanish. Finally, the operator H� is introduced
for generality, as discussed in Sec. III A; it vanishes for the
continuum Schrödinger Hamiltonian and for tight-binding
Hamiltonians whose hoppings are all rectilinear and so will
be ignored for most of the analysis that follows. Neglecting
this subtlety, the form of �G is nearly what would be ex-
pected for the response in electric dipole moment to a field
coupling linearly to the magnetic dipole moment. In the deri-
vation presented in Sec. III, the term �G appears in abbrevi-
ated form at Eq. �37� and �CS follows immediately from Eq.
�43�.

The main difference between the explicit form of �G and
the naïve expectation from the dipole moment argument
above is that �G excludes terms of the form
�n�r�m��m�v�n���n��r�n�, for example, that include interior
matrix elements of r. In some sense, this omission is com-
pensated for by the extra factor of 2 relative to the naïve
expectation and by a remainder term, namely, �CS, the
Chern-Simons part. The Chern-Simons term �CS alone has
appeared previously.3,5 The next section reviews the proper-
ties of �CS and gives a geometrical picture for its discrete
ambiguity, which is not present in the �G term. We then
explain how the existence of the previously unreported �G
can be reconciled with previous studies on model Hamilto-
nians that found only �CS and then show that the two terms
are more intimately related than they first appear.

B. Chern-Simons form, axion electrodynamics, and topological
insulators

The Chern-Simons response �CS has been discussed at
some length in the literature.3,8 It does not emerge as clearly
as �G from the intuitive argument above about dipole mo-
ment in a field; rather, in Ref. 8, it was derived by treating
the vector potential as a background inhomogeneity and uti-
lizing a general formalism for computing the polarization in
such a background.9

The most important feature of the microscopic expression
for the isotropic OMP is that it suffers from a discrete ambi-
guity. The dimensionless parameter � quantifying the isotro-
pic susceptibility contains the term

�CS = −
1

4�
�abc� d3k tr
Aa�bAc −

2i

3
AaAbAc� , �6�

which is only defined up to integer multiples of 2�. This is
tied to a “gauge” invariance: ground-state properties of a
band insulator should only be determined by the ground-state
density matrix �k

g, which is invariant under unitary transfor-
mations Unn��k� that mix the occupied bands. Now, the Berry
connection A is not invariant under such a transformation
but there is no inconsistency because, in the expression for
�CS, all the terms produced by the gauge transformation can-
cel except for a multiple of 2�. An analogous phenomenon,
slightly easier to understand, is found in the case of electric
polarization17

Pi = e�
BZ

d3k

�2��3A
i, �7�

which has invariance only up to a discrete “quantum” or
ambiguity, which counts the number of times U�k� winds
around the Brillouin zone �e.g., if U11=eikxa and Uii=1, i
�1, then Px changes by one quantum�. The Chern-Simons
response �CS behaves similarly, although the “winding” that
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leads to the ambiguity is more complicated �in particular, it is
non-Abelian�.

These ambiguities can be understood from general argu-
ments, without relying on the explicit formulae. In the case
of the polarization, the quantum of uncertainty of Px, e /Sx,
depends on the lattice structure, with Sx the area of a surface
unit cell normal to x. The ambiguity results because the bulk
polarization does not completely determine the surface
charge: isolated surface bands can be filled or emptied,
changing the number of surface electrons per cell by an in-
teger. For the magnetoelectric response, the quantum of mag-
netoelectric polarizability is connected with the fact that �
gives a surface Hall conductance, as can be seen from the
term Jb= �����
E in Eq. �4�. Therefore, the ambiguity in
�� is just e2 /h, the “quantum of Hall conductance,” because
it is possible to add a quantum Hall layer to the surface.
�This remains a theoretical possibility even if no intrinsic
quantum Hall materials have yet been found.�

Now let us show that this ambiguity afflicts only the trace
of the susceptibility. This can be seen directly by measuring
the bound charge and currents. For example, all the compo-
nents of �̃ can be deduced from a measurement of �b in the
presence of a nonuniform magnetic field �see Eq. �4� but ��

itself does not determine any bulk properties.
More concretely, one can derive the ambiguities in the

magnetoelectric response from the ambiguities in the surface
polarization. In a periodic system, which for simplicity we
take to have a cubic unit cell, the smallest magnetic field that
can be applied without destroying the periodicity of the
Schrödinger equation corresponds to one flux quantum per
unit cell or B=h / �eS�, where S is again a transverse cell area.
The ambiguity in the polarization of the system in this mag-
netic field corresponds to an ambiguity in dP /dB of

�P

B
=

e/S
h/�eS�

=
e2

h
. �8�

Hence on purely geometrical grounds there is a natural quan-
tum e2 /h of the diagonal magnetoelectric polarizability.8

In order to see that this uncertainty remains the same
when a small magnetic field is applied �after all, � is defined
as a linear response�, we will have to construct large super-
cells in a direction perpendicular to the applied B �Fig. 1�.
While a supercell of N fundamental cells has a less precisely
defined polarization �the quantum decreases by a factor N, so

the uncertainty increases�, the minimum field that can be
applied also decreases by this factor so that the uncertainty in
the polarizability dPi /dBi �no sum� remains constant. On the
other hand, if we consider the off-diagonal response, we can
consider a supercell with its long axis parallel to the applied
B. In this case, the polarization quantum remains constant as
the supercell grows large and the minimum applied flux be-
comes small; the quantum in dPi /dBj �for i� j� then be-
comes large, which means that the uncertainty vanishes. For
this geometry, a small B acts like a continuous parameter and
the change in polarization induced by B can be continuously
tracked, even if the absolute polarization remains ambiguous.

