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Abstract

We extend our previous �rst-principles theory for perovskite ferroelectric

phase transitions to treat also antiferrodistortive phase transitions. Our ap-

proach involves construction of a model Hamiltonian from a Taylor expansion,

�rst-principles calculations to determine expansion parameters, and Monte

Carlo simulations to study the resulting system. We apply this approach to

three cubic perovskite compounds, SrTiO3, CaTiO3, and NaNbO3, that are

known to undergo antiferrodistortive phase transitions. We calculate their

transition sequences and transition temperatures at the experimental lattice

constants. For SrTiO3, we �nd our results agree well with experiment. For

more complicated compounds like CaTiO3 and NaNbO3, which can have many

di�erent structures with very similar energy, the agreement is somewhat less

satisfactory.
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I. INTRODUCTION

Perovskite materials are of considerable interest both for fundamental reasons and for
their many actual and potential technological applications. The great fascination of the cubic
perovskite structure is that it can readily display a variety of structural phase transitions,
ranging from non-polar antiferrodistortive (AFD) to ferroelectric (FE) and antiferroelectric
(AFE) in nature.1 The competition between these di�erent instabilities evidently plays itself
out in a variety of ways, depending on the chemical species involved, leading to the unusual
variety and richness of the observed structural phase diagrams. For example, as temperature
is reduced, BaTiO3 undergoes a series of FE phase transitions, while SrTiO3 has a single
AFD transition. More extreme examples are NaNbO3 and BaZrO3; the former has a series
of six transitions, while the latter stays cubic down to zero temperature. Another appealing
property of these cubic perovskites is that all of the structural phase transitions involve only
small distortions from the ideal cubic structure, the typical distortion being less than 5%
of the lattice constant. This simpli�es the theoretical treatment considerably. The ample
experimental data on these compounds also provide many insights and opportunities for
checking the accuracy of theoretical calculations.

It is no wonder that there have been many theoretical attempts to study these
compounds. Previous phenomenological model Hamiltonian approaches2{5 have largely
been limited by oversimpli�cation and ambiguities in interpretation of experiment, while
empirical6 and non-empirical pair-potential methods7 have not o�ered high enough accuracy.
Recently, advances in density-functional techniques have made possible �rst-principles inves-
tigations of such perovskite compounds. Such calculations have proven capable of providing
accurate structural properties and FE distortions for perovskites at zero temperature.8{10

Recently, a thermodynamic theory based upon such �rst-principles calculations was de-
veloped to study the �nite-temperature properties of BaTiO3;

11;12 and predicted the cor-
rect transition sequence and fairly accurate transition temperatures. This thermodynamic
approach involves three steps: (i) constructing an e�ective Hamiltonian to describe the
important degrees of freedom of the system; (ii) determining all the parameters of this e�ec-
tive Hamiltonian from high-accuracy ab-initio LDA calculations; and (iii) performing Monte
Carlo simulations to determine the phase transformation behavior of the resulting system.
A similar approach was also successfully applied to PbTiO3 by Rabe and Waghmare.13

The construction of the e�ective Hamiltonian is carried out in view of the special struc-
ture properties of cubic perovskite compounds. At higher temperature, the cubic perovskite
compounds ABO3 have a simple cubic structure with O atoms at the face centers and metal
atoms A and B at the cube corner and body center, respectively. The two most common
instabilities result from the softening of either a polar zone-center phonon mode, leading to a
FE phase, or the softening of a non-polar zone-boundary mode involving rotations of oxygen
octahedra, leading to an AFD phase. (In some cases a zone-boundary polar mode may also
occur, leading to an AFE phase.) In our previous thermodynamic theory for BaTiO3, we
assumed FE and strain distortions would be the only important degrees of freedom of the
system. In other words, all other distortions are assumed to be much higher in energy. This
is true for BaTiO3, but not true for cubic perovskites in general. As shown in our recent
�rst-principle calculations,14 most cubic perovskite compounds may also undergo AFD tran-
sitions. To study these compounds, we need to extend our theory to include AFD distortions
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among the low-energy distortions. This extended theory would also allow us to study the
interaction between FE and AFD instabilities. However, because the AFD distortion is a
zone-boundary distortion without a clear corresponding zone-center mode, the extension is
not trivial.

