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Wannier-based definition of layer polarizations in perovskite superlattices
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In insulators, the method of Marzari and Vanderbilt [Phys. Rev. B 56, 12847 (1997)] can be
used to generate maximally localized Wannier functions whose centers are related to the electronic
polarization. In the case of layered insulators, this approach can be adapted to provide a natural
definition of the local polarization associated with each layer, based on the locations of the nuclear
charges and one-dimensional Wannier centers comprising each layer. To illustrate the robustness
and power of this approach, we present sample calculations of layer polarizations of perovskite
superlattices, including changes in layer polarizations induced by sublattice displacements (i.e.,
layer-decomposed Born effective charges). The new method provides a powerful tool for analyzing
local dielectric properties in complex layered oxide systems.

PACS numbers: 77.22.-d, 77.22.Ej, 77.80.-e, 77.84.Bw

Multicomponent superlattices based on the ABO3 per-
ovskite structure have received much attention recently
due to the exciting properties they possess as multifunc-
tional materials (see Ref. 1 and references therein). Ex-
perimental studies using modern layer-by-layer epitaxial
growth techniques have gone hand in hand with accurate
first-principles calculations that have helped to interpret
experimental results and to guide the search for super-
lattice compounds with tailored properties. For exam-
ple, a compositional perturbation that breaks inversion
symmetry was predicted [2] to allow tuning of the dielec-
tric and piezoelectric response, as confirmed later when
such superlattices could be grown experimentally [3, 4].
In addition, strained-layer superlattices can show a sub-
stantial enhancement of spontaneous polarization; such
effects have been observed [4] and analyzed using first-
principles calculations [5, 6].

In first-principles studies of perovskite superlattices,
one issue that has received much attention is how to
quantify the local polarization, in order to understand
how the various constituent layers contribute to the prop-
erties of the system. This can be very useful in un-
derstanding the enhancement or suppression of sponta-
neous polarization [5, 6], phonon softening or hardening
[7] and dielectric and piezoelectric properties [2, 3], and
separating the effects of factors such as epitaxial strain
and applied electric fields [5, 6, 8, 9, 10]. In partic-
ular, a local description is essential for characterizing
and understanding the interface contributions to these
properties; up to now, these have not been thoroughly
studied. Among previously proposed local approaches
[10, 11], that of Meyer and Vanderbilt [11] has been one
of the most commonly used [5, 6, 8, 9]. Based on a lin-
ear approximation involving effective charges and small
ionic distortions from a higher-symmetry nonpolar refer-
ence structure, this simple model captures the essential
physics and provides a semi-quantitative description use-
ful for understanding many aspects of the behavior of
multicomponent superlattices. However, as we shall dis-

cuss, it is neither exact nor unique.
Here, to address these issues, we introduce the defi-

nition of the “layer polarization” (LP) associated with
each charge-neutral AO or BO2 layer in an (001) su-
perlattice built from II-VI ABO3 perovskites such as
BaTiO3, SrTiO3, and PbTiO3. We take z to be the
growth direction of the superlattice, and focus only on
the z-components of polarization and their decomposi-
tion along z. The definition of the LP involves the posi-
tions and charges of the WF centers as well as the ions,
and can conveniently be computed using standard meth-
ods of electronic-structure calculation. Unlike the ap-
proach of Ref. 11, the present approach is exact (that
is, the sum of LPs relates exactly to the total supercell
polarization) and is entirely free of arbitrary choices in
its implementation. We will present examples showing
how this approach naturally provides an insightful local
description of the polarization behavior of perovskite su-
perlattices, both at zero electric field and under nonzero
electrical bias, and in particular yields valuable infor-
mation about the highly localized atomic and electronic
rearrangements at the interfaces. (Note that a related
approach has been used to investigate polarizability dis-
tributions in Ref. 12.)