Thus, with or without interactions, there is a fundamental
difference between the isotropic response and the other com-
ponents of the response. For the trace-free components, we
indeed do not find a quantum of uncertainty in the polariz-
ability formula. In particular, if the toroidal response is de-
fined by Ti=−�ijk�̃ jk /2, then we believe that a “quantum of
toroidal moment”14 can only exist when there is a spin direc-
tion with conserved “up” and “down” densities. �This toroi-
dal moment is typically defined as t= �1 /2��r
�dr, with �
the magnetization density13 or more generally in terms of a
tensor Tij such that �iTij =−2 j.14 It then reduces to the po-
larization difference between up and down electrons.

A particular class of materials for which the ambiguity in
�� is extremely important is the strong topological
insulators4–6 in which �=� �Ref. 3�. These are time-reversal
�T� symmetric band insulators. At first blush, T invariance
should rule out magnetoelectric phenomena at linear order
since M and B are T odd. However, the ambiguity by 2� in
� provides a loophole since −� is equivalent to �. Here we
regard the ambiguity/periodicity of � as a consequence of its
microscopic origin �alternately, its coupling to electrons� be-
cause � can be modified by 2�n by addition of surface inte-
ger quantum Hall layers, only � modulo 2� is a meaningful
bulk quantity for systems with charge e excitations. This is
consistent with the gauge dependence of the integral for �CS.
An alternate approach is to derive an ambiguity in � by as-
suming that the U�1� fields are derived from a non-Abelian
gauge field.7 The view here that periodicity of � results from
the microscopic coupling to electrons is similar to the con-
ventional understanding of the polarization quantum.

C. Conditions causing �G to vanish

It is worthwhile to understand in more detail the condi-
tions under which the response �G is allowed. It is forbidden
in systems with inversion �P� or time-reversal �T� symmetry,
which can be seen explicitly from the presence of three k
derivatives acting on gauge-invariant matrices in the formula
written in terms of Pk and Hk.19 However, this alone is not
sufficient to explain why �G did not appear in the T-breaking
models previously introduced to study the OMP.3,8,20 This is
explained by the fact that the interband contribution �G �Eq.
�5b� will also vanish if dispersions satisfy the following
“degeneracy” and “reflection” conditions �Fig. 2�:

�i� At a given k, all the occupied valence bands have the
same energy Ek

v.
�ii� Similarly, all the unoccupied conduction bands have

FIG. 1. A supercell admits a small magnetic flux and the quan-
tum of polarization transverse to the long direction is correspond-
ingly small but the quantum for polarization along the long direc-
tion is much larger.
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the same energy Ek
c .

�iii� Ek
v +Ek

c is independent of k �and can be taken to be
zero�.

This can be seen immediately in an expanded form of the
integrand of �G, �see Eqs. �A11c� and �A11d�

− �
n,n� occ

m unocc

�En − En��
��bn�n����an��m��m��in�

En − Em

+ �
n occ

m,m� unocc

�Em − Em��
��bn�m���m���am��m��in�

En − Em

− �
n occ

m unocc

�b�En + Em�
��an�m��m��in�

En − Em
, �9�

where �n�= �unk�, En=Enk, etc. Such a structure is automatic
when only two orbitals �with both spin states� are taken into
account and the system has particle-hole and PT symmetries.
PT symmetry guarantees that the bands remain spin degen-
erate even if spin is not a good quantum number. To see this,
recall that T acts on wave functions as i�yK and maps k→
−k. Here, K is complex conjugation and �y takes the form of
the usual Pauli matrix in the z basis of spin. Then P maps
k→−k again so that PT effectively acts as “T at each k.”21

Then particle-hole symmetry implies that the dispersion is
reflection symmetric, Ek

v =−Ek
c .

Most model Hamiltonians discussed in the literature that
access the topological insulator phase,3,4,8,20,22 as well as the
Dirac Hamiltonian �in the context of which the axion elec-
trodynamics was first discussed7�, can be defined in terms of
a Clifford algebra23 and this ensures that the dispersions are
degenerate and reflection symmetric. The only exception of
which we are aware is the model of Guo and Franz on the
pyrochlore lattice, which has four orbitals per unit cell.24 The
topological insulator phase itself will not have a contribution
from �G, since it is T invariant, and so the Guo and Franz
model will not show such a response; however, the addition
of any T-breaking perturbation to their model should produce
off-diagonal magnetoelectric responses.

Finally, there is a simple mathematical condition that will
cause �G to vanish. Namely, �G decreases as the gap be-
comes large without changing the wave functions and in the
limit of infinite bulk gap the only magnetoelectric response

comes from the Chern-Simons part, which is not sensitive to
the energies and depends only on the electron wave func-
tions.

D. Is the Chern-Simons contribution physically distinct?

Apart from the ambiguity in �CS that is not present in �G,
there seems to be no real physical distinction between the
two terms of the linear magnetoelectric response. We discuss
two aspects that relate to this observation below.

1. Localized vs itinerant contributions

The ambiguity in �CS can be interpreted as a manifestation
of the fact that bulk quantities cannot determine the surface
quantum Hall conductance since a two-dimensional quantum
Hall layer could appear on a surface independent of bulk
properties. This suggests, perhaps, that the Chern-Simons
term appears only in bulk systems with extended wave func-
tions and is a consequence of the itinerant electrons while �G
is a localized moleculelike contribution. However, this turns
out not to be the case.

