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The methods of density-functional perturbation theory may be used to calculate various physical
response properties of insulating crystals including elastic, dielectric, Born charge, and piezoelectric
tensors. These and other important tensors may be defined as second derivatives of the total energy
with respect to atomic-displacement, electric-field, or strain perturbations, or as mixed derivatives
with respect to two of these perturbations. The resulting tensor quantities tend to be coupled in
complex ways in polar crystals, giving rise to a variety of variant definitions. For example, it is gen-
erally necessary to distinguish between elastic tensors defined under different electrostatic boundary
conditions, and between dielectric tensors defined under different elastic boundary conditions. Here,
we describe an approach for computing all of these various response tensors in a unified and system-
atic fashion. Applications are presented for two materials, wurtzite ZnO and rhombohedral BaTiO3,
at zero temperature.
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I. INTRODUCTION

The methods of density-functional theory (DFT)1 and
density-functional perturbation theory (DFPT)2,3 have
been shown to give a successful description of the dielec-
tric and piezoelectric properties of a wide range of mate-
rials in which electronic correlations are not too strong.4,5

Many properties of interest can be computed directly
from DFT using finite differences – for example, elas-
tic constants computed from the stress arising from a
small applied strain, or dynamical effective charges com-
puted from polarizations6 arising from small sublattice
displacements. On the other hand, the use of DFPT
methods is becoming increasingly popular because it can
be used to compute such response properties directly,
without the need for multiple ground-state calculations,
thus providing the desired response properties in a more
automated, systematic, and reliable fashion.

As a result, improved DFPT capabilities have been
implemented in recent years in several of the com-
puter code packages commonly used by the computa-
tional electronic-structure community.7–9 This develop-
ment has been most thorough in the case of the open-
source ABINIT computer package,7 in which the capa-
bility for handling strain perturbations10 has recently
been added to the previous implementation of atomic-
displacement and electric-field perturbations. This de-
velopment opens the prospect for a systematic treatment
of three kinds of perturbations in insulating crystals on
an equal footing: periodicity-preserving atomic displace-
ments (i.e., zone-center phonons), homogeneous electric
fields, and homogeneous strains. These three degrees of
freedom are often strongly coupled, especially in polar
materials used in modern ferroelectric, piezoelectric, and
dielectric applications.

In this work, we show that such a systematic approach
is now not only practical, but especially powerful. That
is, we show that computing the full set of six elemen-
tary (or “bare”) response tensors (force-constant, dielec-
tric, elastic-constant, Born-charge, internal-strain, and
piezoelectric tensors) associated with these three kinds
of perturbations provides an extremely valuable database
that can subsequently be used to compute a wide variety
of relevant physical properties. Among these, for exam-
ple, are the physical dielectric, elastic, and piezoelectric
tensors (in which atomic displacements have been taken
into account), elastic compliances, free-stress dielectric
tensors, fixed-electric-displacement elastic tensors, alter-
native piezoelectric tensors, and electromechanical cou-
pling constants. The ability to access this wide range of
secondary properties becomes possible only after the full
set elementary response tensors has been systematically
computed.

The rest of this paper is organized as follows. In Sec. II,
we present the formal development, defining the vari-
ous elementary response tensors and showing how other
response tensors of interest can be derived from these.
Then in Secs. III-IV we apply our approach to wurtzite
ZnO and rhombohedral BaTiO3 as two paradigmatic ex-
ample systems. We first briefly describe the practical
details of the calculations in Sec. III, and then present
the results for the ground-state properties, elementary
response properties, and derived response properties, in
Sec. IV. We conclude with a summary in Sec. V. A care-
ful formulation of the theory for the case in which strains
and electric fields are simultaneously present is deferred
to the Appendix.
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II. FORMALISM

A. Elementary response tensors

Consider an insulating crystal with N atoms per unit
cell. We choose a reference state in which the lattice
vectors are a1, a2, and a3, the cell volume is Ω0, and the

atomic coordinates are R
(0)
m . Here m is a composite label

(atom and displacement direction) running over 1, ..., 3N ,
and we assume that this structure is the equilibrium one
in vanishing macroscopic electric field.

We consider three kinds of perturbations applied to
such a crystal: (i) displacements um of the atoms away
from their equilibrium positions, (ii) homogeneous strains
ηj where j = {1...6} in Voigt notation, and (iii) homoge-
neous electric fields Eα where α = {x, y, z} are Cartesian
directions. We restrict our discussion to atomic displace-
ments that preserve the primitive-cell periodicity, i.e., to
degrees of freedom corresponding to zone-center phonon
modes only. Also, we will restrict ourselves entirely to
zero-temperature properties.

The corresponding responses that are conjugate to
these three perturbations are (i) forces Fm, (ii) stresses
σj , and (iii) polarizations Pα. From these, one can con-
struct the response functions of primary interest: “diag-
onal” responses Kmn = dFm/dun (force-constant ma-
trix), χαβ = dPα/dEβ (dielectric susceptibility), and
Cjk = dσj/dηk (elastic constants), and “off-diagonal” re-
sponse tensors Zmα = dPα/dum (Born effective charge),
Λmj = dFm/dηj (internal strain), and eαj = dPα/dηj

(piezoelectric response). However, in order to define
these quantities carefully, it is important to clarify the
constraints or boundary conditions that apply to each
definition. For example, the elastic constants Cjk may
be defined allowing or not allowing internal atomic dis-
placements (“relaxed-ion” or “frozen-ion”), or under con-
ditions of fixed electric (E) or displacement (D) field.

We take the approach here of systematically defining
all response properties as appropriate second derivatives
of the energy E per unit volume with respect to the
perturbations. To be more precise, in the presence of
strains we define E as the energy per undeformed unit
cell volume Ω0, while in the presence of electric fields E
is modified to become an electric enthalpy11 by adding
a term proportional to −P · E , where P is the electric
polarization.6 (While a direct treatment of finite E-fields
is now possible,12,13 only infinitesimal E-fields need to be
considered here.) In general, we define E as

E(u, E , η) =
1

Ω0

[
E

(0)
cell − Ω E ·P

]
, (1)

where E
(0)
cell is the usual zero-field Kohn-Sham energy per

cell14 of the occupied Bloch functions and Ω is the de-
formed cell volume. However, when strains and electric
fields are simultaneously present, care is needed in the
interpretation of Eq. (1); this is explained in the Ap-
pendix, where a more precise formulation is given in the

form of Eq. (A11), which supersedes Eq. (1). In short,
the difficulty is connected with the distinction between
“proper” and “improper” piezoelectric constants;15 we
should like our formulation to lead to the former and not
the latter. The factor of Ω/Ω0 has been inserted in the
last term of Eq. (1) towards this purpose, but this is not
sufficient by itself. In addition, Eq. (1) should be rewrit-
ten in terms of “natural variables” u, E ′, and η, where
E has been replaced by a reduced electric field E ′ that is
defined in Eq. (A5). When partial derivatives are taken
with respect to these natural variables, one automati-
cally obtains the “proper” piezoelectric tensors. Indeed,
as explained in the Appendix, all appearances of E should
be replaced by E ′, with a similar replacement for polar-
izations, in the remainder of this paper. However, for
the sake of clarity of presentation, this notation has been
suppressed in the main body of the paper.

