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Abstract 

 

Nexus metals represent a new type of topological material in which nodal lines 

merge at nexus points. Here, we propose novel networks in nexus systems through 

intertwining between nexus fermions and additional nodal lines. These nexus networks 

can be realized in several recently synthesized carbon honeycomb materials. In these 

carbon honeycombs, we demonstrate a phase transition between a nexus network and 

a system with triply-degenerate points and additional nodal lines. The Landau level 

spectra show unusual magnetic transport properties in the nexus networks. Our results 

pave the way toward realizations of new topological materials with novel transport 

properties beyond standard Weyl/Dirac semimetals. 
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The recent discovery of topological metals (TMs) and semimetals offers new 

opportunities for observing elementary excitations in the condensed matter world that 

are not found in particle physics[1-5]. For examples, zero-dimensional (0D) nodal 

points with multiple degeneracy can be stabilized by crystalline symmetries[6-17], and 

one-dimensional (1D) objects such as Dirac and Weyl nodal lines can also exist in 

crystals[18-28]. These 0D and 1D gapless excitations have no analogue in elementary 

particle physics. 

One interesting scenario for gapless excitation is the combined structure of nodal 

points and lines. In the presence of three mirror planes related by a three-fold rotation 

and an additional mirror plane perpendicular to the rotation axis, two triple points (TP) 

connected by a nodal line can be stabilized along the rotation axis[29-33]. By breaking 

the perpendicular mirror symmetry, this nodal line can split into four topological nodal 

lines, three of which reside on three mirrors planes while the last one remains on the 

rotation axis, as shown in Fig. 1(a). In this case, the TPs are denoted as nexus points 

(NPs), which can be seen as merging points of multiple nodal lines[34-38]. This 

transition has been predicted in many candidate materials[34-38]. New topological 

phenomena and transport properties created by nexus fermions have been proposed, 

such as unusual topological surface states[35], transport anomalies, and topological 

Lifshitz transitions[34].  

Here we propose that the NP phase can further evolve into novel network 

structures. These networks originate from the original NP phase interacting with 

additional nodal lines protected by the mirror symmetry, as shown by the orange lines 

in Fig. 1(b). Because crossings between topological nodal lines are not allowed in the 

absence of any special symmetry constraint, anticrossing nodal lines are formed as 

shown in Fig. 1(c). As a result, nodal lines reconnect and the NPs become the 
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intersection points of anticrossing nodal lines, as shown in Fig. 1(d). Considering that 

the system has three mirror planes, the NPs and the connecting nodal lines form a three-

dimensional (3D) network in the full momentum space. We refer to this as a nexus 

network.  

We propose that these nexus networks can be realized in carbon honeycombs 

(CHCs). CHCs have recently been synthesized, although further refinement of the 

structure appears highly desirable[39,40]. We have identified two types of topological 

networks that can form in the carbon honeycombs. The first type is a nexus network in 

which the NPs are connected by nodal lines through two kinds of connectivities: a 

standard connectivity and a winding connectivity (we will define these later). The 

second type consists of TPs with additional nodal lines (ANLs), named as TP-ANL. 

These two types of networks correspond to different crystal symmetries. Therefore, the 

transition between these two networks can be induced by changing the corresponding 

crystal symmetries. In addition, we show that the Landau level (LL) spectrum can 

reveal the exotic magnetic transport properties of these two networks.  

Atomic structure of CHC 

An atomic structure for the CHC is shown in Fig. 2(a), where carbon atoms form 

a 3D honeycomb structure. The atoms can be classified according to their characteristic 

orbital hybridization: sp2 for carbon C1 and sp3 for carbon C2. The C1 atoms can be 

further subdivided into two subgroups, as shown by the green and blue atoms, forming 

zigzag chains lying in mirror planes that intersect along the 3-fold axis [Fig. 2(b)]. One 

can increase the width of the chains, corresponding to 𝑛 = 1 in Fig. 2(a), to form wider 

CHC-n nanoribbons with n > 1. The primitive cell of CHC-1 is shown in Fig. 2(b). The 

C2 atoms, on the other hand, form sp3-bonded carbon dimers. In the absence of the 



4 

dimerization, however, the honeycomb contains only sp2-bonded carbon, as shown in 

Fig. 2(c), which will be termed CHC-1′ to distinguish it from CHC-1.  