Consider a periodic array of isolated molecules, which is
an extreme limit of the class of crystalline insulators. Such a
system has flat bands, with energies equal to the energies of
the molecular states, since the electrons cannot propagate. It
is certainly possible to construct a molecular system where
all the unoccupied states have one energy and all the occu-
pied states have another, by tuning the potentials. In this case
�G will vanish. However, such a molecule can still display a
magnetoelectric response; it will therefore have to be given
by �CS �and so restricted to diagonal responses�. For ex-
ample, consider the “molecule” of Fig. 3 with the shape of a
regular tetrahedron. If the two low-energy levels are occu-
pied, the magnetoelectric response is

�Pi

�Bj = � � j
i 1
�6

e2

�
,

where Pi here is the electric dipole moment divided by the
volume of the tetrahedron; the sign of the polarizability re-
verses when the complex phases are reversed. This shows

E

k

µ

FIG. 2. Schematic band structure that leads to vanishing �G. The
bands below the chemical potential are degenerate with energy Ek

v

while the bands above the chemical potential have energy Ek
c

=const−Ek
v. it

it

it

t
t

t

FIG. 3. A tetrahedral tight-binding molecule for spinless elec-
trons, with one orbital per site and complex hoppings. The hopping
integrals are all equal, except that those around one face have a
phase of i relative to the other three. There are then two pairs of
degenerate levels.
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that the Chern-Simons term does not require delocalized or-
bitals.

2. Additivity

Another argument against distinguishing between the
Chern-Simons part and the rest of the susceptibility is based
on band additivity. When interactions are not taken into ac-
count, each occupied band can be regarded as an independent
physical system �at least if there are no band crossings�. Ap-
plying a magnetic field causes each band n to become polar-
ized by a certain amount Pn and so the net polarization
should be P=�nPn. The Pauli exclusion principle does not
lead to any “interactions” between pairs of bands because the
polarization �like any single-body operator� can be written as
the sum of the mean polarization in each of the orthonormal
occupied states.

Now the Chern-Simons form does not look particularly
additive in this sense and is not by itself. Because it is the
trace of a matrix product in the occupied subspace, it neces-
sarily involves matrix elements between different occupied
states while an additive formula would not. Nevertheless, �G
and �CS are together additive, as can be seen most simply in
Eq. �A9�, where the two terms combine into a single sum
over occupied bands. In terms of �G and �CS separately, one
finds that when the values of �G, assuming just band 1 or 2
is occupied, are added together, some terms occur that are
not present in the expression for �G�1+2� �where both bands
are occupied� and vice versa. Using Eqs. �A11c� and �A11d�
we see, in fact, that �G is a sum of contributions which
depend on three bands, as �G=�n,m,m�C�n ;m ,m��
+�n,n�,mD�n ,n� ;m�. Terms such as C�1;2 ,m�� are not
present in the expression for �G�1+2�. �Likewise D�1,2 ;m�
appears in �G�1+2� but not in �G�1� and �G�2�. Adding up
the discrepancies, one finds that the energy denominators all
cancel and the nondiagonal terms from the Chern-Simons
form appear.

Seemingly paradoxical is the fact that for band structures
satisfying the degeneracy and reflection conditions of the last
section, the magnetoelectric susceptibility is given by the
Chern-Simons term alone, which does not seem to be addi-
tive. However, the additivity property applies only to bands
that do not cross. It does not make any sense to ask whether
the susceptibility is the sum over the susceptibilities for the
systems in which just one of the degenerate bands is occu-
pied since those systems are not gapped.

III. OMP AS CURRENTS IN RESPONSE TO CHEMICAL
CHANGES

Now we will tackle the problem of deriving the formula
for the OMP � discussed in the last section. There are two
impediments we need to overcome, a physical one and a
more technical one �which we will overcome starting from
an insight of Levinson�.25

In order to determine �, we would like to carry out a
thought experiment in which a crystal is exposed to appro-
priate electromagnetic fields. For specificity, we will apply a
uniform magnetic field. To make the calculation of the re-
sponse clean, we wish to deal with an infinite crystal. Then

the polarization does not simply reduce to the first moment
of the charge density,17 so we will instead have to calculate
the current or charge distribution induced by the fields and
then use Eq. �4� to deduce �. If both the crystal and the
electromagnetic fields are independent of space and time,
there is no macroscopic charge or current density. We will
assume spatial uniformity so that there are two choices for
how to proceed. Either the magnetic field can be varied in
time or the crystal parameters and thus � can be varied. In
either case, we measure the current that flows through the
bulk and try to determine �. As ever, the diagonal response
�� is the most difficult to capture. While either time-
dependent experiment can be used to determine �̃, only the
latter approach sheds light on the value of ��.

To see why �� can be determined only in this way �given
that we want to work with a spatially homogeneous geom-
etry�, let us discuss how currents flow through the crystal.
The necessity of varying the crystal in time can be deduced
from Maxwell’s equations �see below� but we will give a
more intuitive discussion here. Suppose that �̃=0. Then in an
applied magnetic field there is a polarization P=��B; thus
the crystal gets charged at the surface. As the magnetic field
is turned on, this surface charge has to build up �charge den-
sity n̂ ·P�. This occurs entirely due to flows of charge along
the surface. Suppose, for example, that the sample is a cyl-
inder �radius R� with the magnetic field along its z axis, as

illustrated in Fig. 4�a�. Then an electric field Eind=−ḂR�̂ /2
is induced at the surface according to Faraday’s law. Besides
being the magnetoelectric response, � also represents the
Hall coefficient for surface currents. Therefore, a current of

Js=��ḂR /2 flows to the top of the cylinder, adding up to a
surface charge of 2�R�Js�t�dt=��Bf�R2 and producing the
entire polarization ��Bf. No current flows through the bulk.
In fact, the Hall conductance on the circular face produces a
radial current as well so that the charge distributes over the
surface rather than just accumulating in a ring. Note that the
surface current grows with the radius of the cylinder. This
sounds like a nonlocal response but it can be understood as
follows: the electric field is determined by the nonlocal Far-

FIG. 4. As outlined in the text, �a� turning on a magnetic field
produces a macroscopic polarization through the flow of surface
currents while �b� varying the crystal Hamiltonian in the presence
of a fixed magnetic field produces a polarization through the flow of
current through the bulk.
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aday law but the crystal’s response to the electric field
�namely, the surface current� is local.