The rest of the paper is organized as follows. In Sec. II, we go through the detailed pro-
cedure for the construction of the e�ective Hamiltonian with the AFD distortion included.
In Sec. III, we describe our �rst-principles calculations and the determination of the expan-
sion parameters for the three compounds SrTiO3, CaTiO3, and NaNbO3. In Sec. IV, we
report our calculated transition temperatures, phase sequences, and order parameters for
those three compounds. We also identify the di�erences between the correlation functions
of the FE and AFD local modes in SrTiO3. Sec. V concludes the paper.

II. CONSTRUCTION OF THE HAMILTONIAN

A. Local modes for AFD distortion

In our previous development,12 we argued that the total energy of a cubic perovskite
can be well approximated by a low-order Taylor expansion over all the relevant low-energy
distortions, speci�cally FE distortions and strain. The FE distortions are represented by
local modes, whose arrangement will reproduce the FE soft phonon modes throughout the
Brillouin zone (BZ). To extend the theory to include the AFD distortions, we need to
construct a new set of local modes to represent the lowest AFD modes over the whole BZ,
or at least over the portion of the BZ where the energy change due to the AFD distortions
is either negative, or positive but small. The AFD mode typically has the lowest energy at
the zone-boundary R (0.5, 0.5, 0.5)2�=a0 and M [(0.5, 0.5, 0)2�=a0, etc.] points, while near
the zone center � the energy is very high. So it is necessary to choose local modes that will
accurately reproduce the potentially soft modes in the vicinity of the R and M points.

The rotation of an isolated oxygen octahedron can be represented by a pseudovector
passing through its center. Assuming the origin of coordinates at the center of the octahe-
dron, a pseudovector with polarization ẑ involves displacements �0:5a0ŷ for oxygen atoms
at (�a0/2,0,0) and displacements �0:5a0x̂ for atoms at (0,�a0/2,0). Here a0 is the lattice
constant of the ideal cubic perovskite. In the case of the ABO3 perovskite crystal, we can
represent octahedral rotation using pseudovectors sitting on the center of each octahedron,
i.e., on the B atoms. However, neighboring octahedra share oxygen atoms, so that some
continuity conditions would have to be imposed if we were to insist that the displacement
of a given oxygen be consistently described by both neighboring pseudovectors. With such
constraints the neighboring pseudovectors would no longer be independent of one another,
leading to potential problems in the implementation of the Monte Carlo simulations.

To avoid such problems, we simply construct a set of \virtual" pseudovectors ai which
are independent of each other, and let the actual oxygen displacements be the superposition
of the displacements that would result from these. To be precise, let ai � a(Ri) denote the
pseudovector centered on the B atom of unit cell i (position vector Ri), so that each oxygen
atom is shared by two pseudovectors. The physical displacement of the oxygen atom shared
by ai and aj is then given by
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�r =
a0
2
R̂ij � (ai � aj) ; (1)

where Rij = Ri � Rj, R̂ij = Rij=jRijj. The AFD soft modes of interest at R and M
are then easily represented by the corresponding pattern of pseudovectors. For example,
choosing a(lx+my+ nz) = (�)l+mẑ reproduces one of the M-point modes polarized along
ẑ. (Here, x = a0x̂, etc.) Other possible choices of the pattern of pseudovectors correspond
to other modes which are probably higher in energy, but possibly still relevant for some
materials. For example, choosing a(lx+my+nz) = (�)lŷ corresponds to an X-point mode
that can be regarded as either of AFD character polarized along ŷ, or of AFE character
polarized along ẑ. Finally, note that choosing a(Ri) constant (�-point arrangement) gives
rise to no displacements whatever.

In view of this last point, it is important realize that the ai themselves do not have
direct physical meaning; only di�erences between adjacent ai's are physical. Adding a con-
stant to all ai's will not change the physical con�guration of the system. So any physical
distortions can be mapped to in�nitely many pseudovector arrangements, but any pseu-
dovector arrangement only corresponds to one speci�c physical distortion. Because only the
pseudovector di�erences between sites have physical meaning, the Hamiltonian should be
expanded in terms of these di�erences, not the pseudovectors themselves. Using this ap-
proach, we reduce the number of degrees of freedom associated with oxygen displacements
perpendicular to the O{B bonds from six to three, and raise the symmetry of the system
considerably. As a result, the Taylor expansion is signi�cantly simpli�ed.