According to a space-group analysis, CHC-n can be divided into two types. When 

n is odd, the space group is P3𝑚1 with a 3-fold rotational symmetry along z and three 

mirror planes parallel to z. When n is even, the space group is P63/mmc with a 6-fold 

screw rotational symmetry along z, a mirror plane Mz normal to z, and three mirror and 

three glide planes parallel to z. Note that CHC-1′ also has the space group P63/mmc.  

Because the basic building blocks of CHCs are graphene nanoribbons, they are 

highly stable, with cohesive energies that can be comparable with that of diamond (7.77 

eV/atom). The cohesive energies for the two structures, -7.57 eV/atom for CHC-1 and 

-7.37 eV/C for CHC-1′, are noticeably different, with CHC-1 being more stable. The 

bond lengths, which include the shorter sp2 bonds and longer dimer bonds, vary over a 

range from 1.38 to 1.64 Å. Detailed structural parameters for CHC-1, CHC-2 and CHC-

1′ can be found in Table S1 in the supplementary information (SI). 

Band structure and topological networks 

Figure 3(a) shows the band structure of CHC-1 along kz (Γ − A), indicating that 

the carbon structure is metallic. There is a point α (E = 0.50 eV; kz = 0.07 π/𝑐) at which 

the black and green bands cross. Due to the negligibly small spin-orbit coupling 

strength in carbon, spin is neglected and the electrons are treated as spinless. In this 

context, the green band is doubly degenerate while the black band is non-degenerate. 

Therefore, the point α is a TP where three bands m-1, m and m+1 cross (m = 33 here). 

Another TP is located at kz = - 0.07 π/𝑐 because of the structural inversion symmetry.  

In a kx-ky plane containing one TP, the TP appears as a crossing point of a Weyl 

cone and a flat energy band; however, in a kx-kz (or ky-kz) plane containing both TPs, 
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the two TPs are connected by a nodal line which is intersected by a cone and a tilted 

energy surface along kz [Fig. S1 in SI]. The nodal line corresponds to the green band in 

Fig. 3(a), in which the solid and dotted parts represent degeneracy between bands (m-

1,m) and (m,m+1) respectively. An examination clearly indicates that the TPs are also 

connected by other nodal lines on the three mirror planes 𝑘𝑦 = 0, ±√3𝑘𝑥. Figure 3(d) 

exhibits the nodal lines for bands (m,m+1) on the mirror plane ky = 0, while Fig. 3(e) 

exhibits those for bands (m-1,m). The two blue dots correspond to the TPs. As can be 

seen from Fig. 3(d), the two TPs are connected by a straight line and a curved line both 

of which pass through the high-symmetry point A. The straight line corresponds to the 

dashed green line in Fig. 3(a). Because the structure has a 3-fold rotation axis along z, 

the two other mirror planes 𝑘𝑦 = ±√3𝑘𝑥 have identical nodal lines. The dotted lines in 

Fig. 3(d) show the nodal lines for bands (m,m+1) in the first Brillouin zone (BZ). It 

illustrates that this is a standard nexus phase like that in Fig. 1(a), and thus the TPs are 

in fact NPs connected by four nodal lines. Each mirror plane has a curved nodal line, 

while the three mirror planes share a straight line. We refer to this form of connection 

between the two NPs as a standard connectivity. 