The current distribution can be understood directly from
Maxwell’s equations: there are two contributions to the bulk
current, �tP and curl M. The polarization is ��B while the
magnetization is indirectly produced by the induced electric
field, ��Eind. The two contributions thus cancel by Faraday’s
law in the bulk: Jb

bulk=����tB+curl E�=0. There is a surface
current because �� is discontinuous there.

On the other hand, if � changes in time, while the mag-
netic field is time independent �as in Fig. 4�b�, the polariza-
tion at the ends of the cylinder builds up entirely by means of
flows of charge through the bulk. Surface flows cannot be
large enough to explain the net polarization in this situation.
Since there is no induced electric field, the surface current is
just proportional to the lateral surface area and is negligible
compared to the bulk current. Therefore the bulk current is
equal to ��t���B and can be integrated to give ��B.

For the other component of the OMP, �̃, either thought
experiment can be used. The simplest approach, however, is
still the crystal-variation method since the surface currents
are negligible in that case26 and in any case this method
allows us to find all the components of � simultaneously.

Difficulties with the operator r and uniform magnetic
fields. There are two technical difficulties in the theory. First,
the operator r has unbounded matrix elements and thus the
matrix elements of the magnetic dipole moment �e /4��v

r−r
v� are not well defined. This rules out the straight-
forward use of perturbation theory to calculate the electric
dipole moment of an infinite crystal in a uniform magnetic
field. Second, if we consider a crystal in a uniform magnetic
field, Bloch’s theorem does not hold. Although the magnetic
field is uniform, the vector potential that appears in the
Hamiltonian depends on r.

We avoid the problems of r as follows. The key idea is to
work with the ground-state density matrix, rather than wave
functions. The individual eigenstates change drastically
when a magnetic field, no matter how small, is applied �con-
sider the difference between a plane wave and a localized
Landau level�. However, the density matrix of an insulator
summed over the occupied bands only changes by a small
amount when B is applied; over short distances the magnetic
field cannot have a strong effect �even in the example of
Landau levels� and the density matrix has only short-range
correlations because it describes an insulating state. More
technically, we show �Sec. III A� that the broken translation
invariance of any single-body operator O �such as the den-
sity matrix� can be dealt with by factoring out an Aharonov-
Bohm-type phase from its matrix Or1r2

. This solves the prob-
lem of the nonuniform gauge field and leads to expressions
that depend only on differences between r’s. In addition,
since the exponentially decaying ground-state density matrix
appears multiplying every expression, the factors of r1−r2
are suppressed.

The calculation then proceeds as follows. First, using the
symmetries of the electron Hamiltonian in a uniform mag-
netic field, we find how the density matrix changes in a weak
magnetic field. Next we compute the current response to an
adiabatic variation in the crystal Hamiltonian. Finally, we
show that this current can be expressed as a total time de-

rivative and therefore can be integrated to give the polariza-
tion; at linear order in B we can read off the coefficients, the
magnetoelectric tensor �.

A. Single-body operators for a uniform magnetic field

Recall the form of the Schrödinger Hamiltonian for a
single electron in a crystal and under the influence of a mag-
netic field,

HS�p,r� =
1

2m
�p − eA�r�2 + V�r� , �10�

where V�r+R�=V�r� for lattice vectors R. The necessity of
using the vector potential A seems at first to spoil the lattice
translation symmetry one would expect in a uniform mag-
netic field. However, as noted by Brown27 and Zak,28 a more
subtle form of translation symmetry remains. In particular,
choosing the gauge

A =
1

2
B 
 r , �11�

the Hamiltonian has “magnetic translation symmetry,”

HS�p,r + R� = eieB·�R
r�/2�HS�p,r�e−ieB·�R
r�/2�. �12�

This condition defines magnetic translation symmetry for
general single-body operators. Any operator O possessing
this symmetry can be written in the position basis as

Or1r2
= Or1r2

e−ieB·�r1
r2�/2�, �13a�

where O has lattice translation invariance,

Or1+R,r2+R = Or1r2
. �13b�

Note that the phase is just �ie /���d� ·A calculated along the
straight line from r2 to r1, which agrees with the intuition
that comes from writing the second-quantized form of the
operator,

O =� d3r1d3r2Or1r2
cr1

† e−ieB·�r1
r2�/2�cr2
. �14�

This argument shows how to couple general Hamiltonians to
uniform fields: H=exp��ie /���r2

r1d� ·A�H0r1r2
+Hr1r2

� �B�.
The vector potential appears explicitly only in A while
H��B� gives the rest of the dependence on the magnetic field.
The Schrödinger Hamiltonian �10� is obtained if we take

H̄0,r1r2
= 
−

�2

2m
�r2

2 + V�r2����3��r2 − r1� �15�

and set H�=0. Our results also apply to tight-binding models.
We introduce H� to capture the possibility that in a tight-
binding model the hoppings will not be rectilinear and hence
that the phases in Eq. �14� do not capture the full field de-
pendence of the Hamiltonian.

