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Phonons and Lattice Dielectric Properties of Zirconia
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(August 28, 2001)

We have performed a first-principles study of the structural and vibrational properties of the three
low-pressure (cubic, tetragonal, and especially monoclinic) phases of ZrO2, with special attention to
the computation of the zone-center phonon modes and related dielectric properties. The calculations
have been carried out within the local-density approximation using ultrasoft pseudopotentials and
a plane-wave basis. The fully relaxed structural parameters are found to be in excellent agreement
with experimental data and with previous theoretical work. The total-energy calculations correctly
reproduce the energetics of the ZrO2 phases, and the calculated zone-center phonon frequencies yield
good agreement with the infrared and Raman experimental frequencies in the monoclinic phase.
The Born effective charge tensors are computed and, together with the mode eigenvectors, used
to decompose the lattice dielectric susceptibility tensor into contributions arising from individual
infrared-active phonon modes. This work has been partially motivated by the potential for ZrO2 to
replace SiO2 as the gate-dielectric material in modern integrated-circuit technology.

PACS numbers: 77.22.-d, 61.66.-f, 63.20.-e, 77.84.Bw

I. INTRODUCTION

ZrO2, or zirconia, has a wide range of materials ap-
plications because of its high strength and stability at
high temperature. A prospective application of particu-
lar current interest is its possible use to replace SiO2 as
the gate-dielectric material in metal-oxide-semiconductor
(MOS) devices.

The use of SiO2 as the gate dielectric, and in partic-
ular the quality of the Si/SiO2 interface, have been a
foundation of modern integrated-circuit technology since
its invention decades ago. Driven by the seemingly end-
less pressure for higher operation speed, smaller physical
dimensions, and lower driving voltage, the gate dielec-
tric thickness in integrated circuits has been rapidly re-
duced from the order of 1−2µm in the early 1960s to
the current value of about 2−3 nm. If SiO2 is not re-
placed by another material, this would require the gate
dielectric thickness to be reduced to less than 1 nm in the
coming decade.1 Such a reduction in gate oxide thick-
ness, however, would impose several severe problems on
the current Si/SiO2 semiconductor technology, including
a high level of direct tunneling current, a large degree
of dopant (boron) diffusion in the gate oxide, and re-
liability problems associated with nonuniformity of the
very thin film. It has been demonstrated that the direct
tunneling current grows exponentially as the thickness
of the gate dielectric film decreases.2,3 For films thinner
than 2 nm, the tunneling current could become as large
as 1 A/cm2, which would require a level of power dissi-
pation that would be intolerable for most digital device
applications.4 These fundamental problems are largely
attributable to the inherently low dielectric constant of
silicon dioxide (ε ' 3.5), quite small in comparison with
many other oxide dielectrics.

Several approaches have been proposed for overcoming

these fundamental challenges associated with the use of
SiO2 films. In particular, much recent effort has been
focused on metal oxides having a larger dielectric con-
stant than that of SiO2, since these might be used to
provide physically thicker dielectric films that are equiv-
alent to much thinner SiO2 ones in terms of their ca-
pacitance, but exhibiting a greatly reduced leakage cur-
rent. Some of the proposed candidates include Ta2O5,5,6
TiO2, ZrO2, Y2O3, Al2O3, and hafnium and zirconium
silicate systems (Hf1−xSixO2 and Zr1−xSixO2).7 Among
these candidates, ZrO2 is a promising one because of its
good dielectric properties (ε ∼ 20) and thermodynamic
stability in contact with the Si substrate.

Zirconia is known to have three low-pressure structural
phases. The system passes from the monoclinic ground
state to a tetragonal phase, and then eventually to a
cubic phase, with increasing temperature. The mono-
clinic phase (space group C5

2h or P21/c) is thermody-
namically stable below 1400 K. Around 1400 K a transi-
tion occurs to the tetragonal structure (space group D15

4h
or P42/nmc), which is a slightly distorted version of the
cubic structure and is stable up to 2570 K. Finally, the
cubic phase (space group O5

h or Fm3m) is thermodynam-
ically stable between 2570 K and the melting temperature
at 2980 K. This information is summarized in Table I,
which also shows the coordination number of the Zr and
O atoms for each of the three phases. In the monoclinic
phase there are two nonequivalent oxygen sites with co-
ordination numbers of 3 (O1) and 4 (O2), while all the
Zr atoms are equivalent and have a coordination of 7.

Our purpose is to investigate the lattice contributions
to the dielectric properties of these three ZrO2 phases,
especially the monoclinic phase. Because previous ex-
perimental and theoretical work indicates that the elec-
tronic contribution to the dielectric constant is rather
small (ε∞ ' 5) and is neither strongly anisotropic nor
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TABLE I. The three low-pressure phases of ZrO2. The last
three columns give the coordination numbers of the Zr and
O atoms. (Atoms O1 and O2 are equivalent in the cubic and
tetragonal, but not in the monoclinic, structures.)

Coordination
Phase Space group T (K) Zr O1 O2

Cubic Fm3m 2570 - 2980 8 4 4
Tetragonal P42/nmc 1400 - 2570 8 4 4
Monoclinic P21/c <1400 7 3 4

strongly dependent on structural phase,8–12 and because
ε∞ is best calculated by specialized linear-response tech-
niques, we have not calculated it here. Instead, we fo-
cus on the lattice contributions to the dielectric response
because, as we shall see, these are much larger, more
anisotropic, and more sensitive to the lattice structure.