As seen in Fig. 3(e), there are four nodal lines connecting the two NPs, similar to 

what was shown in Fig. 1(d). A straight line, corresponding to the solid green line in 

Fig. 3(a), links the two NPs through Γ along kz.  Considering the periodicity of the BZ, 

the lines off the kz axis are actually linked to each other through points β and β′, that is, 

the two NPs are connected by a curved line that starts from one TP and then passes 

through β, Γ, and β′ before arriving at the other TP, winding twice around the Brillouin 

torus in the process. We refer to this type of connection between the two NPs as a 

“winding connectivity”. The solid lines in Fig. 3(b) show the winding connectivity in 

the first BZ. Thus, Fig. 3(b) summarizes the structure of our novel 3D nexus network.  
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By comparing the standard connectivity and winding connectivity, one can find 

that the nodal lines in the former remain close to the kz axis, while those in the latter 

extend through the full BZ. Therefore, the nexus network may be easier to observe 

experimentally than the standard NP phase, because it extends the regions in which the 

topological elements can be found. 

When the dimerization is removed, the CHC-1 structure evolves into CHC-1′, 

whose primitive cell is half that of CHC-1 as shown in Fig. 2(c). For comparison, the 

band structure for a 1×1×2 supercell of CHC-1′ is calculated. The results indicate 

that it is a TP-ANL metal, where TPs and ANLs coexist in momentum space. Figure 

3(f) shows the nodal lines for bands (m-1,m) on the ky = 0 mirror plane. Two TPs are 

located at kz = ±0.07 π/2𝑐′  (𝑐′  is the lattice constant of CHC-1′ ), and they are 

connected by a straight nodal line. In addition, there are two nodal lines along kx. 

Because the structure has a 6-fold screw symmetry, the other two mirror planes 𝑘𝑦 =

±√3𝑘𝑥 and three glide planes 𝑘𝑥 = 0, ±√3𝑘𝑦 have the same nodal line distributions 

as for the ky = 0 plane. Figure 3(c) presents the whole topological network in the BZ. 

The ANLs cross at some points on the kz axis other than at the TPs. 

Topological phases based on tight-binding model 

We analyze the topological networks [Figs. 3(b) and 3(c)] from a tight-binding 

model, which is designed to mimic the DFT band structure near the Fermi level. The 

bands of CHC-1 near the Fermi level are mainly contributed by π orbitals on the sp2-

hybridized C1 atoms [Fig. S1(b) in SI]. Therefore, it is convenient to describe the 

carbon honeycomb by a tight-binding model, 

𝐻 = ∑ ∑ 𝑡𝑖𝑗𝑒
−𝑖𝒌∙𝒅𝑖𝑗

𝜇

𝜇<𝑖,𝑗> ,                                               (1) 
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where i, j ∈ {1,2, … ,12}  label the twelve C1 atoms, dij
μ

 is the displacement vector 

directed from atoms j to i, 𝑡𝑖𝑗 is the hopping energy between atoms i and j, and μ runs 

over all lattice sites under translation. For 𝑡𝑖𝑗, we include hoppings t0 between atoms in 

the zigzag chains and hoppings t1 ~ t5 between the zigzag chains [Figs. 2(a-b)].  

To reveal the effect of structural symmetry on the electronic properties, we first 

consider the 1×1×2 supercell of CHC-1′. It has space group P63/mmc, which includes 

a 6-fold screw rotational symmetry along z, a mirror plane Mz normal to z, and three 

mirror planes and three glide planes parallel to z. If we omit its C2 atoms, its electronic 

properties can also be described by Eq. (1). Due to the high symmetry, the values of t0 

~ t5 are simpler. Two sub-cases are considered according to t2. When t2 = 0, the tight-

binding model represents a simple TP phase, in which two TPs are connected by a nodal 

line along kz. Figure 4(a) shows the phase on one mirror plane ky = 0. A further 

calculation indicates that each point on the nodal line is a crossing point of quadratic 

bands on the kx-ky plane [the bands along kx are shown in Fig. 4(a1)]. The quadratic 

crossing leads to a trivial Berry phase of 2π, which was computed for a closed loop 

around the crossing point. That is, the two TPs are connected by a Z2-trivial line. When 

t2≠0, a TP-ANL phase like that of Fig. 3(c) is generated. In each mirror/glide plane, 

as shown in Fig. 4(b), two (orange) ANLs are now presented. Figure 4(b1) illustrates 

that each point on these ANLs is a crossing point of linear bands, leading to a nontrivial 