Accordingly, we provisionally write E = E(u, E , η) as
a function of arguments um, Eα, and ηj , with the under-
standing that the notation of the Appendix supersedes
the notation used here whenever strains and electric fields
are simultaneously present. We then expand around a
zero-field reference system as

E = E0 + Am um + Aα Eα + Aj ηj

+ 1
2Bmn um un + 1

2Bαβ Eα Eβ + 1
2Bjk ηj ηk

+ Bmα um Eα + Bmj um ηj + Bαj Eα ηj

+ terms of third and higher order . (2)

We use an implied-sum notation throughout. In this ex-
pansion, the first-order coefficients Am, Aα, and A en-
code the forces (Fm = −Ω0 Am), polarizations (Pα =
−Aα), and stresses (σj = Aj), respectively. (Hence-
forth we shall assume that the atomic coordinates and
strains are fully relaxed in the reference system, so that
Am = Aj = 0.) The diagonal-block second-order coeffi-
cients Bmn, Bαβ and Bjk and off-diagonal second-order
coefficients Bmα, Bmj , and Bαj correspond to the force-
constant, elastic-constant, and susceptibility tensors, and
to the Born-charge, internal-displacement, and piezoelec-
tric tensors, respectively.

Inserting appropriate signs and cell-volume factors, the
elementary second-derivative response-function tensors
are defined as follows. The force-constant matrix

Kmn = Ω0
∂2E

∂um∂un

∣∣∣∣∣
E,η

, (3)

the frozen-ion dielectric susceptibility

χ̄αβ = −
∂2E

∂Eα∂Eβ

∣∣∣∣∣
u,η

, (4)

and the frozen-ion elastic tensor

C̄jk =
∂2E

∂ηj∂ηk

∣∣∣∣∣
u,E

(5)
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are the elementary diagonal-block tensors, while the off-
diagonal blocks are the Born dynamical effective charge
tensor

Zma = −Ω0
∂2E

∂um∂Eα

∣∣∣∣∣
η

, (6)

the force-response internal-strain tensor

Λmj = −Ω0
∂2E

∂um∂ηj

∣∣∣∣∣
E

, (7)

and the frozen-ion piezoelectric tensor

ēαj = −
∂2E

∂Eα∂ηj

∣∣∣∣∣
u

. (8)

The bar on quantities χ̄αβ , C̄jk, and ēαj indicates a
frozen-ion quantity, i.e., the fact that atomic coordinates
are not allowed to relax as the electric field or homoge-
neous strain is applied. Note that the clamped-ion elas-
tic tensor C̄jk and piezoelectric tensor ēαj are generally
not physically relevant quantities, except in cases of high
symmetry where atomic displacements do not occur to
first order in strain. The clamped-ion susceptibility ten-
sor χ̄αβ is the purely electronic one that is measured in
response to AC or optical fields at frequencies well above
the phonon-frequency range (corresponding to ǫ∞ in the
polariton language).

The force-response internal-strain tensor Λmj must be
distinguished from the displacement-response internal-
strain tensor Γnj = Λmj(K

−1)mn that describes the first-
order displacements resulting from a first-order strain;
both occur in the literature, frequently without careful
differentiation. The piezoelectric tensor eαj (often de-
noted alternatively as cαj) describes the change of po-
larization arising from a strain, or a stress arising from
a change of E-field, while the d, g, and h piezoelectric
tensors are defined under different constraints and have
slightly different physical meanings.16 Finally, we remind
the reader that there is some subtlety in the definition
of the piezoelectric tensors related to the specification of
the energy functional when both fields and strains are
present, leading to a distinction between “proper” and
“improper” piezoelectric constants15 as will be discussed
more fully in the Appendix. Throughout this paper, we
adopt the convention that all piezoelectric tensors are
“proper” ones unless otherwise noted.

We shall refer to the quantities defined in Eqs. (3-8)
as the “elementary” or “bare” response tensors. These
are the quantities that will be calculated once and for all
using the DFPT capabilities of a code package such as
ABINIT. All of the derived tensor properties described
in the following subsections can then be calculated from
these using simple matrix manipulations, as we shall see.

B. Relaxed-ion tensors

Generally, the physical static response properties of
interest must take into account the relaxations of the
ionic coordinates. This becomes especially important for
non-centrosymmetric polar systems, such as ferroelectric
ones, where these various effects become coupled. In-
stead of “clamped-ion” quantities χ̄, C̄ and ē defined at
fixed u, we can define the corresponding “relaxed-ion” or
“dressed” response tensors C, χ, and e as follows. To
develop expressions for these, we let

Ẽ(η, E) = min
u

E(u, E , η) . (9)

Referring back to Eq. (2), setting ∂E/∂un = 0,
∂E/∂Eα = 0, and ∂E/∂ηj = 0, and assuming that the
reference configuration is one in which the forces Am van-
ish, we find

0 = Bnm um + Bnα Eα + Bnj ηj

from which it follows that

um = −(B−1)mn [ Bnj ηj + Bnα Eα] . (10)

Defining

χαβ = −
∂2Ẽ

∂Eα∂Eβ

∣∣∣∣∣
η

, (11)

Cjk =
∂2Ẽ

∂ηj∂ηk

∣∣∣∣∣
E

, (12)

eαj = −
∂2Ẽ

∂Eα∂ηj
, (13)

and using Eqs. (3-8), we find that the physical relaxed-
ion dielectric, elastic, and piezoelectric tensors become

χαβ = χ̄αβ + Ω−1
0 Zmα (K−1)mn Znβ , (14)

Cjk = C̄jk − Ω−1
0 Λmj (K−1)mn Λnk , (15)

eαj = ējα + Ω−1
0 Zmα (K−1)mn Λnj , (16)

respectively.
Note that Eqs. (14-16) cannot be naively evaluated as

written because the force-constant matrix K is singu-
lar, due to the fact that K has three vanishing eigenval-
ues associated with translational symmetry. Moreover,
in soft-mode systems, other eigenvalues may be close to
zero, and care should be taken to distinguish these from
the translational ones. For these reasons, we have imple-
mented a careful procedure for obtaining the “pseudo-
inverse” of K; throughout these notes, whenever we refer
to K−1, we really mean the pseudo-inverse.

We proceed as follows. (i) We identify the three-
dimensional space of acoustic modes (i.e., uniform trans-
lations), and construct a (3N)× (3N) orthogonal matrix
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U whose first three columns correspond to these trans-
lational modes; the remaining columns of U are formed
by Graham-Schmidt orthogonalization of the basis. (ii)
We construct K ′ = UKUT , whose upper 3×3 block rep-
resents the acoustic subspace and therefore ought to be
zero. (iii) We let K ′

red be the lower (3N − 3)× (3N − 3)
block of K ′, corresponding to the reduction to the com-
plementary subspace of optical modes. (iv) We invert
K ′

red by standard means (taking appropriate measures in
case this matrix is nearly singular, as when soft modes
have nearly vanishing frequencies). Let the result be de-
noted as (K−1)′red. (v) We pad (K−1)′red with zeros in
the first three rows and columns to form the (3N)×(3N)
matrix (K−1)′. (vi) Finally, we define the pseudo-inverse
of K to be K−1 = UT (K−1)′U .