In order to achieve this, the Born effective charge ten-
sors and the force-constant matrices are calculated for the
three ZrO2 phases using density-functional theory. We
first check that our relaxed structural parameters and en-
ergy differences between phases are consistent with pre-
vious theoretical13–20 and experimental work.21,22 The
Born effective charge tensors are then computed from fi-
nite differences of polarizations as various sublattice dis-
placements are imposed, with the polarizations computed
using the Berry-phase method.23 The force constants are
obtained in a similar way from finite differences of forces.
Reasonable agreement is found between the calculated
frequencies and the measured spectra for both IR-active
and Raman-active modes,9,24–27 although possible reas-
signments are proposed for certain modes based on the
results of our calculations. Finally, our theoretical infor-
mation is combined to predict the lattice contributions
to the bulk dielectric tensor. We thus clarify the depen-
dence of the dielectric response on crystal phase, orien-
tation, and lattice dynamical properties. In particular,
we find that the lattice dielectric tensors in the tetrago-
nal and monoclinic phases are strongly anisotropic. We
also find that the monoclinic phase has the smallest
orientationally-averaged dielectric constant of the three
phases, owing to the fact that the mode effective charges
associated with the lowest-frequency modes are rather
weak.

The paper is organized as follows. In Sec. II we briefly
describe the technical aspects of our first-principles calcu-
lations. Sec. III presents the results, including the struc-
tural relaxations, the Born effective charge tensors, the
phonon normal modes, and the lattice contributions to
the dielectric tensors. Sec. IV concludes the paper.

II. DETAILS OF FIRST-PRINCIPLES
CALCULATIONS

The calculations are carried out within a plane-wave
pseudopotential implementation of density-functional
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c

a

a

monoclinic phase

Zr

O

a
b

c

β

FIG. 1. Structures of the three ZrO2 phases. The Zr−O
bonds are only shown in the monoclinic structure. For the
tetragonal phase, the arrows indicate the distortion of oxygen
pairs relative to the cubic structure.

theory (DFT) in the local-density approximation (LDA)
using Ceperley-Alder exchange-correlation.28,29 The use
of Vanderbilt ultrasoft pseudopotentials30 allows a highly
accurate calculation to be achieved with a low energy cut-
off, which is chosen to be 25 Ry in this work. The 4s and
4p semicore shells are included in the valence for Zr, and
the 2s and 2p shells are included in the valence for O.
A conjugate-gradient algorithm is used to compute the
total energies and forces. For each of the three ZrO2

phases, a unit cell containing 12 atoms (4 Zr and 8 O
atoms) is used in our calculations. Although we thus use
an unnecessarily large cell for the cubic and tetragonal
phases, this approach has the advantage that the three
zirconia phases can be studied in a completely parallel
fashion.

A 4×4×4 Monkhorst-Pack31 k-point mesh is found to
provide sufficient precision in the calculations of total
energies and forces. In order to calculate Born effec-
tive charges and force-constant matrices, each atomic
sublattice in turn is displaced in each Cartesian direc-
tion by ±0.2% in lattice units, and the Berry-phase
polarization23 and Hellmann-Feynman forces are com-
puted. To be specific, a 4×4×20 k-point sampling over
the Brillouin zone was used in the Berry-phase polar-
ization calculations, and we have confirmed that good
convergence was achieved for the three ZrO2 phases with
such k-point sampling. The Born effective charge ten-
sors and force-constant matrices are then constructed by
finite differences from the results of these calculations.
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III. RESULTS

A. Atomic Structures of ZrO2 Phases

The three crystal structures of ZrO2 are shown in
Fig. 1. Cubic zirconia takes the fluorite (CaF2) struc-
ture, in which the Zr atoms are in a face-centered cu-
bic structure and the oxygen atoms occupy the tetra-
hedral interstitial sites associated with this fcc lattice.
The structure of tetragonal zirconia can be regarded as
a distortion of the cubic structure obtained by displacing
alternating pairs of oxygen atoms up and down by an
amount ∆z along the z direction, as shown in the figure.
This doubles the primitive cell from three to six atoms
and is accompanied by a tetragonal strain. The structure
can be specified by the two lattice parameters a and c and
a dimensionless ratio dz = ∆z/c. Cubic zirconia can be
considered as a special case of the tetragonal structure
with dz = 0 and c/a = 1 (if the primitive cell is used for
tetragonal phase, c/a =

√
2).

Monoclinic zirconia has a lower symmetry and a more
complex geometric structure with a 12-atom primitive
cell. The lattice parameters are a, b, c, and β (the non-
orthogonal angle between a and c) as shown in Fig. 1.
The atomic coordinates in Wyckoff (lattice-vector) no-
tation are ±(x, y, z) and ±(−x, y + 1/2, 1/2 − z), with
parameters x, y and z specified for each of three kinds
of atoms: Zr, O1, and O2. Note that there are two non-
equivalent oxygen sites: atoms of type O1 are 3-fold co-
ordinated, while O2 are 4-fold coordinated. All Zr atoms
are equivalent and are 7-fold coordinated. Thus, four
lattice-vector parameters and nine internal parameters
are needed to specify the structure fully.