Berry phase of π. The crossing between the trivial green line and nontrivial orange lines 

is allowed because of protection by the structural symmetry. Following the evolution 

from Figs. 4(a) to 4(b), one can find that the parameter t2 induces the ANLs on the 

mirror and glide planes.  
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We then consider the structure CHC-1. The dimers decrease the structural 

symmetry, which leads to the elimination of the three glide planes and the horizontal 

mirror plane Mz in CHC-1′. Atomic bond lengths of the structure become complicated, 

and thus the values of t0 ~ t5 become complicated. Two other sub-cases are now 

considered. When t2 = 0, the tight-binding model produces a standard NP phase. Figure 

4(c) shows the nodal line structure on one mirror plane ky = 0. Comparing Figs. 4(a) 

and 4(c), one can see that the reduction of the symmetry causes the trivial nodal line in 

the TP phase to split into two nontrivial lines in the NP phase. This splitting originates 

from the fact that the quadratic points in Fig. 4(a1) split to two nodal points in Fig. 

4(c1). 

When t2≠0, the novel nexus network in Fig. 3(d) is reproduced. Figure 4(d) shows 

the network on one mirror plane ky = 0. The two NPs are connected by standard 

connectivity for bands (m,m+1), while they are connected by winding connectivity for 

bands (m-1,m). The formation of the nexus network originates from the interactions 

between the standard NP phase and the ANLs. In the case of t2≠0, the NP phase in Fig. 

4(c) will overlap with the ANLs, which seems like Fig. 1(b). A crossing of two 

nontrivial lines is not generally allowed if there are no special symmetry to protect the 

crossing [41]. The nodal lines at the crossing point will split into two anti-crossing lines, 

as shown in Fig. 1(c). As a consequence, the nodal lines in Fig. 1(b) evolve to adopt the 

structure shown in Fig. 1(d) or 4(d). [Detailed information about the tight-binding 

model is presented in the SI.] 

𝐤 ∙ 𝐩 model and Landau levels 

Constrained by the symmetry groups and the time reversal symmetry for spinless 

systems, one obtains a k ∙ p model around the Γ point: 
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𝐻(𝒌) = [

𝐴1𝑘∥
2 + 𝐵1𝑐𝑜𝑠𝑘𝑧 + 𝐶1 𝛼𝑘+𝑠𝑖𝑛𝑘𝑧 + 𝛽𝑘−

2 𝐷𝑘−

𝛼𝑘−𝑠𝑖𝑛𝑘𝑧 + 𝛽𝑘+
2 𝐴1𝑘∥

2 + 𝐵1𝑐𝑜𝑠𝑘𝑧 + 𝐶1 −𝐷𝑘+

𝐷𝑘+ −𝐷𝑘− 𝐴2𝑘∥
2 + 𝐵2𝑐𝑜𝑠𝑘𝑧 + 𝐶2

],   

(2) 

where 𝑘± = 𝑘𝑥 ± 𝑖𝑘𝑦 , 𝑘∥
2 = 𝑘𝑥

2 + 𝑘𝑦
2, and 𝐴1,2, 𝐵1,2, 𝐶1,2, D, 𝛼, 𝛽 are real constants. 

When 𝛼 = 0 , this model describes the topological phases in CHC-1′  with 6-fold 

(screw) rotational symmetry. When 𝛼 ≠ 0, it describes those in CHC-1 because the 

𝛼𝑘+𝑠𝑖𝑛𝑘𝑧 term decreases the symmetry to 3-fold rotational symmetry. For the phases 

in CHC-1′, the k ∙ p model with 𝛽 = 0 and 𝛽 ≠ 0 corresponds the TP phase in Fig. 