The modern theory of polarization [13] is routinely
used to compute the polarization of a crystal as a sum of
ionic and electronic (Berry phase) contributions. In the
Wannier representation, this takes the form

P =
1

V

∑

τ

Qτ Rτ −
2e

V

∑

m

r̄m (1)

where τ and m run over ion cores (of charge Qτ located
at Rτ ) and Wannier centers (of charge −2e located at
r̄m), respectively, in the unit cell of volume V . In the
case of a II-VI perovskite superlattice, one may hope to
decompose the system into neutral “layers” (that is, AO
or BO2 subunits) and define a “layer polarization”

pj =
1

S

∑

τ∈j

Qτ Rτz −
2e

S

∑

m∈j

z̄m (2)
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in which the sums are restricted to entities belonging to
layer j. Here S is the basal cell area and we are now focus-
ing only on z components. The layer polarization pj thus
defined has units of dipole moment per unit area, and the
total polarization, with units of dipole moment per vol-
ume, is exactly related to the sum of layer polarizations
via Pz = c−1

∑
j pj where c = V/S is the supercell lattice

constant along z. For such a decomposition to be mean-
ingful, we need (i) to resolve the arbitrariness associated
with the positions of the Wannier centers, and (ii) to be
satisfied that the Wannier centers can be assigned to lay-
ers without ambiguity. We shall show below by example
that (ii) is satisfied for the systems of interest, and thus
we next turn our attention to issue (i).

As is well known, the Wannier centers r̄m =
〈Wm|r|Wm〉 are not unique because the electronic struc-
ture is invariant to unitary rotations among the WFs
(corresponding, e.g., to different choices of phases of the
Bloch functions in k-space). Marzari and Vanderbilt [14]
introduced a method for obtaining a unique set of WFs
by choosing the ones that minimize the sum of second-
moment spreads (spatial variances) of the WFs. In a
three-dimensional system, this involves finding a best
possible compromise between minimal spread in x, y, and
z directions, and an iterative procedure is needed to find
this compromise solution.

Here, we are interested only in polarizations along z,
and can limit ourselves to minimizing the spread only in
that direction. Moreover, we can use a hygrid represen-
tation of the electronic ground state that is Bloch-like
in x and y and Wannier-like only along z. We start
from a conventional band-structure calculation carried
out on a mesh of reciprocal points k = (kx, ky, kz) and
adopt the relabeling g = (kx, ky) and k = kz. That
is, each 2D vector g labels a string of J k-points run-
ning along the z direction with separation b = 2π/Jc.
Our task is then to transform the Bloch functions |ψg,nk〉
(n = 1, . . . , N) into hybrid WFs |Wg,m〉 (m = 1, . . . , N)
via a 1D Wannier transform, where N is the number of
occupied bands. We will then let z̄m in Eq. (2) be the
average of z̄m(g) = 〈Wg,m|z|Wg,m〉 over the 2D mesh of
g points. Since the 1D Wannier transform is done inde-
pendently at each g, we drop the g label in the following
paragraph.

The case of maximally localized WFs in 1D was treated
explicitly in Sec. IV.C.1 of Ref. 14. There, it was shown
that the WFs that minimize the spread functional are
identical to the eigenfunctions of the projected posi-
tion operator PzP , where P =

∑
nk |ψnk〉〈ψnk| is the

band projection operator. It was also shown how they
could be obtained from a parallel-transport based con-
struction using the singular value decomposition (SVD)
of the overlap matrices between neighboring k-points,

M
(k)
mn = 〈umk|un,k+b〉, where umk is the periodic part

of the Bloch function ψmk.
The SVD is M = V ΣW † where V and W are unitary
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FIG. 1: (Color online.) Dispersion of WF center positions
for a 1BT/1ST superlattice as a function of g = (kx, ky).

and Σ is positive real diagonal. For small b, Σ approaches
the unit matrix, and omitting Σ to write M̃ = UV † can
be regarded as a way of constructing a purified version of
M that is exactly unitary. Then Λ =

∏J

k=1 M̃
(k) defines

a global unitary matrix describing the parallel transport
of the states on the k-point string, and its unimodular
eigenvalues λm define the Wannier centers via the re-
lation z̄m = (−c/2π) Im lnλm. Note that no iterative
procedure is required; these 1D Wannier locations can
be obtained by a straightforward small-matrix diagonal-
ization. A procedure that is similar in spirit, but slightly
different in detail, has recently been proposed elsewhere
[15].

To illustrate this procedure, we present in Fig. (1) the
resulting values of z̄m(g) for an ab-initio calculation on
a 10-atom tetragonal supercell composed of alternating
SrTiO3 (ST) and BaTiO3 (BT) units, which we refer
to as a 1ST/1BT superlattice. All calculations were
carried out using the ABINIT code [16], which imple-
ments density-functional theory within the local-density
approximation (LDA) [17]. We adopted Teter norm-
conserving pseudopotentials [18] for which the valence
states are (5s 5p 6s) for Ba, (4s 4p 5s) for Sr, (3s 3p 3d 4s)
for Ti, and (2s 2p) for O. We used a plane-wave en-
ergy cutoff of 45 Ha, a 6 × 6 × 3 Monkhorst-Pack self-
consistency mesh, and a 12×12×3 bandstructure mesh.
We assumed perfect epitaxial growth of the superlattices
on a cubic ST substrate having a theoretical equilibrium
lattice constant of 7.265 bohr and tetragonal P4mm sym-
metry.