Thus, by construction, the resulting pseudo-inverse
K−1 is zero in the subspace of translational modes, and
is the inverse of the original matrix in the complemen-
tary subspace. As a result, any time K−1 is multiplied
by another tensor, a pre-projection onto the complemen-
tary subspace of dimension 3N − 3 is effectively carried
out. In other words, the acoustic sum rule is effectively
enforced in any operation involving K−1.

C. Other derived tensor quantities

In the previous subsection, we showed how to obtain
the static dielectric susceptibility tensor χαβ , the elastic
tensor Cjk, and the piezoelectric tensor eαj . These quan-
tities are defined under conditions of controlled strain
and electric field. From these three ingredients, it is
straightforward to form many other useful tensor quan-
tities describing physical properties defined under other
constraints or boundary conditions, as we shall see in this
section.

1. Dielectric tensors

The susceptibility tensor χαβ is defined at fixed (van-
ishing) strain; the corresponding dielectric tensor is

ǫ
(η)
αβ = ǫ0 (δαβ + χαβ) , (17)

where ǫ0 is the susceptibility of free space (SI units are
used throughout) and the superscript (η) indicates that
the derivative is taken at fixed strain. Often one is inter-
ested instead in the free-stress dielectric tensor

ǫ
(σ)
αβ = ǫ0

(
δαβ + χ

(σ)
αβ

)
(18)

which incorporates the free-stress susceptibility χ(σ). An
expression for the latter is easily derived from the elastic
enthalpy

H̃(σ, E) = min
{η}

[
Ẽ(η, E) − ηjσj

]
(19)

Following a line of reasoning similar to that leading from
Eq. (9) to Eqs. (14-16) and setting σj = 0, one obtains

χ
(σ)
αβ = χαβ + eαj (C−1)jk eβk . (20)

Typically, an AC dielectric measurement will access the
true static susceptibility χ(σ) as long as the frequency is
much less than that of sample resonances (elongational,
bending, or torsional modes), and χ(η) at frequencies
much higher than sample resonances (but much less than
phonon frequencies).

Before leaving this subsection, we note that it is con-
venient to define inverse dielectric tensors

β(η) = (ǫ(η))−1 , (21)

β(σ) = (ǫ(σ))−1 (22)

for later use.

2. Elastic and compliance tensors

The elastic tensor Cjk defined in Sec. II B is the one de-
fined under conditions of fixed (vanishing) electric field:

Cjk = C
(E)
jk . It may sometimes be of interest to treat

instead the elastic tensor C
(D)
jk defined under conditions

of fixed electric displacement field D. For example, in
the case of a thin film of dielectric material sandwiched
between much thicker layers of other insulating host ma-
terials, the electrostatic boundary conditions fix the com-
ponent of D, not E , normal to the interfaces. One readily
obtains

C
(D)
jk = C

(E)
jk + eαj β

(η)
αβ eβk . (23)

It is also straightforward to obtain the corresponding
elastic compliance tensors either under zero E-field

S(E) = (C(E))−1 (24)

or under zero D-field

S(D) = (C(D))−1 (25)

boundary conditions.

3. Piezoelectric tensors

The formulation of an energy functional appropriate to
the simultaneous treatment of strains and electric fields
is rather subtle, as discussed in the Appendix. There, we
show that the proper (relaxed-ion) piezoelectric tensor
ejk introduced in Sec. II B may be written as

eαj =
∂Pα

∂ηj

∣∣∣
E

(26)
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or equivalently, by a thermodynamic relation,17,16

eαj = −
∂σj

∂Eα

∣∣∣
η

, (27)

where it is understood (see Appendix) that in these and
subsequent equations, P and E are to be interpreted as
the reduced polarization P

′ and electric field E ′ and of
Eqs. (A4) and (A5), respectively. This is done so that
Eqs. (26) and (27) will yield the proper, rather than the
improper, piezoelectric tensor.15

In view of Eq. (27), eαj is sometimes referred to as
a “piezoelectric stress constant.” In any case, it is the
natural piezoelectric constant defined under conditions
of controlled E and η. On the other hand, the “piezo-
electric strain constant” dαj , defined under conditions of
controlled E and σ, is equally or even more commonly
discussed in the literature; it is defined via

dαj =
∂ηj

∂Eα

∣∣∣
σ

(28)

or

dαj =
∂Pα

∂σj

∣∣∣
E

(29)

and is given in terms of e via

dαj = S
(E)
jk eαk (30)

as can again be derived from thermodynamic rela-
tions.17,16 Two other, less commonly used, piezoelectric
tensors are gαj and hαj , defined under conditions of fixed
(D, σ) and (D, η), respectively, and given by

gαj = β
(σ)
αβ dβj , (31)

hαj = β
(η)
αβ eβj , (32)

where the β are the inverse dielectric tensors defined in
Eqs. (21-22). These have the properties

δηj = gαj δDα ,

δEα = −gαj δσj ,

δσj = −hαj δDα ,

δEα = −hαj δηj . (33)

4. Piezoelectric coupling coefficients

The most common definition of the piezoelectric cou-
pling factor kαj is given by16,18

kαj =
|dαj |√
ǫ
(σ)
αα S

(E)
jj

. (34)

This applies to the case where the field is applied only
along α and the only non-zero stress is the one with Voigt

label j. For example, k33 is a dimensionless measure
of the coupling of electric and strain degrees of freedom
along the ẑ axis. Roughly speaking, a coupling factor
close to unity implies an excellent impedance match for
the material used as an electromechanical transducer be-
tween the specified electric and elastic channels (a cou-
pling factor greater than unity is forbidden by stability
considerations).16

Note that kαj in Eq. (34) does not transform like a
tensor, and the usual implied sum notation does not ap-
ply to this equation. Instead, we can define a tensorially
correct, dimensionless coupling tensor via

K = [ β(σ)]1/2 · d · [C(E)]1/2 , (35)

where an obvious matrix-product notation is used. The
standard “singular-value decomposition” can be used to
write K as

K = U ·




k̃1 0 0 0 0 0

0 k̃2 0 0 0 0

0 0 k̃3 0 0 0



 · VT , (36)

defined by requiring that U and V be orthogonal 3×3
and 6×6 matrices respectively, and that the k̃ν should
be positive. (Alternatively, the k̃2

ν can be determined

as the eigenvalues of the 3×3 symmetric matrix KKT =
[ β(σ)]1/2 dC(E) dT [ β(σ)]1/2.) For each singular value, the
corresponding columns of U and V give the pattern of
electric field and of strain, respectively, that are directly
coupled to one another by K.