4(a) and TP-ANL phase in Fig. 4(b), respectively. Therefore, the effect of the 𝛽𝑘±
2  term 

is to generate ANLs on the mirror/glide planes. For the phases in CHC-1, Eq. (2) with 

𝛽 = 0 and 𝛽 ≠ 0 describes a standard NP phase as in Fig. 4(c) and a nexus network as 

in Fig. 4(d), respectively. Therefore, the effect of the 𝛼𝑘±𝑠𝑖𝑛𝑘𝑧  term is to split the 

trivial line in the TP phase. This further shows that the nexus network (𝛼 ≠ 0, 𝛽 ≠ 0) 

results from the interactions between the standard NP phase and the ANLs. 

The reason to develop a k ∙ p model here is not only because such a generic model 

can reproduce the nexus network of CHC-1 [Fig. S3 in SI], but more importantly it 

depicts a more complete picture of the often-complicated nexus networks, which may 

not exist in the CHC’s but may exist in other materials. For example, if 𝛽 in Eq. (2) is 

replaced by 𝛽 + 𝛾cos (𝛿𝑘𝑧), the different 𝛾 and 𝛿 will generate rich TP-ANL phases 

and nexus networks [Fig. S4 in SI]. Figure 5(a) presents a TP-ANL that includes four 

ANLs in each mirror/glide plane, while Fig. 5(b) presents the corresponding nexus 

network that results when the TPs transition to NPs. 

 Based on Eq. (2), we calculate the LLs for the TP-ANL and nexus networks. As 

shown in Figs. 4(c-f), besides the gapped LLs away from the Fermi level, there are 
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gapless chiral LLs cross the Fermi level. As mentioned above, the straight nodal line 

connecting TPs or NPs along kz are intersected by a Weyl cone and a tilted energy 

surface. The gapped LLs are related to the cone, while the gapless chiral LLs originate 

from the tilted energy surface. Different behaviors of the chiral LLs come from different 

shapes of energy surfaces. For example, at the mirror plane ky = 0, the eigenvalue of 

the tilted surface is 

𝐸1 = (𝐴1 + 𝛽)𝑘𝑥
2 + 𝛼𝑘𝑥sin𝑘𝑧 + 𝐵1cos𝑘𝑧 + 𝐶1.                             (3) 

For the TP-ANL phases (𝛼 = 0), when 𝐴1 = −𝛽, 𝐸1 is a constant for a certain 𝑘𝑧. This 

means that the energy surface is completely flat along the direction normal to 𝑘𝑧.  In 

this case, the chiral LLs collapse to one LL, as shown in Fig. 5(c). For the nexus network 

(𝛼 ≠ 0), if 𝐴1 = −𝛽 , the chiral LLs become degenerate when 𝑘𝑧 = 0, ±𝜋 , while 

remaining split at other 𝑘𝑧 , as shown in Fig. 5(d). Because of the structural 3-fold 

symmetry, the splitting LLs have 3-fold degeneracy. 

For the complicated systems in Figs. 5(a) and 5(b), the chiral LLs become exotic. 

Figures 5(e) and 5(f) show their LLs, respectively. In Fig. 5(e), the chiral LLs form a 

“standing wave” shape, with the wave nodes located at 𝑘𝑧 = ±
𝑛

8
𝜋 for n odd. This is 

because, when 𝛾 cos(𝛿𝑘𝑧) = 0 , the equation for the energy surface in this case 

becomes identical to Eq. (3). This constraint leads to 𝑘𝑧 = ±
𝑛

8
𝜋 for the parameters 

given in Figs. 5(a) and 5(b) (𝛿 = 4). Therefore, degenerate LLs appear at 𝑘𝑧 = ±
𝑛

8
𝜋 

for the TP-ANL phase (𝛼 = 0). For the nexus phase in Fig. 5(b), the chiral LLs split 

because 𝛼 ≠ 0, as shown in Fig. 5(f). These exotic LLs not only exhibit “fingerprints” 

for the different topological phases, but also provide novel magnetic transport 

properties. 
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Discussion 

The space group of CHC-n with even n is P63/mmc, similar to that of CHC-1′. 