The two other low-energy distortions, the FE and elastic distortions, are treated as in Ref.
12. Briey, for each unit cell of the ABO3 perovskite structure, we de�ne a FE local-mode
centered on the B site, and a displacement local mode centered on the A site. The former
is chosen in such a way that a uniform superposition of FE local modes reproduces the soft
TO mode obtained by diagonalizing the force-constant matrix at the Brillouin zone center.
The quantities fi � f(Ri) and ui are the vector amplitudes of the FE and translational
local modes, respectively, in the ith unit cell. (Note the di�erence in notation between
Ref. 12 and this paper.15) Inhomogeneous strains � are expressed in terms of di�erences
between ui in neighboring cells, and we add six extra degrees of freedom to describe the
homogeneous strain. Thus, the total energy Etot depends on the set of variables ffi;ai;uig
and the homogeneous strain, and is expanded in a Taylor series in terms of these quantities.
The expansion terms can be divided into four kinds, those involving the FE local modes
fi alone, the AFD modes ai alone, the strain variable ui alone, and the coupling between
them,

Etot = EF(ffg) + EA(fag) + EE(fug) + Eint(ff ;a;ug) : (2)

The part of the energy involving the FE local modes alone, EF(ffg), contains the on-site self
energy, dipole-dipole interactions, and short-range residual interactions. Their forms have
been given by equations in Ref. 12: Eq. (3) in Sec. II.B, Eq. (7) in Sec. II.C, and Eq. (9) in
Sec. II.D, respectively.15 The energy due to ui alone, EE(fug), is just the elastic energy, and
its form has been given by Eq. (11) of Ref. 12. Also, the energy terms representing coupling
between the fi and ui have been given in Eq. (14) of Sec. II.F of Ref. 12.
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It remains to present here the energy terms involving solely the AFD local modes ai and
those representing the coupling of the ai to the fi and ui. Their expressions are presented
in the following.

B. AFD energy terms

The AFD local modes ai are nonpolar and involve no dipole moment, so long-range
dipole-dipole interactions need not be considered, unlike for FE local modes. Recalling that
only the di�erences of the ai between neighboring sites are physical, it is not appropriate to
separate energy contributions into on-site and inter-site interactions, as we did for the fi.12

Instead, we separate the interaction into harmonic and higher-order contributions,

EA(fag) = EA;harm(fag) + EA;anharm(fag) : (3)

In principle, all the AFD energy terms should be expanded in terms of the �r expressed
through Eq. (1). For intersite interactions, this would become very complicated because of
the low crystal symmetry at the O sites. However, for harmonic terms, the expression can
be simpli�ed by expansion in terms of the ai directly with certain conditions enforced. In
this case, we can write

EA;harm(fag) = 1

2

X
ij

X
��

JA
ij;��ai�aj� : (4)

Here, � and � denote Cartesian components, and JA
ij;�� is a function of Rij and should decay

very fast with increasing jRijj. We need to impose conditions on the JA
ij;�� reecting the fact

that the dependence of the energy on the ai is only through di�erences between neighboring
sites [Eq. (1)]. The appropriate conditions are

X
j 2planem

JA
ij;�� = 0 ; (5)

where the sum is over sites j such that Rij;� = ma0. This reects the fact that if we make a
change aj ! aj + cẑ for all the pseudovectors in an x-y plane at a distance of m unit cells
away from the site i, the resulting the \force" on the pseudovector on site i should vanish.
It can be shown that with these conditions enforced, the interaction energy is only related
to pseudovector di�erence between adjacent sites.