The coupling factors can be related to differences be-
tween dielectric or compliance tensors defined under dif-
ferent boundary conditions. Starting from Eqs. (18-20)
and Eqs. (23-25), one can show

ǫ(σ) − ǫ(η) = dC(E)dT = [ǫ(σ)]1/2 KKT [ǫ(σ)]1/2 , (37)

S(E) − S(D) = dT β(σ)d = [S(E)]1/2 KTK [S(E)]1/2 . (38)

Specializing to high-symmetry situations in which ǫ is
necessarily diagonal, one finds, for example,

ǫ
(σ)
αα − ǫ

(η)
αα

ǫ
(σ)
αα

= k̃2
α . (39)

III. METHODS AND DETAILS OF THE

CALCULATIONS

Our ab-initio calculations were carried out using the
ABINIT code package.7,19 Specifically, we first carried
out full structural relaxations for both materials. Next,
response-function calculations were carried out in order
to obtain first derivatives of the occupied wavefunctions
with respect to the perturbations of atomic displace-
ments (i.e., phonons at q = 0), uniform electric field, and
strain. These were then used to compute the elementary
second-derivative response-function tensors, Eqs. (3-8),
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of Sec. II A. Except for the diagonal elements of some el-
ementary tensors, this was done using a non-variational
expression that only requires input of one of the two cor-
responding wavefunction derivatives.2 (As for the “mixed
derivative” tensors Λ, e and Z, strain derivatives were
used for Λ and e, and displacement derivatives were used
for Z.20) Finally, from these elementary response tensors,
the various secondary response tensors of Secs. II B and
II C are obtained according to the formulas given there.
All calculations are at zero temperature.

The DFT and DFPT calculations for ZnO and
BaTiO3 were carried out using Troullier-Martins
pseudopotentials21 and a plane-wave energy cutoff of 50
hartree. The Zn pseudopotential includes the 3d elec-
trons in the valence, as this has been shown to be impor-
tant for accurate results.22 An 8 × 8 × 8 and 6 × 6 × 6
Brillouin-zone k-point sampling were used for ZnO and
BaTiO3 respectively. The exchange and correlation ef-
fects were treated within the local-density approximation
(LDA) in the Ceperley-Alder23 form with the Perdew-
Wang24 parameterization.

Finally, we made one additional modification in the
case of BaTiO3, where it is well known that the usual
underestimation of the equilibrium lattice constant asso-
ciated with the local-density approximation has an un-
usually profound influence on the ferroelectric distortion,
which is very sensitive to cell volume.25 Therefore, to
get more physically meaningful results, we carried out
the initial structural relaxation with the cell volume con-
strained to be that of the experimental structure at zero
temperature. This is similar in spirit to the use of a
“negative fictitious pressure” that is a standard feature
of many first-principles based studies of ferroelectric per-
ovskite materials.25

IV. RESULTS FOR TWO SAMPLE SYSTEMS:

ZnO AND BaTiO3

In this section, we consider two paradigmatic systems,
wurtzite ZnO and rhombohedral BaTiO3. The elec-
tromechanical properties of ZnO make it a widely used
material in mechanical actuators and piezoelectric sensor
applications, while BaTiO3 is a prototypical perovskite
ferroelectric material. It is of particular interest to com-
pare and contrast the behavior of these two materials in
view of the fact that BaTiO3 is a soft-mode system, while
ZnO is not. This may help provide insight into the role of
the soft mode, which can be expected to lead to enhanced
piezoelectric and dielectric response and enhanced cou-
plings. We first describe the results of our ground-state
DFT calculations, and then present the results for the
various linear-response tensors as defined in Sec. II.

Because ZnO is not a soft-mode system, its properties
depend only weakly on temperature, so that it is not un-
reasonable to compare room-temperature experimental
results with zero-temperature theory. BaTiO3 is a differ-

TABLE I. Structural parameters of ZnO. Lattice constants
a and c in Å; u is dimensionless internal parameter.

a c c/a u

Present work 3.197 5.166 1.616 0.380
Previous theorya 3.286 5.241 1.595 0.383

Expt.b 3.250 5.210 1.602 0.382

aRef. 28.
bRef. 29.

ent matter, as its properties depend crucially on tempera-
ture. The room-temperature tetragonal phase has indeed
been thoroughly studied, and as a result, its dielectric,
elastic, and piezoelectric constants have been systemati-
cally measured.26,27 However, there are formidable diffi-
culties associated with preparing single-crystal, single-
domain samples of the low-temperature rhombohedral
phase, and of carrying out dielectric and elastic measure-
ments on such samples at low temperature under well-
defined electric and elastic boundary conditions. As a
result, almost no reliable experimental values are avail-
able for the corresponding materials constants at very low
temperature. Therefore, for the purposes of this paper,
we have adopted the approach of providing comparisons
with experiment for ZnO wherever possible to benchmark
our approach, and of presenting our calculations of the
low-temperature properties of BaTiO3 as predictions for
a system that is difficult to characterize experimentally.

A. Relaxed structural properties

1. ZnO

The ground state of ZnO is a tetrahedrally coordinated
wurtzite structure (space group P63mc, point group C6v)
with four atoms per unit cell. The structure is deter-
mined by three parameters: the hexagonal edge a, the
height of the prism c, and the internal parameter u. The
structural results from our full relaxation are given in
Table I. For comparison, an ideal wurtzite with exactly
tetrahedral angles and equal-length bonds would have
u = 3/8 and c/a =

√
8/3. As is typical of DFT calcu-

lations, we find that the lattice constants are underesti-
mated by 1-2%.

TABLE II. Relaxed structure of rhombohedral BaTiO3.
Lattice constant a and atomic displacements ∆ (relative to
ideal cubic positions) in Å; rhombohedral angle θ in degrees.

a θ ∆z(Ti) ∆x(O) ∆z(O)

Theory 4.00 89.85 0.043 −0.049 −0.077
Expt.a 4.00 89.90 0.052±12 −0.044±8 −0.072±8

aRef. 30.
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TABLE III. Frequencies(in cm−1) of the zone-center opti-
cal phonon modes in wurtzite ZnO.

symmetry character Theory Expt.31 Expt32

A1(TO) 390 380 380
A1(LO) 548 574 579
B1 261 — —
E1(TO) 409 407 413
E1(LO) 552 583 591
E2 91 101 101
E2 440 437 444

2. BaTiO3

BaTiO3 is a prototypical example of the class of per-
ovskite ferroelectric materials. These materials normally
have the paraelectric cubic perovskite structure at high
temperature, but then undergo a ferroelectric instabil-
ity as the temperature is reduced. BaTiO3 actually goes
through a series of three ferroelectric phase transitions as
the symmetry is first tetragonal, then orthorhombic, and
then rhombohedral, with polarization respectively along
[100], [110], and [111], with decreasing temperature. The
ground-state rhombohedral structure (space group R3m,
point group C3v) is fully determined by its lattice con-
stant, rhombohedral angle, and the symmetry-allowed in-
ternal atomic displacements along the [111] direction. We
represent the rhombohedral phase in the hexagonal coor-
dinate system, in which the z axis is along the previous
[111] direction. Table II lists the structural parameters of
our relaxed BaTiO3, in which we constrained the atomic
volume to be equal to the experimental one as explained
in Sec. III. The remaining structural parameters can be
seen to be in good agreement with experiment.