The key feature visible in the z̄(g) dispersion relation
in Fig. 1 is that the WF centers separate quite naturally
into distinct layers as anticipated. The 1D Wannier po-
sitions z̄ are almost independent of g = (kx, ky), and
there are robust gaps between layers. Moreover, we find
eight Wannier centers in each BaO or SrO layer and 12
in each TiO2 layer (four for each cation semicore shell
and four for each oxygen 2s2p shell), so that the layers
are neutral as expected. All this demonstrates that the
proposed Wannier-based approach does indeed lead to a



3

SrO TiO2 BaO TiO2 BaO TiO2

0

0.1

0.2

0.3

Lo
ca

l p
ol

ar
iz

at
io

n 
(C

/m
2 )

(1A) (1B) (2A) (2B) (3A) (3B)

FIG. 2: (Color online.) Local polarization profile of 1ST/2BT
supercell, from effective charge approximation based on A
centered (open square) or B centered (open diamonds) anal-
ysis, and from layer polarization analysis (filled circles). The
overall supercell polarization is 0.22 C/m2.

natural and robust decomposition into easily identified
neutral layers.

It is then straightforward to define the layer polar-
ization (LP) pj associated with each layer according
to Eq. (2). For comparison with other definitions, we
also introduce the corresponding local polarization Pj =
pj/cj having the correct units of polarization (dipole per
unit volume), where cj is chosen as half the distance be-
tween the two neighboring cations. In Fig. 2, we show
the local polarization profile calculated in this way for
the case of a 1ST/2BT superlattice (15-atom supercell).
The details are the same as for the calculation of the
1ST/1BT superlattice, except that we use a 6 × 6 × 2
k-point sampling. We compare our results with the local
polarizations obtained from the commonly applied ap-
proximate scheme [11] in which the local polarization is
estimated by multiplying the Born effective charges of
the atoms in a unit cell layer by their displacements rel-
ative to a reference structure. The effective charges are
obtained from linear response calculations in the ferro-
electric ground state. By its very nature, this approxi-
mate scheme [11] has only half the spatial resolution of
our new scheme, since it applies only to entire ABO3

cells. (Note that it cannot easily be extended down to
the resolution of AO and BO2 layers because the sum of
Z∗ values in such a layer does not vanish, so that the
definition would depend on choice of reference structure
in an unsatisfactory way.)

The results shown in Fig. 2 are consistent with the
findings of previous theoretical studies [5] showing that
the SrTiO3 portion of the supercell becomes polarized to
almost the same degree as the BaTiO3 portion. How-
ever, the improved resolution associated with the new
approach is also clearly evident in the figure. For exam-
ple, one can now see that the polarization tends to be
larger in the AO layers than in the TiO2 layers (see next
paragraph). Moreover, our new approach is free of three
limitations of the approximate one [5, 6, 8, 11]. First, we
avoid the choice between an A- or B-centered analysis.
Second, we do not have the problem of choosing an arbi-

trary local reference structure with respect to which the
atomic displacements are defined. Third, the sum of our
layer polarizations pj is exactly related to the total polar-
ization of the entire supercell, whereas the approximate
expressions do not.

The Born effective charges Z∗, defined as the first
derivatives of polarization with respect to atomic dis-
placements, describe the dynamics of the charge transfer
induced by such displacements. We now illustrate how
the LP concept can be used to decompose the Z∗ for
an atom in one layer into contributions from neighboring
layers. This is demonstrated in Table I for the case of a
supercell of tetragonal bulk BT that has been artificially
tripled along the [001] direction (3BT supercell). Each
of the four symmetry-inequivalent atoms (Ti and O‖ in
a TiO2 layer and Ba and O⊥ in a BaO layer) were dis-
placed along z in turn, and the changes in all six layer
polarizations in the supercell were computed. For Ba,
O⊥ and O‖, the induced polarizations are dominated by
contributions from the same atomic layer, at the level of
around 45%. In contrast, for the Ti atom, the contri-
butions from the first neighboring layers are almost as
large as from the layer itself. This is consistent with the
well-known role of the Ti(3d)-O(2p) hybridization in giv-
ing rise to the anomalous Born effective charges in these
perovskites [19], and the fact that the WFs that embody
this hybridization reside on the O atoms. Thus, a motion
of the Ti atoms along [001] modulates this hybridization
and shifts the centers of the WFs residing on the neigh-
boring BaO layers. This effect also helps explain why the
layer polarizations for AO layers are larger than for TiO2

layers in Fig. 2.