Tabulated in Table II are the relaxed structural param-
eters for the three phases of ZrO2 as computed within
our energy minimization procedure, as well as results of
previous theoretical and experimental work for compari-
son. The experimental parameters given in the last col-
umn were used as the starting point for our DFT–LDA
structural relaxations. It can readily be seen that there
is excellent agreement between our results and previous
theory and experiment. The volumes are all slightly un-
derestimated, by 2-3%, as is typical of LDA calculations.
The largest discrepancy is for dz = ∆z/c, the internal
coordinate in the tetragonal phase; our value is ∼30%
smaller than the experimental value, but it is very closed
to the results of the previous pseudopotential calcula-
tion. (The discrepancy with experiment should not be
taken too seriously, in view of the fact that the theory is
a zero-temperature one.) The very close (usually < 1%)
agreement with the previous pseudopotential results of
Ref. 16 provides a good confirmation of the reliability of
our calculations.

Fig. 2 illustrates the relaxed monoclinic structure, and
Table III lists the calculated bond lengths and bond an-
gles for the O–Zr bonds. Bond lengths taken from Ref. 32
are also listed for comparison. As can be seen in the fig-

TABLE II. Structural parameters obtained for three ZrO2

phases from present theory, compared with previous pseu-
dopotential (PP) and linear augmented plane-wave (FLAPW)
calculations and with experiment. Lattice parameters a, b, c
and volume per formula unit V are in atomic units; mono-
clinic angle β is in degrees; and internal coordinates dz, x, y
and z are dimensionless.

This work PPa FLAPWb Expt.c

Cubic
V 215.612 215.31 217.79 222.48
a 9.5187 9.514 9.551 9.619

Tetragonal
V 217.698 218.69 218.77 222.96
a 9.5051 9.523 9.541 9.543
c 9.6383 9.646 9.613 9.793
dz 0.0418 0.0423 0.029 0.0574

Monoclinic
V 231.822 230.51 237.71
a 9.6532 9.611 9.734
b 9.7690 9.841 9.849
c 9.9621 9.876 10.048
β 99.21 99.21 99.23
xZr 0.2769 0.2779 0.2754
yZr 0.0422 0.0418 0.0395
zZr 0.2097 0.2099 0.2083
xO1 0.0689 0.0766 0.0700
yO1 0.3333 0.3488 0.3317
zO1 0.3445 0.3311 0.3447
xO2 0.4495 0.4471 0.4496
yO2 0.7573 0.7588 0.7569
zO2 0.4798 0.4830 0.4792

aRef. 16.
bRef. 20.
cRef. 13.

TABLE III. O–Zr bond lengths and Zr–O–Zr bond angles
in monoclinic zirconia (in Å and degrees respectively). Values
in parentheses are from Ref. 32 for comparison.

O1-Zr bond lengths and angles

d1 2.035 (2.051) θ12 138.6
d2 2.051 (2.057) θ13 106.3
d3 2.144 (2.151) θ23 105.0

O2-Zr bond lengths and angles

d1 2.138 (2.163) θ12 108.6
d2 2.229 (2.220) θ13 106.0
d3 2.153 (2.189) θ14 133.0
d4 2.233 (2.285) θ23 102.0

θ24 100.6
θ34 103.6
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FIG. 2. Relaxed lattice structure of monoclinic ZrO2; unit
cell is outlined. Light and dark circles stand for the Zr and O
atoms, respectively. A 3-fold coordinated oxygen atom (O1)
is bonded to the nearest neighboring Zr atoms in an almost
planar configuration, while a 4-fold oxygen (O2) forms a dis-
torted tetrahedron with the Zr neighbors.

ure, a three-fold coordinated oxygen atom (O1) is bonded
to the three nearest-neighbor Zr atoms in an almost pla-
nar configuration, as can be verified by noting that the
sum of the three bond angles is about 350◦. A second
four-fold oxygen atom (O2) forms a distorted tetrahedron
with its four nearest Zr neighbors, the degree of distor-
tion being evident from the lengths and angles in the
table. The presence of these two distinct oxygen atoms
with utterly different environments suggests that their
contributions to the dielectric properties of the material
may be quite different. We shall see how this is manifest
as a difference of the Born effective charge tensors for O1

and O2 in the next subsection.
Our total-energy calculations have correctly repro-

duced the energetics of the three ZrO2 phases. The dif-
ferences of total energies per formula unit for the mono-
clinic and tetragonal phases, relative to the cubic phase,
are 0.044eV and 0.089eV respectively, to be compared
with 0.045 eV and 0.102 eV from previous calculation,16

and 0.057eV and 0.120 eV from one experiment.33

B. Born Effective Charge Tensors

The Born effective charge tensor quantifies the macro-
scopic electric response of a crystal to internal displace-
ments of its atoms. We begin with a calculation of the
bulk polarization P, using the Berry-phase polarization
method to compute the electronic contribution, as for-
mulated in Ref. 23. Z∗i , the Born effective charge tensor
for the i-th atom in the unit cell, is defined via

TABLE IV. Born effective charges for three phases of
ZrO2. In the cubic phase, the Z∗ tensors are diagonal and
isotropic. In the tetragonal phase, the Z∗ tensors are diagonal
in an x′–y′–z frame rotated 45◦ about ẑ from the Cartesian
frame; Z∗j (j=1,2,3) are Z∗x′x′ , Z

∗
y′y′ , and Z∗zz, respectively.