B. Ground-state density operator

We find it convenient to work with the one-body density
matrix �g or equivalently the projector onto the occupied
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states, whenever possible, because it is a basis-independent
object. Also, in an insulator, �r1r2

g is exponentially suppressed
in the distance �r2−r1�, which tempers the divergences that
arise from the unboundedness of r.29 In any case, if the
ground state is translationally symmetric, the structure de-
scribed above will apply to �g and we can be sure that the
density matrix has translational symmetry apart from a
phase,

�r1r2

g = �̄r1r2

g e−ieB·�r1
r2�/2�, �16�

where �̄g possesses the translation symmetry of the crystal
lattice and hence should connect smoothly to the field-free
density matrix. Hence we will write

�̄g = �0 + ��, �17�

where �0 is the density operator of the crystal in the absence
of the magnetic field.

Density-matrix perturbation theory. Now we have to cal-
culate ��, using a kind of perturbation theory that focuses on
density matrices rather than wave functions since the wave
functions suffer from the problems discussed above. This
perturbation theory starts from two characteristic properties
of the density matrix: it commutes with H and for fermions
at zero temperature it is a projection operator. The latter
means that all states are either occupied or unoccupied, so
the eigenvalues of the density operator are 0 and 1, which is
formalized as

�g�g = �g �18�

�idempotency�.30 Expressed in the position basis,

�r1r3

g =� dr2�r1r2

g �r2r3

g ,

�̄r1r3

g =� dr2�̄r1r2

g �̄r2r3

g e−�ie/2��B·�r1
r2+r2
r3+r3
r1�. �19�

The exponent is just −i�123 /�0, proportional to the magnetic
flux through triangle 123, and the exponential can be ex-
panded for small B. At first order this gives

�r1r3
� =� dr2��r1r2

� �0r2r3
+ �0r1r2

�r2r3
� − �0r1r2

�0r2r3
�i�123/�0� .

�20�

The problem of the unbounded r’s is resolved in this equation
because the area A123 of the triangle is finite and independent
of the origin, and also suppressed by the factor of �.

Calculation of ��. In the last term of Eq. �20�, we can
rewrite 2A123=r1
r2+r2
r3+r3
r1= �r2−r1�
 �r3−r2�
and then use �r2−r1��0r1r2

= ��0 ,rr1r2
to obtain

�1 − �0����1 − �0� − �0���0 = − i
e

2�
B · ���0,r 
 ��0,r� .

�21�

If we define

H̄ = H0 + H�, �22�

then analogous manipulations �including �r1−r2�Hr1r2
= i�vr1r2

 on the equation �H ,�g=0 give

���,H0 =
e

2
B · ���0,r 
 v − v 
 ��0,r� − ��0,H� .

�23�

Equations �21� and �23� have an intuitive meaning. The
former equation determines the interior matrix elements of
��, those between two occupied or two unoccupied states of
the zero-field Hamiltonian. A perturbation with the full crys-
tal symmetry does not change the interior matrix elements
�to first order� of the density matrix because of the exclusion
principle.31 In our case, however, multiplying �0 by the phase
e�ie/2��B·r1
r2 gives a density matrix with the correct magnetic
translation symmetry but also changes the momentum of the
states and so results in a small probability for states to be
doubly occupied. Therefore �� must correct for this “viola-
tion of the exclusion principle.” On the other hand Eq. �23�
determines the cross-gap matrix elements of �� �those be-
tween unoccupied and occupied states�. These matrix ele-
ments capture the expected “transitions across the gap” in-
duced by the field. The rest of this section is devoted to
calculating all these matrix elements. The results are given in
Eqs. �24� and �28�; the derivations could be skipped on a first
reading.

Calculation of ��. Precisely speaking, Eq. �21� gives the
matrix elements of �̄g between pairs of occupied �n and n��
or unoccupied �m and m�� states,

��nk��̄g��n�k� = �nn� −
e

4�
Bj� jabFnn�

ab �k� ,

��mk��1 − �̄g���m�k� = �mm� −
e

4�
Bj� jabF̌mm�

ab �k� , �24�

where F is the non-Abelian Berry curvature associated with
the occupied bands,

Fnn�
ab = i�unk��aPk�bPk − �bPk�aPk�un�k�

=�aAnn�
b − �bAnn�

a − i�Aa,Abnn�, �25�

and F̌ is the corresponding quantity for the unoccupied
bands. To derive these relations, we use

�0 = �
BZ

d3k

�2��3eik·rPke−ik·r, �26�

where P=�n occ�unk��unk� is the projector onto filled bands at
k. This gives

i��0,r = �
BZ

d3k

�2��3eik·r��kPk�e−ik·r=�
BZ

d3k

�2��3eik·rr”ke−ik·r

�27�

after discarding a total derivative. The notation r”=�kP was
introduced in Eq. �5�.
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By contrast, Eq. �23� describes to what extent �̄g fails to
commute with H0, the crystal Hamiltonian, and gives the
matrix elements of �� between occupied and unoccupied
states. In this sense it is analogous to the more usual results
for density-matrix perturbation theory.31 In the basis of un-
perturbed energy eigenstates,

��nk�����mk� = i
e

2�
Bj� jab

�unk���aPk,�bHk��umk�
Enk − Emk

+
�unk�Hk��umk�

Enk − Emk
. �28�

Recall that �vb=�bHk and that H� is introduced only to cap-
ture unusual situations such as tight-binding models with
nonstraight hoppings and vanishes for the continuum prob-
lem. Equations �24� and �28� are the key technical results of
this formalism, good to linear order in the magnetic field.