The description in terms of the ai directly makes it possible to simplify the interaction
matrix JA

ij;�� by symmetry, since ai is centered on the high-symmetry sites. For a cubic
lattice, we have

on-site : JA
ii;��= 2�A2 ��� ;

1st nn : JA
ij;��= [jA1 + (jA2 � jA1 )�ij;�]��� ;

2nd nn : JA
ij;��= [jA4 + (jA3 � jA4 )�ij;�]���

+jA5 �ij;��ij;�(1� ���) ;

3rd nn : JA
ij;��= jA6 ��� + jA7 �ij;��ij;�(1 � ���) ;

4th nn : JA
ij;��= jA8 �ij;���� ; (6)
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where �ij;�=1 if Rij has a non-zero � component and 0 otherwise. We include in-plane
interactions (Ri;� = Rj;�) to 4th neighbor, since this kind of interaction is much stronger
than other interactions. The conditions Eq. (5) can then be simpli�ed to

�A2 + 2jA1 + 2jA4 + 2jA8 = 0 ;

jA2 + 4jA3 + 4jA6 = 0 : (7)

Thus, the complicated harmonic intersite interaction matrix for AFD local distortions can
be determined from seven independent interaction parameters.

The structural phase transition problem is intrinsically an anharmonic problem. Since
the harmonic modes may be unstable, it is necessary to introduce higher order terms. For
simplicity, we �rst only consider on-site anharmonic contributions associated with oxygen
atoms. Because of the tetragonal symmetry on the O sites, the lowest anharmonic terms
are of fourth order. Since each oxygen involves two nearest neighbor AFD pseudovectors,
this quartic term will take the form

EA;quart(fag) =X
i

X
d=�x

�A
n
[ay(Ri)� ay(Ri + d)]4 + [az(Ri)� az(Ri + d)]4

o

+
X
i

X
d=�x

A[ay(Ri)� ay(Ri + x)]2[az(Ri) � az(Ri + x)]2

+ cyclic permutations : (8)

Here, x = a0x̂, and �A and A are parameters to be determined from �rst-principles calcu-
lations.

In our previous work on BaTiO3 the intersite FE interactions have been expanded only
up to harmonic order. For AFD interactions the corresponding approximation would be to
truncate the interactions between the AFD-induced displacements of di�erent oxygen atoms
to harmonic order. [Such terms are already included in Eq. (6).] We �nd this approximation
to be satisfactory for those compounds with weak distortions, as in the case of BaTiO3 or
SrTiO3. For CaTiO3, the AFD distortion is very large and the transition temperature is
around 2000K. In this case, we �nd it necessary to include more complicated anharmonic
terms, such as third-order intersite interaction terms, for the AFD distortions. In fact, such
terms turn out to be responsible for inducing a displacement component corresponding to
an X-point phonon (with both O and Ca character) in CaTiO3. For NaNbO3, although the
distortion is not as strong (the highest transition temperature is around 700K), there are
many structures with very close free energy. We �nd that inclusion of the third-order AFD
terms does have a noticeable e�ect for these compounds, so we include these third order
interaction terms for CaTiO3 and NaNbO3.

We consider only those third-order interactions between AFD modes on two or three
neighboring lattice sites. We can follow the treatment of the harmonic intersite interactions
by listing all the possible interactions and using symmetry arguments to eliminate forbidden
terms. Following this approach leads to three kind of terms, and we would need three more
parameters to fully specify the Hamiltonian. Since the third-order terms are relatively weak
and the exact determination of the three parameters is costly, we investigate the relations
between these three parameters, and use a simple argument to combine the three terms to
form a single new term with only one free parameter to determine.
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The AFD interactions involve only the displacement of oxygen atoms. The strongest
energy di�erence is associated with the distortion of oxygen octahedra, or the change of the
length of a nearest-neighbor O{O bond �l. We can start by analyzing �l for two oxygens
at (0,0,a/2) and (a/2,0,0). We approximate the total-energy change as solely due to �l.
Expanding it as a function of the rotation vectors a(i) up to the third order, we obtain the
desired third-order intersite terms. Using the short-hand notations

a0(x) � a(Ri + x)� a(Ri) ;

a0(�x) � a(Ri � x)� a(Ri) ; (9)

the cubic coupling term involving one O{O bond is

B3[a
0
y(z)� a0y(x)][a

0
x(z) + a0z(x)]

2 : (10)