In the monoclinic phase, Z∗j is the j’th eigenvalue of the sym-
metric part of the Z∗ tensor.

Phase Atom Z∗1 Z∗2 Z∗3
Cubic Zr 5.72 5.72 5.72

O −2.86 −2.86 −2.86

Tetragonal Zr 5.75 5.75 5.09
O1 −3.53 −2.22 −2.53
O2 −2.22 −3.53 −2.56

Monoclinic Zr 4.73 5.42 5.85
O1 −4.26 −2.64 −1.19
O2 −3.20 −2.52 −2.26

∆P =
e

V

N∑
i=1

Z∗i ·∆ui (1)

where V is the volume of the unit cell, ∆ui is the dis-
placement of the i-th atom in the unit cell, and ∆P is the
induced change in bulk polarization resulting from this
displacement. Using Eq. (1), Z∗ can be computed from
finite differences of P under small but finite distortions.34

In the Berry-phase polarization scheme, one samples
the Brillouin zone by a set of strings of k-points set up
parallel to some chosen reciprocal lattice vector, thereby
computing the electronic polarization along that direc-
tion. For cubic and tetragonal ZrO2, this is relatively
straightforward since the reciprocal lattice vectors are all
mutually perpendicular. For monoclinic ZrO2, however,
one has to transform the polarization to Cartesian coor-
dinates after first computing it in lattice coordinates.

Our results for the dynamical effective charges of the
three phases are presented in Table IV. In the cubic
phase, symmetry requires that the Born effective charge
tensor should be isotropic (Z∗ij = Z∗ δij) on each atom,
and that Z∗(O1)=Z∗(O2); the neutrality sum rule re-
quires that Z∗(Zr)=−2Z∗(O). The values given in Table
IV can be seen to be in excellent agreement with the
corresponding values of Z∗(Zr)=5.75 and Z∗(O)=−2.86
reported in Ref. 8.

In the tetragonal phase, Z∗(Zr) is diagonal in the
Cartesian frame with Z∗xx=Z∗yy 6=Z∗zz. The diagonal el-
ements of Z∗(O) have the same form, but the shift-
ing of oxygen atom pairs creates two different con-
figurations for oxygen atoms (denoted O1 and O2)
and introduces off-diagonal xy elements. Specifically,
Z∗xy(O1)=Z∗yx(O1)=−Z∗xy(O2)=−Z∗yx(O2). Thus, it is
more natural to refer to a reference frame that has been
rotated 45◦ about the ẑ axis; in this frame the Z∗(O)
become diagonal. This symmetry analysis is confirmed
in our calculations, as can be seen from Table IV. We
have recently become aware of the independent work of
Ref. 12, which also reports values for the Z∗ tensors in the
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tetragonal phase of ZrO2. These authors find Z∗xx=5.74
and Z∗zz=5.15 for Zr, and Z∗x′x′=−3.52, Z∗y′y′=−2.49 and
Z∗zz=−2.57 for oxygens. Evidently there is again very
good agreement between our results and those of previ-
ous theory.

In the monoclinic phase, the Born effective charge ten-
sors are more complicated because of the complexity of
the lattice structure. The two oxygen sites are now non-
equivalent, and the crystal structure should be regarded
as composed of three kinds of atoms, namely, Zr, O1,
and O2. Each kind of atom appears four times in the
unit cell, once at a “representative” Wyckoff position
(x, y, z), and then also at partner positions (−x,−y,−z),
(−x, 0.5 + y, 0.5− z) and (x, 0.5− y, 0.5 + z) given by ac-
tion of the space-group operations E, I, {Cy2 | 0, 0.5, 0.5}
and {My | 0, 0.5, 0.5}. Thus, all three kinds of atoms have
equally low symmetry, and their resulting Z∗ tensors are
neither diagonal nor symmetric. Specifically, for these
representative atoms we find

Z∗(Zr) =

 5.471 −0.432 0.180
−0.155 5.608 0.152

0.197 0.376 4.952



Z∗(O1) =

 −3.019 1.172 −0.199
1.449 −2.755 −0.695
−0.191 −0.684 −2.321



Z∗(O2) =

 −2.461 0.171 0.018
0.238 −2.850 0.372
−0.019 0.413 −2.657


We have confirmed that our computed effective-charge
tensors for the other atoms obey the relations expected
by symmetry, namely, that the Z∗ tensors should be
identical for partners at (−x,−y,−z), and that the off-
diagonal xy, yx, yz, and zy matrix elements should
change sign for the partners at (−x, 0.5 + y, 0.5− z) and
(x, 0.5−y, 0.5+z). In Table IV we report the eigenvalues
of the symmetric part of the effective-charge tensors.