C. Adiabatic current

Now we need to calculate the current as the Hamiltonian
is changed slowly as a function of time, as in the ordinary
theory of polarization.17,32 We have to be careful, however,
since the current vanishes in the zero-order adiabatic ground
state described by density matrix �g�t�. It is necessary to go
to first order in adiabatic perturbation theory, which takes
account of the fact that the true dynamical density matrix

��t� has an extra contribution proportional to dH /dt= Ḣ.
However, once the current has been expressed in terms of �̇,

which is proportional to Ḣ, the distinction is no longer im-
portant and the adiabatic approximation can be made.

Preparing for the adiabatic approximation. We can write
the current as

J�t� =
e

�
Tr ��t�v =

e

�

i

�
Tr ��H,r , �29�

where � is the crystal volume. Here H is the full Hamil-
tonian including the magnetic field. By unitarity of time evo-
lution, ��t� remains a projector if the initial state is the
ground-state projector. The operator r appears here but in a
commutator. Since �r1��O ,r�r2�= �r2−r1�Or1r2

, such expres-
sions do not suffer from the difficulties of an “unprotected”
r, namely, its unboundedness. We can only use cyclicity of
the trace to the extent that this property can be preserved. In
particular, the expression Tr r�� ,H, which seems formally
equivalent to Eq. �29�, poses problems but

J�t� =
e

�

i

�
Tr��,��,r��,H �30�

does not. This expression can be derived from Eq. �29� using
again the idempotency of � ���=��. Using the equation of
motion for the density matrix,

i��̇�t� = �H�t�,��t� �31�

and making the approximation ���g on the right-hand side
at this stage, the current becomes

J =
e

�
� dr1dr2dr3�r1 − 2r2 + r3��r1r2

g �r2r3

g �̇r3r1

g . �32�

Magnetic-field dependence of the current. The considerations
given in the last section make the integrand

�r1r2

g �r2r3

g �̇r3r1

g = �̄r1r2

g �̄r2r3

g �̇̄r3r1

g e−i�123/�0, �33�

where, again, �123=B · �r1
r2+r2
r3+r3
r1� /2 is the
magnetic flux through the triangle with vertices r1r2r3 and
does not suffer from the pathologies of r itself, which allows
us to expand e−i�123/�0 =1− i�123 /�0 to lowest order in B �re-
call again that the matrix elements of � are exponentially
suppressed with distances�.

Recalling our division �̄g=�0+��, where �� is of first or-
der in the magnetic field, Eq. �32� becomes

J =
e

�
� dr1dr2dr3�r1 − 2r2 + r3�
�0r1r2

�0r2r3
�̇r3r1
�

+ �r1r2
� �0r2r3

�̇0r3r1
+ �0r1r2

�r2r3
� �̇0r3r1

− i
�123

�0
�0r1r2

�0r2r3
�̇0r3r1

� �34�

at first order. The rest of the calculation involves substituting
the expressions for the magnetic-field dependence of �g ob-
tained earlier and integrating the result to obtain �. The
energy-dependent part of �, namely, �G, will come from the
mixing of the occupied and unoccupied bands, Eq. �28�. The
Chern-Simons term will come from the “exclusion-principle-
correcting” terms, Eq. �24�, as well as the �123 term in the
previous equation.

Integrating the results. The four terms in the current can
be collected and rearranged into the form

J = JG + JCS1 + JCS2 �35a�

and integrated with respect to time as follows. The first term
in Eq. �34� can be rewritten with �0r1r2

�0r2r3
�̇r3r1
�

=�t��0r1r2
�0r2r3

�r3r1
� �− �̇0r1r2

�0r2r3
�r3r1
� −�0r1r2

�̇0r2r3
�r3r1
� and

combined with the next two terms to give

JG =
e

�
�t Tr��0,r���,�0 , �35b�

JCS1 = − 3
e

�
Tr ����̇0,��0,r �35c�

while the final term in Eq. �34� �i.e., the term involving �123�
becomes

JCS2 = − i
e2

2��
Bj� jab Tr��0,r��0,ra�rb, �̇0 + c.c.

�35d�

upon rewriting

�r1 − 2r2 + r3��r1 
 r2 + r2 
 r3 + r3 
 r1�

= �r1 − r2���r1 − r3� 
 �r2 − r3�

+ �r3 − r2���r1 − r2� 
 �r1 − r3� .

The total derivative term JG �Eq. �35b� can be written

ORBITAL MAGNETOELECTRIC COUPLING IN BAND… PHYSICAL REVIEW B 81, 205104 �2010�

205104-9



JG
i = �t��G� j

iBj �36�

with �G as given in Eq. �5b�,

��G� j
i =

e2

�
Re �

n occ

m unocc

�n��iP�m��m�� jab��aH,�bP��n�
En − Em

+ 2e Im �
n occ

m unocc

�n��iP�m��m� � H�/�Bj�n�
En − Em

, �37�

where the BZ integral and the dependence on k have been
suppressed, and �n�= �un�. This result follows immediately
upon taking the trace in the basis of energy eigenstates. Ma-
trix elements of ��0 ,ri appear as r”k

i =�iPk, from Eq. �27�,
and the cross-gap matrix elements of �� are given in Eq.
�28�. Note that since JG is a total time derivative, �G is
uniquely defined for a given Hamiltonian �this assumes the
existence of a reference Hamiltonian with �G=0, that is, the
existence of a topologically trivial, time-reversal-invariant
band insulator�.