The other 11 nearest-neighbor O{O bonds will give rise to 11 other terms and the overall
total-energy contribution can be expressed as EA;cub = B3

P
iWi, where

Wi = f+[a0x(y)� a0x(z)][a
0
y(z) + a0z(y)]

2

�[a0x(�y)� a0x(z)][a
0
y(z)� a0z(�y)]2

�[a0x(y)� a0x(�z)][a0y(�z)� a0z(y)]
2

+[a0x(�y)� a0x(�z)][a0y(�z) + a0z(�y)]2
+ cyclic permutations g : (11)

This assumption that �l is solely responsible for the cubic intersite interactions signi�cantly
simpli�es the energy expression and reduces the number of expansion parameters from three
to one.

C. Coupling energy

There are three kind of coupling energy terms: those between FE and elasticity, between
FE and AFD, and between AFD and elasticity,

Eint = EF�E + EF�A + EA�E (12)

For simplicity, we consider only on-site couplings. The coupling between fi and ui (EF�E)
has been given by Eq. (14) in Sec. II.F of Ref. 12.15 Here, we expressions for EA�E and
EF�A.

The coupling between elasticity and AFD modes at lowest order can be written as

EE�A(fag; f�g) = 1

2

X
il��

Bl��x�l(Ri)[�ai;�(x)�ai;�(x) + �ai;�(�x)�ai;�(�x)]

+ cyclic permutations ; (13)

where �ai;�(d) � a�(Ri + d)� a�(Ri) and �l(Ri) is the six-component local strain tensor in
Voigt notation (�1 = e11, �4 = 2e23). �l(Ri) can be expressed as a function of ui following
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Sec. II.F of Ref. 12.15 Bl�� is a high order coupling tensor. Because of the symmetry, there
are only four independent coupling constants in Bl��,

B1yyx = B1zzx = B2xxy = B2zzy = B3xxz = B3yyz ;

B2yyx = B3zzx = B1xxy = B3zzy = B1xxz = B2yyz ;

B3yyx = B2zzx = B3xxy = B1zzy = B2xxz = B1yyz ;

B4yzx = B4zyx = B5xzy = B5zxy = B6xyz = B6yxz : (14)

All other elements are zero.
The lowest-order coupling between ai and fi is linear with both ai and fi. It takes the

form

EF�A
1 =

X
i

Gxyfx(Ri)[ay(Ri + z)� ay(Ri � z)]

+ cyclic permutations : (15)

However, in the AFD state, this term is zero. To account correctly for the coupling between
ai and fi, it is necessary to include higher-order terms. The lowest non-zero term in the
AFD state is quadratic in both ai and fi. De�ning wi;x by

wi;x =
1

8

X
d=�y;�z

[ax(Ri + d)� ax(Ri)] (16)

and similarly for wi;y and wi;z, we can write

EF�A
2 =

X
i

[ Gxxxxf
2
i;xw

2
i;x +Gxxyyf

2
i;x(w

2
i;y + w2

i;z)

+ cyclic permutations ] : (17)

(In principle a term Gxyxyfi;xfi;ywi;xwi;y could also be included, but for practical reasons we
have not done so in this work.) In summary, up to the fourth-order terms, the coupling
between ai and fi is expressed as

EF�A = EF�A
1 + EF�A

2 : (18)

III. FIRST-PRINCIPLES CALCULATIONS

The expansion parameters in the model Hamiltonian can be obtained from a set of
�rst-principles calculations. We use density-functional theory within the local density ap-
proximation (LDA). The technical details and convergence tests of the calculations can be
found in Ref. 10. The use of Vanderbilt ultra-soft pseudopotentials16 allows a low-energy
plane-wave cuto� to be used for �rst-row elements, and also allows inclusion of semicore
shells of the metal atoms. This makes high-accuracy large-scale calculations of materials
involving oxygen and 3d transition-metal atoms a�ordable. A generalized Kohn-Sham func-
tional is directly minimized using a preconditioned conjugate-gradient method.10;17;18 We
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TABLE I. FE soft-mode eigenvectors for ABO3 cubic perovskites SrTiO3, CaTiO3, and

NaNbO3. O k and O ? indicate oxygen displacement parallel and perpendicular to O|B bond,

respectively.