It is obvious from Table IV that the Z∗ values are quite
different from the nominal ionic valences (+4 for Zr and
−2 for O). Except for the value of −1.19, all other mag-
nitudes are greater than their nominal valences. The
anomalously large Z∗ values indicate that there is a
strong dynamic charge transfer along the Zr−O bond as
the bond length varies, indicating a mixed ionic-covalent
nature of the Zr−O bond. Such an anomaly reflects the
relatively delocalized structure of the electronic charge
distributions, and is quite common in other weakly ionic
oxides such as the ferroelectric perovskites.35

As discussed in Sec. III A, the oxygen atom of type O1

is bonded to three nearest-neighbor Zr atoms in an al-
most planar configuration. One might then expect that
the largest dynamical charge transfer would occur for mo-
tions of the O atom in this plane, with a smaller mag-
nitude of Z∗ for motion perpendicular to this plane. To

o

o

Zr

Zr

O

e

e

73

2Zr

1

21o

o

o105

106

139

(-4.26)

(-2.64)2

1

FIG. 3. Environment of three-fold coordinated O1 atom in
the monoclinic phase. The three Zr−O bonds lie approxi-
mately in a plane. ê1 and ê2 are the two principal axes asso-
ciated with the eigenvalues −4.26 and −2.64 of the symmetric
part of the Z∗ tensor, respectively.

check this, we computed the eigenvectors that result from
diagonalizing the symmetric part of the Born charge ten-
sor of the O1 atom, corresponding to the eigenvalues in
the penultimate row of Table IV. Sure enough, the prin-
ciple axis ê3 associated with the eigenvalue Z∗3 =−1.19 of
smallest magnitude points almost directly normal to the
plane of the neighbors (making angles of 85◦, 91.2◦ and
93.9◦ to the three O–Zr bonds). The other two principal
axes lie essentially in the plane of the neighbors, as shown
in Fig. 3. Moreover, the principal axis ê1 connected with
the eigenvalue Z∗1 =−4.26 of largest magnitude is nearly
parallel to the bond to the closest neighbor Zr1. It can
also be seen that the vector ê2 connected with the inter-
mediate eigenvalue is very nearly aligned with the O1–Zr3

bond. Not surprisingly in view of its more tetrahedral co-
ordination, the Z∗ tensor for atom O2 is more isotropic,
as indicated by the smaller spread of the eigenvalues in
the last line of Table IV.

C. Phonons

The frequencies of phonons at Γ, the center of the Bril-
louin zone, are calculated for the cubic, tetragonal and
monoclinic phases. For each phase, we first calculate the
force-constant matrix

Φαβij = −∂F
α
i

∂uβj
' −∆Fαi

∆uβj
(2)

obtained by calculating all the Hellmann-Feynman forces
(Fαi ) caused by displacing each ion in each possible di-
rection (uβj ) in turn. (Here Greek indices label the Carte-
sian coordinates, and i and j run over all the atoms in
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TABLE V. Frequencies (in cm−1) of IR-active phonon
modes for ZrO2 phases. For monoclinic ZrO2, a possible re-
assignment is proposed. Notation ‘sh’ stands for ‘shoulder’
as in the original reference. Modes labeled ‘weak’ have very
small intensity. Ref. 37 is a previous theoretical work.

Cubic This work

1 258 (T1u)

Tetrag. This work Expt. 38 Expt. 39 Ref. 37

1 154 (Eu) 140 164 146
2 437 (Eu) 550 467 466
3 334 (A2u) 320 339 274

Mono. This work Expt. 9 Expt. 25 Expt. 27

104

1 181 (Bu)weak 180
192

2 224 (Au) 235 220 224
3 242 (Au)
4 253 (Bu) 270 250 257
5 305 (Au)

6 319 (Bu) 324sh (?)
7 347 (Au)
8 355 (Bu) 360 330 351

375 370 376
9 401 (Au)
10 414 (Bu) 415 420 417

445 440 453sh

11 478 (Au)
12 483 (Bu) 515 520 511
13 571 (Au) 620 600 588

14 634 (Au)weak 687 (?)
725 (?)

15 711 (Bu) 740 740 789

the unit cell.) In practice, we take steps ∆u that are
0.2% in lattice units, average over steps in positive and
negative directions, and the resulting Φ matrix is sym-
metrized to clean up numerical errors. The dynamical
matrix Dαβ

ij = (MiMj)−1/2 Φαβij is then diagonalized to
obtain the eigenvalues ω2. Once again, we will mainly fo-
cus on the monoclinic phase, and briefly summarize the
results for the cubic and tetragonal phases.

The low-temperature phase of ZrO2 is monoclinic, with
space group P21/c. The little group at Γ is the point
group C2h consisting of operations E, I, Cy2 , and My .
The character table of this point group indicates that
there are four symmetry classes and thus four irreducible
representations, each of which is one-dimensional. A
standard group-theoretical analysis indicates that the
modes at the Γ point can be decomposed as

Γmono
vib = 9Ag ⊕ 9Au ⊕ 9Bg ⊕ 9Bu (3)

(see also Ref. 24). Of the 36 modes, 18 modes (9Ag +
9Bg) are Raman-active and 15 modes (8Au + 7Bu)
are infrared-active, the remaining three modes being
the zero-frequency translational modes. Only the 15
infrared-active modes contribute to the lattice dielectric

tensor, as discussed in the next subsection. Similarly, for
the tetragonal ZrO2 phase,

Γtetra
vib = 1A1g ⊕ 2A2u ⊕ 3Eg ⊕ 3Eu ⊕ B2u ⊕ 2B1g , (4)

where the Eu andEg representations are two-dimensional
while all other modes are one-dimensional. One A2u

mode and one Eu pair are acoustic, leaving one IR-active
A2u and two IR-active Eu pairs; A1g, B1g and Eg are
Raman-active, and B2u is silent (see also Ref. 36). For
the cubic phase one finds

Γcubic
vib = 2T1u ⊕ T1g (5)

where both T1u and T1g representations are three-
dimensional. One of the T1u triplets is translational,
leaving one IR-active T1u triplet.