In JCS2 �Eq. �35d�, we can replace r→ ��r ,�0 ,�0 in the
third commutator. This has the same cross-gap matrix ele-
ments as r; the interior matrix elements do not contribute to
the trace because the other three factors, �̇0 and two compo-
nents of ��0 ,ri, have only cross-gap matrix elements. Then

JCS2 = i
e2

2��
Bj� jab Tr��0,r��0,ra����0,rb,�0, �̇0 + c.c.

or

JCS2 = −
e2

2�
Bj� jab Tr �kPk�aPk���bPk,Pk,Ṗk + c.c.,

where an integral over k is suppressed for brevity and the
trace is taken in the Hilbert space at k. Dropping the sub-
scripts k everywhere, this can be expanded and rearranged to
give

JCS2 =
e2

2�
Bj� jab Tr P���P,Ṗ�aP�bP + 2�Ṗ,�bP��P,�aP

+ 3�Ṗ�bP�aP � P + �bPṖ � P�aP�� . �38a�

In manipulating these strings of projection operators and
their derivatives, it is very useful to realize that derivatives of
projectors only have cross-gap matrix elements: P�aPP
=Q�aPQ=0, where Q=1−P is the projector onto unoccu-

pied bands. This means, for example, that P��P��Ṗ�
=P��P�Q�Ṗ�P.

To JCS2 we must add JCS1 �Eq. �35c�,

JCS1 =
3e2

2�
Bj� jab Tr�P − Q��Ṗ,�P�aP�bP

=
3e2

2�
Bj� jab Tr P��Ṗ,�P�aP�bP − �Ṗ�bP�aP � P

+ �bPṖ � P�aP�� , �38b�

to get

JCS = JCS1 + JCS2 =
e2

�
Bj� jab Tr P��Ṗ,�P�aP�bP + �Ṗ,�bP


��P,�aP� . �39�

By checking the different components explicitly one can see
that this is

JCS = B
e2

�
Tr P��Ṗ,�xP��yP,�zP + �Ṗ,�yP��zP,�xP

+ �Ṗ,�zP��xP,�yP� , �40�

so we get the “topological current”

JCS = − B
e2

�
�

BZ

d3k

�2��3 tr�FtxFyz + FtyFzx + FtzFxy� ,

�41�

where the lowercase trace �tr� is only over the occupied
bands and the Brillouin-zone integral has been restored.

It remains only to show that JCS is a total time derivative
that integrates to �CSB. Allowing the indices to run over
t ,x ,y ,z, in that order �so that �txyz=+1�,

JCS = − B
e2

8�
�

BZ

d3k

�2��3�abcd tr FabFcd

=− B
e2

2�
�abcd�

BZ

d3k

�2��3�a tr�Ab�cAd − i
2

3
AbAcAd� .

�42�

The derivatives with respect to kx ,ky ,kz will vanish when
integrated over the Brillouin zone assuming that A is defined
smoothly and periodically over the zone, leaving just

JCS = − B
e2

2�
�t�

BZ

d3k

�2��3�abc tr�Aa�bAc − i
2

3
AaAbAc� ,

�43�

where the indices now only run over xyz, as originally. This
obviously gives �CS as in Eq. �5c�, completing the proof. It
must be reiterated that this integral is not always entirely
trivial. In particular, if the adiabatic evolution brings the
crystal back to its initial Hamiltonian in a nontrivial way, the
Brillouin-zone integral need not return to its initial value
because A is not uniquely defined. In other words, �dtJCS
can be multivalued as a function of the Hamiltonian defor-
mation parameters. However, the change can only be such
that � changes by an integer multiple of 2�, as discussed in
Sec. II B.
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IV. SUMMARY

The theoretical calculation of the magnetoelectric polariz-
ability in insulators presents a difficulty similar to that
known well from the theory of polarization; both quantities
suffer an inherent ambiguity in the bulk. The magnetoelectric
polarizability adds another level of difficulty because the
vector potential is unbounded and breaks lattice translation
symmetry. However, we have developed a formalism that
allows us to deal directly with a uniform magnetic field. In
the Appendix, we further show that a long-wavelength regu-
larization of the vector potential together with a suitable gen-
eralization of the polarization �to deal with the broken crystal
symmetry� provides a �relatively� simple, though less rigor-
ous, way to compute the response function. The final expres-
sion for the OMP rederives known results for particular
model systems and topological insulators and completes the
picture with additional terms that have a relatively straight-
forward and intuitive interpretation. We hope that these re-
sults and the method of their derivation will be valuable for
future work on magnetoelectric effects and topological elec-
tronic phases.
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APPENDIX: CALCULATING THE OMP USING STATIC
POLARIZATION

As noted in the text, matrix elements of the operator r are
ill behaved in a basis of extended, Bloch-type states. That
problem was solved by working with the density operator �,
whose matrix elements are exponentially suppressed with
distance. Another approach is to use a Wannier-type basis of
localized states. In this appendix, we take this approach to
present an alternative derivation of the OMP.

The Bloch functions �nk�r� of the unperturbed crystal will
evolve, under the application of a long-wavelength magnetic
field A=A0 sin q ·r, into the exact energy eigenfunctions
�nk�r�. These no longer have a sharp crystal momentum k
but may be expanded in a perturbation series in the unper-
turbed �nk�r�. Then the analogue to the standard Wannier
function wnR�r� for lattice vector R will be

WnR�r� =
�

�N
�

BZ

d3k

�2��3�nk�r�e−ik·R

=wnR�r� + �wnR�r� , �A1�

where � is the volume of the crystal and N is the number of
unit cells. The Wannier orbitals centered at R become polar-
ized when the magnetic field is applied and this distortion
gives a polarization density of

�P�R� =
1

�
�

n occ
�wnR�er��wnR� + c.c. �A2�

Although it is not obvious that the bulk polarization appear-
ing in Maxwell’s equations is the same as the polarization of
a set of Wannier orbitals, this expression leads to Eq. �5�. To
ensure that the Wannier orbitals are localized, we will have
to suppose that each band has a vanishing Chern number33 so
that the phase of unk can be chosen so that it is a periodic
function of k. In this case the unperturbed Wannier functions
are localized and �though there are usually subtleties in de-
fining Wannier functions in a magnetic field�34 the regular-
ization used here leads to localized orbitals. Presumably
these arguments can be extended to the case where the total
Chern number for all occupied bands Cij

=�n occ�BZd3kFnn
ij �k� /2� vanishes.