Therefore, TP-ANL phases exist in CHC-n (n=2, 4, …). Moreover, with the increase 

of n, there exist four-fold degenerate nodal points located between the TPs, which result 

in ANLs [Fig. S5 in SI]. The structures CHC-n with odd n belong to the space group 

P3̅𝑚1, and all of them have nexus networks like CHC-1.  

The topological classification of the nexus networks is different from that of 

standard NP phase. The nodal lines in the latter can be continuously contracted to a 

straight line. Those in the nexus networks, however, wind around the entire BZ torus 

and thus are not contractible. Mathematically, the BZ is topologically equivalent to a 

three-dimensional torus T3. The connecting lines on T3 can be classified under its 

fundamental homotropy group Z3, labeled by three integers, each indicating the number 

of times the loop winds around one of the three directions ka, kb and kc. In this sense, 

the standard TP phase in Fig. 4(a) and standard NP phase in Fig. 4(c) belong to the 

trivial class with Z3 = (0,0,0). However, the TP-ANL phases in Figs. 4(b) and 5(a) can 

be characterized as Z3 = (1,0,0), and the nexus networks in Figs. 4(d) and 5(b) can be 

characterized as Z3 = (2,0,0).  

Nexus networks originate from the interactions between the standard NP phase 

and additional nodal lines. This opens a door to propose and search for complex novel 

topological phases based on simpler topological elements. For example, the interactions 

between nodal lines/rings may lead to 3D nodal line networks [38], and the coexistence 

of multiple-fold (3-, 4-, 6- and 8-fold) degenerate points and nodal lines may generate 

more complicated new 3D networks. The new topological networks not only bring 

emergent particles and novel concepts, but also create new topological phenomena and 

transport behaviors. 
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Methods 

Our first-principles calculations were based on density functional theory within 

the PBE approximation for the exchange-correlation energy [42]. The core-valence 

interactions were described by the projector augmented-wave (PAW) potentials, as 

implemented in the VASP code [43-45]. Plane waves with a kinetic energy cutoff of 

600 eV were used as the basis set. The atomic positions were optimized via the 

conjugate gradient method, in which the energy convergence criterion between two 

consecutive steps was set at 10-6 eV. The maximum allowed force on the atoms is 10-3 

eV/Å. A 9×9×15 k-point mesh was used for the BZ integration of CHC-1 (or  1×1×2 

supercell of CHC-1′). 
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Figure 1. From standard NP phase to nexus network. (a) A standard NP phase in which 

two NPs (blue dots) are connected by four nodal lines. The three light blue lines reside 

on the three mirror planes, respectively, while the green nodal line is shared by the three 

mirror planes. (b) A mirror plane of nexus phase plus two yellow topological ANLs. (c) 

Avoiding crossing of two (light blue and orange) topological nodal lines. (d) A mirror 

plane of nexus network in which the NPs are connected by anticrossing (winding) nodal 

lines. 



17 

 

 

Figure 2. Atomic structures of CHCs. (a) CHC-1 in a top view perspective, where the 

carbon atoms form a 3D honeycomb. The (green and blue) sp2-carbon atoms (C1) reside 

on different horizontal atomic planes with respect to the c axis shown in panel (b) and 

each kind has a 3-fold rotational symmetry with respect to the axes passing through the 

(orange) sp3-carbon atoms (C2). (b) The primitive cell for CHC-1, where a, b, and c are 

the lattice parameters. The C2 atoms form a row of carbon dimers along the c axis. The 

labels t0 in (b) and t1 to t5 in (a) are tight-binding hopping parameters. (c) A (1×1×2) 

supercell of CHC-1′ which is a carbon structure after the dimers in CHC-1 are removed.  
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Figure 3 Band structure of CHC-1, and topological networks in CHC-1 and CHC-1’. 