Table V lists our calculated IR-active phonon frequen-
cies in comparison with available theoretical37 and ex-
perimental values.9,25,27,38,39 In some cases, possible re-
assignments are suggested. The overall agreement is very
good; we obtain all the major features of the experimen-
tal infrared spectra. In order to facilitate comparison
with experiment, the oscillator strengths of the infrared-
active modes (namely ελ, see Eqs. (8-9) of the Sec. III D)
are calculated and plotted versus frequency in Fig. 4. The
horizontal axis is reversed for comparison with experi-
mental spectra such as that of Fig. 2 of Ref. 25. The solid
and dashed lines indicate Au and Bu modes, respectively.
The two modes at 181 cm−1 and 634 cm−1 are very weak,
so that it is not surprising that they were not observed
in most experiments. The mode at 242 cm−1 is buried by
the modes at 253 cm−1 and 224 cm−1, while the mode at
305 cm−1 is similarly shadowed by the strongest mode at
319 cm−1. Because the pairs of modes at 347/355cm−1,
401/414cm−1 and 478/483 cm−1 are very close and of
comparable strength, we think that they might be ob-
served as single modes in the experiments.

The calculated Raman-active phonon mode frequen-
cies for the monoclinic structure are summarized in Ta-
ble VI. The overall pattern of the calculated Raman-
active spectrum agrees quite well with the experimental
results, but we again suggest possible reassignments of
some of the modes. Specifically, we obtained one Raman-
active mode at 180 cm−1 that was not observed in ei-
ther experiment. We agree with Carlone26 in excluding
the mode at 355 cm−1 suggested in Ref. 24, and in in-
terpreting the feature at 780 cm−1 as a first-order and
not a second-order one.24 On the other hand, our calcu-
lations do not give any frequency close to 705 cm−1 as
observed by Carlone.26 The mode at 317 cm−1 obtained
in our calculation is observed somewhat ambiguously in
one experiment24 but not in the other.26 The reason why
we assigned the highest calculated mode at 748 cm−1 as
shown in Table VI is that the corresponding Raman spec-
tra at 15 K indicated this mode at 745 cm−1.26

The overall good correspondence between our results
and the experimental data for both infrared and Raman-
active modes therefore tends to justify our phonon analy-
sis, suggesting that we are now on firm ground to proceed
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FIG. 4. Calculated spectrum of IR-active modes, in which
orientationally-averaged intensity (ελ of Eq. (9)) is plotted
vs. mode frequency in cm−1 (see labels on modes). Solid and
dashed lines indicate Au and Bu IR-active modes respectively.

to the calculation of the lattice contributions to the di-
electric tensors for the ZrO2 phases.

D. Lattice Dielectric Tensors

In this section, we present our calculations of the lat-
tice contributions to the static dielectric tensor (ε0),
which can be separated into contributions arising from
purely electronic screening (ε∞) and IR-active phonon
modes according to40

ε0αβ = ε∞αβ +
4πe2

M0 V

∑
λ

Z̃∗λα Z̃
∗
λβ

ω2
λ

. (6)

Here α and β label Cartesian coordinates, e is the elec-
tron charge, M0 is a reference mass that we take for con-
venience to be 1 amu, ωλ is the frequency of the λ-th
IR-active phonon normal mode, and V is the volume of
the three-atom, six-atom, or 12-atom unit cell for cubic,
tetragonal, or monoclinic cases, respectively. The mode
effective charge tensors Z̃∗λα are given by

Z̃∗λα =
∑
iβ

Z∗i,αβ

(
M0

Mi

)1/2

ξi,λβ (7)

where ξi,λβ, the eigendisplacement of atom i in phonon
mode λ, is normalized according to

∑
iα ξi,λα ξi,λ′α =

δλλ′ . It is also convenient to write

Tr[ε0] = Tr[ε∞] +
∑
λ

ελ (8)

where

TABLE VI. Frequencies (cm−1) of Raman-active phonon
modes (Ag and Bg) in monoclinic ZrO2. Experimental data
are measured at 300 K. The assignment connecting the two
sets of experimental results is adopted from Ref. 26. We also
adopt the notations introduced by the authors of Ref. 24: ‘am-
big’ for ‘observed ambiguously,’ ‘tetra’ for ‘tetragonal phase,’
‘sugg’ for ‘unobserved suggested,’ and ‘2nd’ for ‘second order.’