B. Displacement response tensors

1. ZnO

Wurtzite ZnO belongs to space group P63mc (C4
6v).

Standard group-theory analysis shows that the Γ-point
phonon modes can be decomposed as

Γopt = A1 ⊕ 2B1 ⊕ E1 ⊕ 2E2 (40)

in which the A1 and E1 modes are both Raman and
IR active, while the nonpolar E2 modes are Raman ac-
tive only and B1 modes are silent. Shown in Table III
are our computed phonon frequencies compared with two
experimental results, showing good agreement with ex-
periment.

Because of the wurtzite symmetry of ZnO, the effec-
tive charge tensor Z has only two independent elements,
while the force-response internal-strain tensor Λ has only

TABLE IV. Independent elements of the Born effective
charge tensor Z (in units of e) and of the force-response in-
ternal strain tensor (hartree/bohr) for wurtzite ZnO.

Zxz(Zn) Zzz(Zn)
2.135 2.163

Λx5(Zn) Λx6(Zn) Λz3(Zn) Λy1(O)
−9.5 −15.0 18.7 −16.7

four independent elements. We present results for both
tensors in Table IV. For this semiconductor material, it
can be seen that the effective charge is very close to the
nominal ionic charge.

2. BaTiO3

The low-temperature phase of BaTiO3 has a rhombo-
hedral structure which belongs to the R3m space group.
According to a group-theory analysis, the zone-center
phonon frequencies can be decomposed as

Γopt = 3A1 ⊕ 4E ⊕ A2 . (41)

The A1 and E modes are both IR and Raman active,
while the A2 mode is silent. Table V gives the calcu-
lated phonon frequencies at the Γ point. (The A2 mode
at 278 cm−1 and the E modes at 293 cm−1 are the ones
derived from the silent F2u modes of the undistorted cu-
bic structure; because the distortion is weak, the LO–TO
splitting of these E modes is negligible.) The results are
very similar to those of the previous theoretical study
of Ghosez.33 While we are not aware of detailed experi-
mental information about phonon frequencies at very low
temperature, we note that measurements just below the
orthorhombic to rhombohedral phase transition temper-
ature indicate phonon frequencies in three regions (100-
300 cm−1, 480-580 cm−1, and 680-750 cm−1) in qualita-
tive agreement with our zero-temperature calculations.

We also calculated the atomic Born effective charges
for this phase, but in view of the lower symmetry and
larger number of independent elements, we have not
listed them all here (our results are again very similar

TABLE V. Phonon frequencies (in cm−1) at the Γ point
for rhombohedral BaTiO3.

Phonon mode Frequency Phonon mode Frequency

A1(TO1) 169 E(TO1) 164
A1(LO1) 179 E(LO1) 175
A1(TO2) 255 E(TO2) 206
A1(LO2) 460 E(LO2) 443
A1(TO3) 511 E(TO3) 472
A1(LO3) 677 E(LO3) 687
A2 278 E 293
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TABLE VI. Dielectric tensors of ZnO and BaTiO3 (in units
of ǫ0).

Present theory Experiment

Index ǭ ǫ ǫ(σ) ǭ ǫ

ZnO 11 5.76 10.31 11.09 3.70a 7.77a

33 5.12 10.27 12.67 3.78a 8.91a

BaTiO3 11 6.20 68.75 264.75 6.19b —
33 5.79 37.44 49.51 5.88b —

aRef. 34.
bRef. 35.

to those of Ref. 33). The cation results are easily given
as Zxx(Ba) = Zyy(Ba) = 2.78, Zzz(Ba) = 2.74, Zxx(Ti)
= Zyy(Ti) = 6.64, and Zzz(Ti) = 5.83. The effective
charge tensors are non-diagonal and non-symmetric for
the oxygens; we mention only that the eigenvalues of the
symmetric parts of these tensors cluster around −2 and
−5, i.e., not much changed from their cubic-phase val-
ues. Similarly, we have computed the full internal-strain
tensor Λ for rhombohedral BaTiO3, but we have chosen
not to present the details here because of the complicated
form of this tensor involving a large number of indepen-
dent elements.

C. Dielectric tensors

We now turn to a discussion of the computed dielec-
tric tensors for wurtzite ZnO and rhombohedral BaTiO3,
which are presented in Table VI. Because of the high
point-group symmetry, the dielectric tensors have only
two independent elements. Recall that the clamped-
ion tensor ǭ, the fixed-strain relaxed-ion tensor ǫ, and
the free-stress relaxed-ion tensor ǫ(σ) are defined through
Eqs. (14) and (17-20). While the results for the purely
electronic dielectric tensors ǭ are in good agreement with
experiment for BaTiO3, we find that our LDA theory sig-
nificantly overestimates the electronic dielectric response
of ZnO. Hill and Waghmare,22 also using an LDA pseu-
dopotential approach, found ǭ33 = 4.39, not as large as
our 5.76, but still much larger than the experimental
3.70. At least some of this overestimate is undoubtedly
attributable to the LDA (and is connected with the un-
derestimate of the gap in LDA), but the choice of pseu-
dopotentials also seems to play a role. The computed
lattice contributions ǫ11 − ǭ11 = 4.55 and ǫ33 − ǭ33 = 5.15
are in better agreement with the experimental values of
4.07 and 5.13 respectively.

While the clamped-ion tensors ǭ are not so different
for these two materials, the lattice contribution is clearly
much bigger for the BaTiO3 case. That is, while the lat-
tice contribution (ǫ − ǭ) is about the same size as the
purely electronic one (ǭ) for ZnO, it is almost 10 times
larger in BaTiO3. This difference clearly reflects the fact

there is a soft ferroelectric mode present in the latter
material. (Here, we use “soft” in the sense of a mode
that has a small, but positive frequency; it is, of course,
closely related to the imaginary-frequency unstable mode
computed for the cubic structure, which condenses out to
form the ferroelectric rhombohedral phase.) In the semi-
conductor ZnO, on the other hand, no such soft mode is
present.

The last column presents our results for the free-stress
dielectric tensors ǫ(σ) that are related to the fixed-strain
tensors ǫ via Eq. (20). The tensors ǫ and ǫ(σ) are the
same in higher-symmetry crystals, but in the presence of
piezoelectric coupling, they are, in general, different. The
free-stress tensors are always larger than the fixed-strain
ones because the additional strain relaxation occurs so as
to allow further polarization to develop in the direction of
the applied field. We can see that the changes are modest
for ZnO (on the order of 10-20%), which is not a soft-
mode system. On the other hand, they are much more
profound for the case of BaTiO3, where most notably an
order-of-magnitude change occurs for ǫ11. This is related
to the large value of the piezoelectric coupling factor k15,
as we will see later in Sec. II C 4. Essentially, it arises
because the polarization vector is rather soft with respect
to rotation away from the z axis, so that the electric
susceptibility is large in the x-y plane.