(a) Band structure of CHC-1 along kz (Γ − A). Point α (blue dot) is a TP, as a result of 

band crossing between the double degenerate (green) and non-degenerate (black) 

bands. (b) Schematic view of the nexus network including NPs and nodal lines in the 

full first BZ. The solid and dotted lines correspond to nodal lines for bands (m-1,m) and 

(m,m+1) (m=33), respectively. The three orange planes are mirror planes. (c) Schematic 

view of the TP-ANL in the full first BZ of CHC-1′. The three orange planes are mirror 

planes, while the three light blue planes are glide planes. In each plane, there are two 

nodal lines.  (d) Contour plots of energy difference between bands m, m+1 on the mirror 

plane ky = 0 for the structure CHC-1, which shows a standard connectivity between two 

NPs. The blue dots correspond to the NPs, while the red lines represent the energy 

difference is equal to zero, that is, nodal lines. (e) Same to (d) between bands m-1, m, 

which shows a winding connectivity between two NPs. (f) Contour plots of energy 

difference between bands m-1, m on the mirror plane ky = 0 for the structure CHC-1′, 

where two TPs and two ANLs coexist. It is noted that, to clearly show the nodal lines 

in (d-f), different scales of kx and kz are applied. 
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Figures 4 Four topological phases of the tight-binding model in Eq. (1) and k ∙ p model 

in Eq. (2). (a) A standard TP phase in which two TPs are connected by one trivial nodal 

line. (b) A standard NP phase in which NPs are connected by two splitting lines. (c) A 

TP-ANL phase in which TPs and (orange) ANLs coexist. (d) A nexus network in which 

NPs are connected by standard and winding connectivity. (a1-d1) (in the middle) Band 

structures corresponding to the k paths in (a-d), respectively, referred by the arrows. 

The standard TP phase in (a) and TP-ANL phase in (b) exist in the structure CHC-1′ 

with 6-fold screw rotational symmetry, while the NP phase in (c) and nexus network in 

(d) exist in the structure CHC-1 with 3-fold rotational symmetry. The phases are only 

shown on the ky = 0 mirror plane, but identical features appear on the other five mirror 

planes for the phases in (a-b), and the other two mirror planes for those in (c-d). 

Different parameters for the tight-binding model and k ∙ p  model lead to the phase 

transitions between (a-d). In the tight-binding model in Eq. (1), t2 determines if a phase 

has ANL or not, while the structural symmetry determines whether a phase is TP or 

nexus. In the k ∙ p model in Eq. (2), in contrast, these different phases are determined 

by the vanishing or non-vanishing of β and α, respectively. 
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Figures 5 Extended TP-ANL phase and nexus network, and LLs based on the k ∙ p 

model in Eq. (2). (a) A TP-ANL phase in which a TP phase and four ANLs coexist (𝛼 =

0, 𝛾 = 0.5, 𝛿 = 4). (b) A nexus network evolved from (a) (𝛼 = 0.1, 𝛾 = 0.5, 𝛿 = 4). (c)  

LLs for the TP-ANL phase in Fig. 4(b) (𝛼 = 0). (d) LLs for the nexus network in Fig. 

4(d) (𝛼 = 0.5), (e-f) LLs for the TP-ANL phase in Fig. 5(a) and the nexus network in 

Fig. 5(b), respectively. The other parameters are 𝐴1 = 1, 𝐵1 = −1, 𝐴2 = −1, 𝐵2 = 1, 

𝐷 = 1,  𝐶1 = 𝐶2 = 0, 𝛽 = −1, and the magnetic field is B = 0.03. 

 

 