Mode This Work Mode Expt. 26 Mode Expt. 24

1 92 ambig

1 103 (Ag) 1 99 2 101
148 tetra

2 175 (Bg) 2 177 3 177
3 180 (Ag)
4 190 (Ag) 3 189 4 189
5 224 (Bg) 4 222 5 222

5 270 266 tetra

6 313 (Bg) 6 305 6 306

7 317 (Ag) 7 315 ambig

8 330 (Bg) 7 331 8 335
9 345 (Ag) 8 343 9 347

10 355 sugg

10 381 (Ag) 9 376
11 382 (Bg) 10 376 11 382
12 466 (Ag) 11 473 12 476

13 489 (Bg) 12 498 13 502
14 533 (Bg) 13 534 14 537
15 548 (Ag) 14 557 15 559
16 601 (Bg) 15 613 16 616
17 631 (Ag) 16 633 17 637

17 705

18 748 (Bg) 18 780 764 2nd

ελ =
4πe2

M0V ω
2
λ

Z̃∗ 2
λ (9)

is the contribution to the trace of the dielectric tensor
coming from the mode λ, and the scalar mode effective
charge Z̃∗λ is defined via Z̃∗ 2

λ =
∑
α Z̃
∗ 2
λα.

Presented in Table VII are the scalar mode effective
charges Z̃∗λ and the corresponding contribution to the
static dielectric response ελ for each IR-active mode.
(Note that T1u and Eu modes are three-fold and two-
fold degenerate, respectively. The ελ vs. ωλ for the mon-
oclinic phase are also presented graphically in Fig. 4.)
From Table VII or Fig. 4, we find that for the mono-
clinic phase the softest modes have small Z̃∗λ values and
hence do not contribute much intensity, while the modes
with largest Z̃∗λ are at significantly higher frequency (∼
319 cm−1). This observation will be important for ex-
plaining the relative smallness of the dielectric tensor of
the monoclinic phase, as discussed below.

When all the modes are summed over, we obtain the
total lattice contribution to the static dielectric response
(the second term of Eq. (6)). We find
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TABLE VII. Mode frequency, scalar mode effective charge,
and contribution to the trace of the dielectric tensor for each
IR-active mode.

Mode (cm−1) Z̃∗λ ελ
Cubic 258 (T1u) 1.17 31.80

Tetragonal 154 (Eu) 1.03 34.29
334 (A2u) 1.48 14.92
437 (Eu) 1.35 7.27

Monoclinic 181 (Au) 0.07 0.05
224 (Bu) 0.84 4.97
242 (Au) 0.22 0.31
253 (Au) 0.86 4.10
305 (Bu) 0.42 0.69
319 (Bu) 1.72 10.33
347 (Au) 1.09 3.54
355 (Bu) 1.51 6.43
401 (Au) 1.57 5.44
414 (Bu) 1.27 3.37
478 (Au) 0.93 1.34
483 (Bu) 1.16 2.07
571 (Au) 0.84 0.77
634 (Au) 0.06 0.00
711 (Bu) 0.88 0.55

εlatt
cubic =

 31.8 0 0
0 31.8 0
0 0 31.8



εlatt
tetra =

 41.6 0 0
0 41.6 0
0 0 14.9



εlatt
mono =

 16.7 0 0.98
0 15.6 0

0.98 0 11.7


The calculated dielectric tensors have the correct forms
expected from the crystal point group: the cubic one
is diagonal and isotropic, the tetragonal one is diagonal
with εxx = εyy 6= εzz, and the monoclinic one is only
block-diagonal in y and xz subspaces. Our values are
also in very good agreement with previous theoretical
calculations for the cubic and tetragonal phases. Ref. 12
reports that εlatt = 29.77 for the cubic phase, within
about 6% of our result. Ref. 12 also gives the two inde-
pendent components of εlatt in the tetragonal phase as
42.36 and 15.03, again in excellent agreement with our
results, and showing the same enormous anisotropy.

To compare with experiment, we note that ε∞ can be
estimated from the index of refraction n, which has been
reported experimentally to be about 2.16 (n2 = ε∞ =
4.67),11 2.192 (ε∞ = 4.805),10 and 2.19 (ε∞ = 4.80)9

for the cubic, tetragonal and monoclinic ZrO2 phases,
respectively. Theoretical works have reported that the
orientational average ε̄∞ = 5.75 for cubic ZrO2,8 and
ε
‖
∞ = 5.28 and ε⊥∞ = 5.74 (ε̄∞ = 5.59) for tetragonal

ZrO2.12 We can see that ε∞ does not vary strongly with
structural phase, nor is there any evidence for strong
anisotropy. Moreover, the only experimental measure-
ments of ε0 of which we are aware are on polycrystalline
samples, for which we need to take an orientational aver-
age anyway. Therefore, we somewhat arbitrarily assume
an isotropic value of ε∞=5.0 for the purposes of com-
parison with the total dielectric response. Then we ob-
tain orientationally averaged static dielectric constants
of 36.8, 46.6 and 19.7 for the cubic, tetragonal and mon-
oclinic ZrO2 phases, respectively.