Here we want to take a relatively direct approach to per-
turbation theory in the field and write35

�nk = �nk + ��nk,

��nk =
eB

2iq
�

l

�lk+q

�ulk+q�vx�unk�
Enk − Elk+q + i�

− �q → − q�� .

�A3�

For definiteness we take A=−�B /q�sin�qy�x̂ and the velocity
operator can be alternatively expressed as vx=�xHk /�, with
Hk the Bloch Hamiltonian of the unperturbed crystal.

Then the first-order correction to the dipole moment of
the generalized Wannier functions will be

�Pi�R� = e �
n occ

� dr�
BZ

d3k

�2��3 �rieik·�R−r�unk
� �r�


 �
BZ

d3k�

�2��3��nk��r�e−ik�·R + c.c. �A4�

The position integral must be taken over the whole crystal at
this point. In the integral over k, ri can be converted into a k
derivative of the exponential and then partial integration
leaves a factor −i�ki

u� �the boundary term vanishes because
the Bloch function � is strictly periodic in k�. Then

�Pi = −
e2B

2q
�

n occ

l


 ��iunk�ulk��ulk�vx�unk−q�
Enk−q − Elk + i�

eiq·R − �q → − q��
+ c.c. �A5�

�From now on, we will omit the integral over k and the
associated factor of �2��3. Because of the variation in the
magnetic field the magnetoelectric polarization �Pi�R�
=� j

iBj�R� should vary as cos q ·R. The polarization seems to
have both cosine and sine terms but the coefficient of the
latter is −B sin�qy�Cix /q, and the vanishing of C is a prereq-
uisite for using Wannier functions.

To lowest order in q and B, then, the magnetoelectric
response is
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� j
i = −

e2

2
� jab�qb �

l

n occ

��iunk�ulk��ulk�va�unk−q�
Enk−q − Elk + i�

+ c.c.,

�A6�

where we have symmetrized over Landau gauges to make
the expression nicer.

Switching to the shorthand �n�= �unk�,

� j
i =

e2

�
� jab Re �

n occ

l


 ��in�l��l��aH��bn�
En − El + i�

−
��in�l��l��aH�n��bEn

�En − El + i��2 � . �A7�

Simplifying the second term of this expression makes use of
the “Sternheimer equation”

��aH��n� = �En − H���an� + ��aEn��n� �A8�

and the antisymmetry in the indices a and b to give

� j
i =

e2

2�
� jab �

n occ

l

��in�l��l��a�H + En���bn�
En − El + i�

+ c.c. �A9�

Note the formal similarity to the expression for orbital mag-
netization,

Mj =
1

2
Im �

n occ
� jab��an��H + En���bn�

= −
1

2
Im �

n occ
� jab�n��a�H + En���bn� , �A10�

in particular the appearance of the combination H+En.35,36

To bring our compact expression into the form given in
terms of �G and �CS in the main text, we need to break the
sum over l into contributions from occupied and unoccupied
states. Omitting the factor �e2 /2��� jab for the moment, the
sum over the occupied states takes the form

�
n,l

occ

��in�l��l��a�H + En���bn�
En − El + i�

+ c.c.

=�
n,l

occ

��in�l�
�l��a�H − El���bn� + ��bl��a�H − En��n�

En − El + i�

= �
n,n�
occ

��in�n����bn���an� , �A11a�

using the antisymmetry in a and b and the Sternheimer equa-
tion again. Because the two sums are not symmetric when
we take l in the unoccupied space, however, the terms do not

cancel as nicely. Inserting a resolution of the identity, broken
into two parts, gives

�
n,n� occ

m unocc

��in�m��m��aH�n���n���bn�
En − Em

+ c.c.

= �
n,n� occ

m unocc

��in�m��m��an���n���bn� + c.c. �A11b�

− �
n,n� occ

m unocc

��in�m��m��an���n���bH�n�
En − Em

+ c.c.

+ �
n occ

m unocc

��in�m��m��an��bEn

En − Em
+ c.c. �A11c�

and

�
n occ

m,m� unocc

��in�m��m��aH�m���m���bn�
En − Em

+ c.c.

+ �
n occ

m unocc

��in�m��m��bn��aEn

En − Em
+ c.c. �A11d�

The unnumbered pieces of these equations cancel by anti-
symmetry in a and b.

Defining P as the projector onto occupied bands as in the
text, Eqs. �A11c� and �A11d� combine to give

��G� j
i =

e2

2�
� jab �

n occ

m unocc

�n��iP�m��m���aH,�bP��n�
En − Em

+ c.c.,

�A12�

which is equivalent to Eq. �5b� upon identifying va with �aH
and r”i with �iP. This quantity has the crucial property that it
is “gauge invariant,” meaning that it can be written as a
matrix trace and hence does not change under a change of
basis of the Hilbert space. Of course, this property is not
evident here, where the formula makes explicit reference to
energy eigenfunctions and their energies but it follows from
the expression in terms of a matrix given in Eq. �35b�. The
remainder, Eqs. �A11a� and �A11b�, becomes

��CS� j
i = −

e2

2�
� j

i�abc tr
Aa�bAc −
2i

3
AaAbAc� ,

�A13�

which reproduces Eq. �5c�.
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