SrTiO3 CaTiO3 NaNbO3

�A 0.472 0.698 0.449

�B 0.612 0.330 0.625

�Ok -0.287 -0.157 -0.232

�O? -0.400 -0.436 -0.421

use a (6,6,6) Monkhorst-Pack k-point mesh19 for single-cell calculations (216 k-points in the
full Brillouin zone), and the corresponding smaller sets of mapped k-points for supercell
calculations.

The calculation of expansion parameters related to the FE modes follows the procedure
presented in Ref. 12, Sec. III. The soft mode eigenvectors for SrTiO3, CaTiO3, and NaNbO3

as calculated by King-Smith et al., are summarized in Table I. The calculated expansion
parameters for the FE modes are given in the top portion of Table II.

The calculation of the AFD expansion parameters follows a similar procedure as for the
FE ones. The AFD eigenvector itself does not need to be calculated, since it is determined
by symmetry. The LDA total energy vs. AFD distortion, with polarization along x and z,
and at k-points X=(�=a,0,0), M=(�=a,�=a,0), and R=(�=a,�=a,�=a), are calculated. The
arrangements of the AFD local modes are the same as for the FE-mode calculations as
shown in Figs. 3(a){(f) of Ref. 12. However, the arrangements at the � point (Fig. 3(a)
of Ref. 12) and at the X point (Fig. 3(b) of Ref. 12) involve no actual distortions. So the
work reduces to four 10-atom cell calculations and two 20-atom cell calculations needed to
determine jA1 , j

A
2 , j

A
3 , j

A
4 , j

A
6 , and jA5 + 2jA7 . The decomposition of jA5 and jA7 follows the

same argument as for the FE case. It is di�cult to perform su�cient LDA calculations to
carry out the decomposition, and probably not very important to do so. Instead, we rely
on the heuristic that the interaction between two AFD local modes should be minimal (in
practice, zero) when they are so arranged that reversing one of them induces a minimum
bond-length change. For the AFD case, this leads to jA6 +2jA7 = 0, allowing jA5 and jA7 to be
obtained separately. The fourth-neighbor interaction parameter jA8 is obtained from LDA
calculations on a 15-atom supercell.

As mentioned before, we need to include the e�ect of third-order intersite coupling in
the e�ective Hamiltonian in some compounds having large AFD distortions. This kind of
interaction generates a coupling among three distortions: an R-point mode with polarization
(110), an M-point (�=a,�=a,0) mode polarized along (001), and an X-point (0,0,�=a) mode
polarized along (110). To determine the strength of this coupling, we carry out a calculation
with the above R-point and M-point distortions frozen in (20-atom supercell), and calculate
the forces of X-point character. We �nd that the force on the A-metal atom (Ca or Na)
is non-zero, and opposite in sign to the force on the oxygen atom. This is in qualitative
agreement with the experimentally observed displacements in the low-temperature phase,
which are also opposite in sign. We then calculate the projection of these forces onto the
X-point mode, under the simplifying assumption that the latter consists of equal-amplitude
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TABLE II. Expansion parameters of the Hamiltonian for SrTiO3, CaTiO3, and NaNbO3. En-

ergies are in Hartree. FE local-mode amplitudes are in units of lattice constant (a= 7.30a.u.,

7.192a.u., and 7.396a.u. for SrTiO3, CaTiO3, and NaNbO3, respectively); AFD local-mode ampli-

tudes are in radians.