Experimental reports of the value of ε0 for monoclinic
ZrO2 span a wide range from about 16 to 25;9,41 our es-
timated value of 19.7 falls comfortably in the middle of
this range. Unfortunately, we are not aware of any ex-
perimental measurements of the static dielectric response
in the cubic or tetragonal phase. Since these phases ex-
ist only at elevated temperatures, comparison with zero-
temperature theory would need to be made with cau-
tion in any case. However, neither the cubic–tetragonal
nor the tetragonal–monoclinic transition is ferroelectric
in character, so the influence of the thermal fluctuations
on ε0 is is probably not drastic.

E. Discussion

As indicated in the Introduction, much current inter-
est in ZrO2 and related oxides is driven by the search for
high-ε0 materials for use as the gate dielectric in future-
generation integrated-circuit devices. While the dielec-
tric constant of monoclinic ZrO2 is much bigger than that
of SiO2, our results indicate that it is actually rather low
compared to the values in the range 35-50 expected for
the tetragonal and cubic phases. From this perspective,
it appears that monoclinic ZrO2 has a disappointingly
low static dielectric response.

As can be seen from Eq. (6) or (9), the contribution of
a given mode to the dielectric response scales as Z̃∗ 2

λ /ω2
λ,

so that a large ε0 will result if there are modes that have
simultaneously a large Z̃∗ and a small ω. As can be seen
from Table VII, this is not the case for monoclinic ZrO2.
Instead, we find that the cluster of modes with the lowest
frequencies (< 250 cm−1) also have low Z̃∗ values (< 0.5),
while the most active modes reside at higher frequencies
(∼ 300 − 500 cm−1). This is in direct contrast to the
case of the cubic perovskite CaTiO3 studied recently by
Cockayne and Burton,42 who find a very soft mode ω '
100 cm−1) and very active (Z̃∗ ' 3 mode, contributing
to an enormous dielectric constant ε0 > 250.

The much larger values of ε0 obtained for the cubic
and tetragonal phases suggests that the unfavorable co-
incidence of low-ω and low-Z̃∗ values may be peculiar to
the monoclinic phase, and that other structural modifi-
cations (e.g., quasi-amorphous structures) may actually
have a significantly larger ε0. This clearly presents an
avenue for future study.
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Finally, in low-symmetry structures such as the mon-
oclinic (or especially amorphous) phases, it is of interest
to attempt to decompose ε0 spatially into contributions
coming from different atoms in the structure. For exam-
ple, one might ask whether it is primarily the three-fold
or the four-fold oxygens that are responsible for the di-
electric response in the monoclinic phase. For this pur-
pose, we first carry out a decomposition εlatt

αβ =
∑
ij ε̃

ij
αβ

of the lattice dielectric tensor into contributions

ε̃ ijαβ =
4πe2

V

∑
λ

1
κλ
RλαiR

λ
βj

arising from pairs of atoms, where κλ and eλjβ are the
eigenvalue and eigenvector of the force constant matrix
Φαβij for the phonon mode λ, V is the volume of unit cell,
and Rλαj =

∑
β Z
∗
j,αβ e

λ
jβ . We then heuristically define

the contribution coming from atom i to be

ε̄
(i)
αβ =

∑
j

1
2

(
ε̃ ijαβ + ε̃ jiαβ

)
. (10)

This atom-by-atom decomposition attributes most of the
contribution to ε0 as coming from the Zr atoms (exactly
2/3 in the cubic phase and close to this ratio in the other
two phases). As for the oxygen, we found that both
the three-fold and four-fold oxygen atoms make a simi-
lar contribution to the orientationally averaged dielectric
constant in the monoclinic phase. (Not surprisingly, the
anisotropies of the two oxygen contributions are some-
what different.) While this analysis has not proven espe-
cially fruitful here, it may be useful in future studies of
low-symmetry (e.g., amorphous) phases.

IV. CONCLUSION

In summary, we have investigated here the Born effec-
tive charge tensors, lattice dynamics, and the contribu-
tions of the lattice modes to the dielectric properties of
the three ZrO2 phases. The structural parameters, in-
cluding all internal degrees of freedom of the three ZrO2

phases, are relaxed, and excellent agreement is achieved
with experimental structural refinements and with pre-
vious ab initio calculations. The observed relative stabil-
ity of the ZrO2 phases is reproduced in our calculation.
The calculated Born effective charge tensors show anoma-
lously large values of Z∗, reflecting a strong dynamic
charge transfer as the bond length varies and indicat-
ing a partially covalent nature of the Zr−O bonds. The
calculated zone-center phonon mode frequencies are in
good agreement with infrared and Raman experiments.

Finally, the lattice contributions to the dielectric ten-
sors have been obtained. We find that the cubic and
tetragonal phases have a much larger static dielectric
response than the monoclinic phase, with an especially
strong anisotropy in the tetragonal structure. The rel-
atively low ε0 in monoclinic ZrO2 arises because the

few lowest-frequency IR-active modes happen to have
rather small oscillator strengths, while the modes with
the strongest dynamical mode effective charges occur at
higher frequency. This result, together with the predicted
increase of ε0 in the cubic and tetragonal phases, sug-
gests that the static dielectric constant is a strong func-
tion of the structural arrangement. Thus, there may be
a prospect for larger ε0 values in structurally modified
(e.g., amorphous) forms of ZrO2, or in solid solutions of
ZrO2 with other oxides.
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