We further illustrate the utility of the LP analysis by
considering its behavior in a macroscopic electric field
E [20] applied along [001]. We used a constrained-
polarization mapping technique [21] generalized to in-
clude volume relaxation [22] to find the minimum-energy
configuration for each given polarization. The resulting
layer polarizations pj vs. total polarization are shown for
the 1ST/2BT supercell in the left-hand panels of Fig. 3.
We see that each LP is roughly linear in the total po-

TABLE I: Layer decomposition of the [001] Born effective
charges in a 3BT supercell. Total effective charges are given
in the last row.

Ti (1B) Ba (1A) O‖ (1A) O⊥ (1B)
BaO (1A) 1.433 1.268 −2.448 −0.225
TiO2 (1B) 1.872 0.148 −0.231 −0.930
BaO (2A) 1.262 0.434 −1.027 −0.191
TiO2 (2B) 0.619 0.296 −0.542 −0.216
BaO (3A) 1.211 0.435 −1.046 −0.348
TiO2 (3B) 0.636 0.191 −0.264 −0.217
Z∗ 7.033 2.772 −5.557 −2.127
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FIG. 3: (Color online.) LP as a function of (a) total polariza-
tion of the supercell, and (b) macroscopic electric field in the
supercell, for six consecutive layers in the 1ST/2BT supercell.
Labeling of layers follows Fig. 1.

larization for all six layers, but with nonlinearities ap-
pearing at large values of polarization. For each data
point, we extracted the corresponding macroscopic elec-
tric field value, and plotted the LPs against this field
in the right-hand panels of Fig. 3. The results show a
strongly nonlinear dependence, typical of that found for
total polarization as a function of electric field in ferro-
electric materials.

The most striking features seen in Fig. 3 are for the
two interface layers (TiO2 layers 1B and 3B). They show
local breaking of inversion symmetry; that is, the LP as
a function of macroscopic field does not pass through the
origin, at which for the system as a whole the symmetry
of the P4/mmm space group requires P = 0 and E = 0.
One of these interface TiO2 layers has a nearest-neighbor
SrO layer above and a BaO layer below, and the other
vice versa, the two interface layers being related by a mir-
ror symmetry. The LP approach give us much more pre-
cise information about the response of these interfaces to
applied fields than could be obtained from an analysis of
either the total polarization, or of the local polarizations
as previously defined (involving a smearing over three se-
quential atomic layers). We expect that this method of
analysis of interface layers will be invaluable for identi-
fying the interface contributions to the properties of su-
perlattices with more than two components, particularly
those with globally broken inversion symmetry [2, 22].
Similar considerations apply to BaO layers 2A and 3A,
which also see an environment of broken inversion sym-
metry. For these, however, the symmetry breaking enters

only at the level of second-neighbor layers, so the effects
are smaller in magnitude.

In summary, we have proposed a new definition of the
layer polarization (LP) in multicomponent superlattices.
For each atomic layer, the LP is uniquely determined
by the spatial locations of ionic and WF centers, and it
can easily be computed in any first-principles code as a
post-processing step after standard electronic structure
calculations. Although this polarization is not directly
measurable experimentally, we show examples in which
the layer polarization precisely quantifies polar distor-
tions throughout the superlattice, the high resolution of
the definition being particularly relevant for inspecting
the behavior of interface layers. Immediate applications
include modeling of interface effects on total polarization
of multicomponent superlattices [22], systematic studies
of self-poling effects in superlattices [22], and studies of
the coupling of phonons to the interfaces. For superlat-
tices containing magnetic constituents, the spin degener-
acy assumption can be relaxed, so that the WF centers
will have additional local spin ordering information.

This work was supported by ONR Grant N00014-05-
1-0054 and by the Center for Piezoelectrics by Design
under ONR Grant N00014-01-1-0365.
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