D. Elastic tensors

We now consider the various elastic tensors. Recall
that the clamped-ion elastic tensor C̄ of Eq. (5) is just the
second derivative of the unit-cell energy with respect to
homogeneous strains, without allowing for internal struc-
tural relaxations, while the physical elastic tensor C of
Eq. (15) does include such relaxations. This tensor C
(written more explicitly as C(E)) usually defined under
conditions of fixed macroscopic electric field, but it is
sometimes of interest to consider the elastic tensor C(D)

of Eq. (23) defined instead under conditions of fixed elec-
tric displacement field. These are identical for higher-
symmetry (e.g., centrosymmetric) crystals, but that is
not the case here. The compliance tensors S are defined
as the inverses of the corresponding elastic tensors C.

The results of our calculations of these tensors are dis-
played in Table VII and VIII for ZnO and BaTiO3 respec-
tively. The lower point-group symmetry of BaTiO3 is re-
flected in the presence of an additional symmetry-allowed
element C14. Actually, there are only five independent el-
ements for ZnO, since C66 = (C11 − C12)/2 and S66 =
2(S11 − S12) by symmetry.17 Similarly, there are really
only six independent elements for BaTiO3; in addition
to the same relation, one also has C66 = (C11 − C12)/2,
S66 = 2(S11 − S12), C56 = C14, and S56 = 2C14. Our
results for the elastic constants of ZnO can be seen to be
in good agreement with previous theory and with exper-
iment (last columns of Table VII).
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TABLE VII. Clamped-ion (C̄) and relaxed-ion (C) elastic tensors at constant E , relaxed ion (C(D)) elastic tensor at con-
stant D (GPa), and corresponding compliance tensors (S̄, S, and S(D)) (TPa−1), for wurtzite ZnO. Previous theoretical and
experimental results are also given for C for comparison.

Present theory Theo.a Expt.b

Index C̄ C C(D) S̄ S S(D) C C

11 305 226 231 3.86 7.79 7.56 246 209
12 107 139 144 −1.20 −3.63 −3.93 127 120
13 77 123 114 −0.61 −2.12 −1.58 105 104
33 333 242 260 3.29 6.28 5.23 246 211
44 62 40 43 16.23 24.69 23.21 56 44
66 99 44 44 10.12 22.84 22.73 — —

aRef. 28.
bRef. 36.

TABLE VIII. Clamped-ion (C̄) and relaxed-ion (C) elastic
tensors at constant E , relaxed ion (C(D)) elastic tensor at
constant D (GPa), and corresponding compliance tensors (S̄,
S, and S(D)) (TPa−1), for rhombohedral BaTiO3.

Index C̄ C C(D) S̄ S S(D)

11 349 277 318 3.32 5.85 3.65
12 106 79 93 −0.82 −2.94 −0.95
13 96 41 81 −0.72 −0.45 −0.68
14 8.4 45 19 −0.31 −8.17 −0.89
33 334 264 323 3.41 3.93 3.44
44 110 48 97 9.12 35.85 10.63
65 8.3 45 19 −0.63 −16.33 −1.78
66 121 99 113 8.28 17.58 9.18

We notice that the physical elastic Cjk are generally
smaller than the frozen-ion ones C̄jk (at least for diag-
onal elements), since the additional internal relaxation
allows some of the stress to be relieved. By the same
token, diagonal S values are larger than S̄ ones, reflect-
ing the increased compliance allowed by the relaxation of
the atomic coordinates. As for the dielectric constants,
the differences are substantially smaller for ZnO than for
BaTiO3, as a result of the soft-mode contribution in the
latter material. The constraint of fixed electric displace-
ment field has the effect of suppressing some of this in-
ternal relaxation (for essentially the same reason that
longitudinal optical phonons are stiffer than transverse
optical ones). This additional stiffness results in larger
diagonal C(D) values than C values, and lower diagonal
S(D) values than S values. However, the differences be-
tween C(D) and C tensors are generally smaller than the
differences between C and C̄ tensors, especially for ZnO.

E. Piezoelectric tensors

The bare (or “frozen-ion”) piezoelectric tensor ēαj is
just given by the mixed second derivatives of unit cell
energy with respect to electric field Eα and strain ηj , de-
forming internal atomic coordinates in strict proportion
to the homogeneous strain. The full piezoelectric tensor
eαj also takes into account the contributions from the lat-
tice, as described in Eq. 16. The total number of indepen-
dent piezoelectric tensor members is determined by the
point group of material. Rhombohedral BaTiO3 (point
group C3v) has a lower symmetry than that of wurtzite
ZnO (C6v), so we may expect more independent elements
in the former. Indeed, a symmetry analysis17 shows that
ZnO has only three independent tensor elements, namely
e31 and e33 describing polarization along the c axis in-
duced by uniaxial c-axis or biaxial ab-plane strains, while
e24 describes the polarization induced by shear strains.
For BaTiO3, the symmetry is slightly lower, and as a re-
sult there is a fourth independent tensor element in this
case.

In Table IX and X, we present our results for piezo-
electric tensors for these two materials. We also also give
the results for the dαj tensor as defined in Eq. 30. Our
results for the eαj matrix for ZnO are consistent with
the previous theory.22,37,38 (Table X shows five tensor el-
ements for BaTiO3, not four, but in fact e21 = e16 and
2d21 = d16 by symmetry.17)

Recall that the frozen-ion and relaxed-ion piezoelec-
tric tensors are defined by Eqs. (8) and (16), in which
the relaxed-ion piezoelectric tensor incorporates contri-
butions from lattice relaxation. For the same reason as
discussed previously for the case of the dielectric and elas-
tic tensors, the difference between the above two tensors
(e.g. ē and e) is much bigger for BaTiO3 than for ZnO,
as expected from the presence of the soft mode in the
perovskite material. Also, note that the electronic and
lattice contributions have opposite signs, with the lattice
contribution being the larger of the two, as is common
for other dielectric materials.
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TABLE IX. Clamped-ion ē (C/m2), relaxed-ion e (C/m2), and relaxed-ion d (pC/N) piezoelectric tensors for wurtzite ZnO.
Previous theoretical and experimental results are also given for e and d for comparison.

Present theory Theo.a Expt.b

Index ē e d e d e d

31 0.37 −0.67 −5.5 −0.55 −3.7 −0.62 −5.1
33 −0.75 1.28 10.9 1.19 8.0 0.96 12.3
15 0.39 −0.53 −13.1 −0.46 −8.2 −0.37 −8.3

aRef. 28.
bRef. 36.

TABLE X. Clamped-ion ē (C/m2), relaxed-ion e (C/m2),
and relaxed-ion d (pC/N) piezoelectric tensors for rhombohe-
dral BaTiO3.

Index ē e d

21 −0.23 2.91 70.1
31 0.05 −3.03 −6.8
33 −0.19 −4.44 −14.7
15 0.18 −5.45 −243.2
16 −0.23 2.91 140.2

In view of this partial cancellation of terms of opposite
sign, accurate calculations of e and d coefficients are par-
ticularly delicate. We find that our results for the 31 and
33 elements of the e and d coefficients of ZnO are in rea-
sonably good agreement with experiment (slightly better
than previous Hartree-Fock calculations28), whereas we
somewhat overestimate the shear coefficients e15 and d15

(slightly more so than in the Hartree-Fock theory28).

F. Electromechanical coupling constants

We compute and present in Table XI the piezoelectric
coupling factors k33, k31, and k15 defined in Eq. (34) for
both ZnO and BaTiO3. We also calculate the singular
values k̃ν of the K matrix of Eq. (35). Because of the axial
symmetry, these are arranged into a pair of degenerate
values k̃1 = k̃2 corresponding to in-plane electric fields,
and a k̃3 corresponding to axial fields. (In fact, due to

the symmetry, k̃ν cab be calculated in practice as just

[β
(σ)
νν (d ·C(E) · dT )νν ]1/2.) These k̃ν values are also given

in Table XI.
Roughly speaking, the couplings given in the first

three lines of Table XI are associated with symmetry-
preserving “polarization stretching” degrees of freedom,
while those in the last two lines correspond to “polariza-
tion rotation” modes. Note that k15 = k̃1 for ZnO but
not for BaTiO3; this is a feature of symmetry, arising be-
cause an electric field E1 couples uniquely to η5 in ZnO,
but also to η6 in BaTiO3. Also, we can see that k̃1 ≥ k15

and k̃4 ≥ max(k33, k31) in both materials, since k̃ de-
scribes the optimal coupling between electric and elastic

TABLE XI. Dimensionless piezoelectric coupling factors.
The first three correspond to E-fields longitudinal to the crys-
tal axis; the last two are transverse. Coupling constants k̃1

and k̃3 are obtained from singular-value analysis of the cou-
pling tensor K (see text).

ZnO BaTiO3

k33 0.41 0.35
k31 0.19 0.13

k̃3 0.44 0.49
k15 0.27 0.84

k̃1 0.27 0.86

channels.
Comparing the two materials, we see that the coupling

factors are rather comparable in the polarization stretch-
ing channel; evidently, the soft mode does not play such a
profound role there. In contrast, the coupling factor k15

is very large in BaTiO3; in fact, it is not far from unity,
the maximum value consistent with stability. Indeed, this
is precisely because the crystal is not far from being un-
stable with respect to a rotation of the polarization away
from the rhombohedral axis – precisely the type of dis-
tortion that would carry it to the orthorhombic phase,
from which it evolved as the temperature was reduced
below the orthorhombic-rhombohedral phase transition
temperature that occurs experimentally at ∼ 180 K. The
large k15 is also strongly connected to the large difference
between ǫ = ǫ(η) and ǫ(σ) in Tab. VI as already discussed
at the end of Sec. IVC.

The calculated value k15 = 0.84 for BaTiO3 is quite
respectable; it is in the range of the values of k15 = 0.25–
0.8039 for the PMN-PT and PZN-PT single-crystal piezo-
electrics on the rhombohedral side of the morphotropic
phase boundary. Unfortunately, the fact that this large
coupling occurs only at very low temperature probably
makes it useless for practical applications. On the other
hand, the present work suggests that if a material like
BaTiO3 could somehow be stabilized in the rhombo-
hedral phase at room temperature, it might have very
promising piezoelectric properties.
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V. SUMMARY

In summary, we have developed a method that system-
atically treats the effects of perturbations associated with
atomic displacements, electric fields and strains in insu-
lating crystals, so that physical quantities expressible as
second derivatives of the total energy can be computed
efficiently. In the first step, six elementary tensors are
computed once and for all using the methods of DFPT:
the force-constant matrix, the Born charge tensor, the
internal-strain tensor, and the frozen-ion dielectric, elas-
tic, and piezoelectric tensors. The internal-displacement
degrees of freedom are then eliminated to give physical
low-frequency dielectric, elastic, and piezoelectric ten-
sors, defined under boundary conditions of controlled
electric field E and strain η. We have also shown how
these can then be manipulated to obtain various related
tensor properties of interest such as the free-stress dielec-
tric tensor, the fixed-D elastic and compliance tensors,
and various piezoelectric tensors and electromechanical
coupling factors. Such a systematic approach is espe-
cially important in polar crystals, in which the atomic-
displacement, electric-field, and strain degrees of freedom
are strongly coupled in complex ways.

We have applied our approach to compute these ten-
sor properties for two paradigmatic crystals, ZnO and
BaTiO3, at zero temperature. These materials differ
most significantly in that there is a ferroelectric soft mode
that has condensed, but still remains rather low in fre-
quency, in the latter material. The calculations are sub-
ject to several approximations, most notably the LDA
itself (and its associated lattice-constant error, which
has been removed by hand for the case of BaTiO3 – see
Sec. III), but also the frozen-core approximation (as im-
plemented through the use of pseudopotentials) and the
neglect of zero-point fluctuations. Nevertheless, we vali-
date the approach by finding reasonably good agreement
between theory and experiment for most quantities in
the case of ZnO, despite the fact that the experiments are
room-temperature ones. The largest discrepancies are for
the purely electronic dielectric tensor elements ǭ11 and
ǭ33, the shear piezoelectric coupling e15, and to a lesser
extent, derived quantities that depend on these elemen-
tary ones. In the case of BaTiO3, where low-temperature
experiments on single-crystal, single-domain samples un-
der well-defined boundary conditions are not available,
our calculations provide useful predictions of the material
constants. In particular, we find an encouraging value of
0.84 for the k15 electromechanical coupling constant, and
argue that this is associated with the proximity of the or-
thorhombic phase.

We wish to emphasize that the usefulness of the general
approach advocated here transcends the particular imple-
mentation of it (here DFT/LDA, pseudopotentials, etc.).
For example, similar calculations might by carried out
with Hartree-Fock methods using localized orbitals28 or,
eventually, using “LDA+U”, dynamical mean-field the-

ory, or quantum Monte Carlo methods. In this case, the
six elementary tensors of Eqs. (3-8) will first need to be
calculated using methods appropriate to the particular
type of electronic-structure method used. However, the
subsequent manipulations described in Secs. II B and II C
can then be carried through in identically the same way
as done here.

Finally, we note that the approach described here can
be extended to include other types of perturbations, such
as alchemical ones, and to the treatment of higher-order
responses (e.g., anharmonic elastic constants, nonlinear
dielectric responses, and electrostriction effects), provid-
ing possible directions for future developments of the
method.
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APPENDIX A: SIMULTANEOUS TREATMENT

OF STRAINS AND ELECTRIC FIELDS

The formulation of an energy functional, and the defi-
nition of response functions in terms of its second deriva-
tives, is somewhat subtle in the case that electric fields
and strains are simultaneously present. The purpose of
this Appendix it to give a careful treatment of the theory
in this case. Except where noted, the notation here fol-
lows that of Sec. II B in that the internal displacements
um are assumed to have been integrated out (i.e., internal
displacements um do not appear explicitly).

We begin introducing the deformation tensor η̃αβ in
the Cartesian frame via

drα = η̃αβ rβ (A1)

(implied sum notation) where drα is the deformation
of the medium from its undeformed position rα. We
consider deformations taking the form of homogeneous
strains and rigid rotations, so that the antisymmetry part
of the deformation tensor η̃αβ describes the rotational
part, while its symmetric part is just the strain tensor

ηαβ =
1

2
(η̃αβ + η̃βα) . (A2)

The improper piezoelectric tensor is defined as

eimpr
αβγ =

dPα

dη̃βγ
. (A3)

The name “improper” reflects that fact that eimpr con-
tains contributions that are spurious in a certain sense.15
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For example, if we consider a pure rotation of a spon-
taneously polarized crystal about an axis that does not
coincide with P, then dP does not vanish, and conse-
quently eimpr

αβγ has a component that is antisymmetric un-
der interchange of β and γ. Similarly, if we consider a
uniaxial or biaxial compression in the x − y plane of a
ferroelectric modeled as a lattice of discrete rigid dipoles
oriented in the z direction, the polarization will change
even if the dipoles do not, because the polarization is de-
fined as the dipole moment per unit volume. This, too, is
an essentially spurious effect. By contrast, the “proper”
piezoelectric tensor will be defined so as to vanish in ei-
ther of these situations.

In the presence of a strain, it is convenient to introduce
reduced or rescaled polarizations P ′

α and electric fields E ′
α

via

P ′
α = (η̃ −1)αβ Pβ (A4)

and

E ′
α = η̃βα Eβ , (A5)

where P ′
α and E ′

α coincide with Pα and Eα in the absence
of strains or rotations. We then take our fundamental
energy functional to be

Ẽ(E ′, η̃) =
1

Ω0

[
E

(0)
cell − Ω E ′ · P′

]
(A6)

where E
(0)
cell is the usual zero-field Kohn-Sham energy per

cell14 of the occupied Bloch functions introduced earlier
in Sec. II A.

Note that P · E = P
′ · E ′, so that Eq. (A6) is closely re-

lated to Eq. (1). However, it is important to understand
that E ′ and η̃ are the “natural variables” of the energy
functional (A6), so that subsequent partial derivatives
are defined in terms of this pair of variables. For exam-
ple, the proper piezoelectric tensor is now given by

eαβγ = −
∂2Ẽ

∂E ′
α ∂η̃βγ

(A7)

or

eαβγ =
1

Ω0

∂(ΩP ′
α)

∂η̃βγ
. (A8)

We also emphasize that E ′ is, in many ways, a more
natural variable than E from the experimental point of
view. For example, if one controlls the voltage V across
a film of M atomic layers between conducting capacitor
plates and observes the resulting strain, one is actually
controlling E ′ = eV/Mc0 = Ec/c0, not E , where c0 and
c are the zero-field and finite-field lattice constants, re-
spectively, in the normal direction.

From Eqs. (A3) and (A8) it follows that the improper
and proper piezoelectric tensors are related by15

eαβγ = eimpr
αβγ − δβγ Pα + δαβ Pγ . (A9)

It is then easy to show that the proper tensor eαβγ is
symmetric under interchange of indices β and γ, so that
the Voigt notation can be restored. This is to be expected
because the reduced quantity P

′ is invariant under a rigid
rotation of the crystal, a fact that follows trivially from
Eq. (A4). That is, P

′, expressed as a function of the six
symmetrized strain variables (Eq. (A2)) and the three
rotational variables, is actually independent of the rota-
tional ones. Indeed, a rigid rotation of the entire sys-
tem, material plus external field E , leaves both E ′ and
P

′ individually unchanged. It is then natural to discard
the rotational variables and recast the symmetric strain
variables in Voigt notation. We then regard the energy

functional of Eq. (A6) to be a functional Ẽ(E ′, η) of the
fundamental variables of rescaled E ′

α and Voigt ηj , and
the proper piezoelectric tensor may be written as

eαj = −
∂2Ẽ

∂E ′
α ∂ηj

=
1

Ω0

∂(ΩP ′
α)

∂ηj
. (A10)

Restoring the explicit dependence on internal displace-
ments um, Eq. (A6) becomes

E(u, E ′, η) =
1

Ω0

[
E

(0)
cell − Ω E ′ · P′

]
, (A11)

where Ẽ(E ′, η) of Eq. (A6) corresponds to the minimum
of (A11) over all possible displacements um. While this
equation is numerically equal to Eq. (1), it is critical to
recall that it is written in terms of different arguments.

Strictly speaking, this notation should have been in-
troduced at the very beginning of Sec. II A, and every
equation throughout the paper, starting with Eq. (1),
should have E replaced by E ′ and P by P

′. For example,
Eqs. (8) and Eq. (26) should be replaced by Eqs. (A12)
and

ēαj = −
∂2E

∂E ′
α ∂ηj

, (A12)

respectively, and similarly for all other equations. How-
ever, for the purposes of clarity of presentation, it was
decided to avoid use of this clumsy notation in the main
part of the paper.

Finally, we note that the reduced quantities P
′ and E ′

are also rather natural physical variables from the point
of view of computational implementation. Indeed, these
two quantities can further be expressed in terms of fully

reduced quantities pµ and εµ via

P
′ =

e

Ω
pµ a

(0)
µ (A13)

and

εµ = e E ′ · a(0)
µ (A14)

so that P = (e/Ω) pµaµ and εµ = e E · aµ. In these equa-

tions, a
(0)
µ is the µ’th undeformed primitive real-space
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lattice vector, aµ is the corresponding deformed lattice
vector, and Ω = a1 · a2 × a3 is the deformed cell volume.
Note that P · E = P

′ · E ′ = Ω−1 pµεµ and

eαj =
e

Ω0
aµ,α

∂pµ

∂ηj
. (A15)

The fully reduced polarization pµ has a simple interpre-
tation in terms of the fractional positions of the charges
in the unit cell; for example, the contribution to it com-
ing from filled band is just −1/2π times the Berry phase
of that band, as can be seen by comparing with Eq. (10)
of Ref. 15. Similarly, εµ is just e times the electrostatic
potential drop across the unit cell in direction aµ.

The computational implementation of DFPT is done
quite naturally in terms of these reduced quantities,7,10,19

and as a result, DFPT automatically yields the proper
piezoelectric tensor.10 This can be a source of confu-
sion when comparing the DFPT results with those of
finite-difference calculations. In the latter approach,
the polarization is obtained directly from ground-state
DFT calculations,6 and piezoelectric tensor elements are
obtained by numerical differentiation using sufficiently
small strains about the reference structure. This proce-
dure yields the improper tensor, however, and Eq. (A9)
must be applied to compare such results with the DFPT
ones.10
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