SrTiO3 CaTiO3 NaNbO3

FE on-site �2 0.0559 0.0240 0.0679

� 0.150 0.023 0.168

 -0.191 -0.006 -0.256

FE intersite j1 -0.02034 -0.01186 -0.02378

j2 0.04274 0.02750 0.03078

j3 0.005722 0.002040 0.006460

j4 -0.003632 -0.002886 -0.005446

j5 0.004882 0.001132 0.004820

j6 0.001416 0.000672 0.002358

j7 0.000708 0.000336 0.001178

FE dipole Z� 8.783 6.768 9.179

�1 5.24 5.81 4.96

ADF harmonic �A2 0.162238 0.022244 0.095852

jA1 0.010526 0.086972 0.034884

jA2 0.000820 0.000544 0.002360

jA3 -0.002782 -0.001398 -0.000272

jA4 -0.105414 -0.112050 -0.097678

jA5 0.009460 0.010792 0.009752

jA6 0.002577 0.001262 -0.000318

jA7 -0.001288 -0.000632 0.000160

jA8 0.013769 0.013956 0.014868

AFD 3rd Order B3 � 0.0056 0.0029

AFD 4th Order �A 0.05433 0.04970 0.03775

A 0.04706 0.02414 0.04301

Elastic B11 5.14 5.15 6.63

B12 1.38 1.22 0.96

B44 1.56 1.29 1.07

FE{E coupling B1xx -1.41 -0.59 -1.71

B1yy 0.06 0.06 0.50

B4yz -0.11 -0.10 0.00

AFD{E coupling BA
1yyx 0.260 0.234 0.316

BA
2yyx -0.068 -0.008 0.026

BA
3yyx 0.000 -0.034 0.031

BA
4yzx 0.044 0.040 -0.041

FE{AFD coupling Gxy 0.0061 -0.0001 0.0014

Gxxxx 0.53 0.72 0.35

Gxxyy 0.11 0.29 0.06

10



out-of-phase motion of the two atoms. This projection determines our third-order intersite
coupling parameter B3.

The calculation of the anharmonic coe�cient �A is performed with an R-point distortion
polarized along (001). Typically a set of eight calculations are performed for each compound.
The resulting LDA total energy is �tted to a polynomial E0 + c2a

2 + c4a
4 using standard

least-squares methods to extract �A2 and �A. A single R-point calculation with polarization
in the (111) direction is used to extract A.

The four parameters describing the coupling between AFD modes and elastic strains are
obtained by performing four more 10-atom supercell calculations: at the M point, a k (001),
with an isotopic strain �1 = �2 = �3 = 0:01; at the M point, a k (001), with strain �1 = 0:01;
at the X point, a k (001), with strain �1 = 0:01; and at the R point, a k (111), with strain
�4 = �5 = �6 = 0:01. Extra care has been taken to ensure cancellation of errors due to
k-point sampling and basis-size di�erences for the di�erent unit cells involved.

Finally, the couplings between FE and AFD modes are determined as follows. The
harmonic coupling Gxy is determined by considering a geometry in which the primitive cell
has been tripled along the x direction, and for which fx is non-zero in two primitive cells
and ay is non-zero in the third. The anharmonic couplings Gxxxx and Gxxyy are determined
from a series of calculations on a doubled-cell con�guration in which f(�) k (100) and a(R)
k (100) or (010).

The calculated parameters for all three compounds are listed in Table II. We note
that the intersite interaction parameters between AFD local modes have a much stronger
anisotropy than those between FE modes. For FE, the j's show no marked anisotropy.
(Of course, when the Coulomb interaction is included, the actual interaction between FE
modes are quite anisotropic). On the other hand, for the �rst-neighbor AFD couplings, jA1
is more than one order of magnitude larger than jA2 , which is reasonable since jA2 involves
no distortion of oxygen octahedra. For second neighbors, jA4 is again much larger than the
others, con�rming that the distortion of oxygen octahedra dominates the energy for AFD
distortions. This observation that the in-plane interaction parameters are much stronger
than the out-of-plane ones is what prompted us to include also the fourth-neighbor in-plane
AFD interactions in the e�ective Hamiltonian.

IV. RESULTS

After the expansion parameters have been determined from �rst-principles calculations,
the �nite-temperature properties of the compounds can be calculated using Metropolis
Monte Carlo (MC) simulations.20 The details of the MC simulations involving FE and
elastic distortions have been described in Sec. IV of Ref. 12. With the AFD distortions
included, the number of degrees of freedom is increased from 6 to 9 per unit cell. All the
details are very similar, the main di�erence being that the AFD degrees of freedom introduce
many more possibilities for modes which may go soft. The primary candidates for soft AFD
modes are three modes at the R point and one mode at each of the three M points, all of
them involving only rigid rotations of oxygen octahedra. We thus have to consider a rather
complicated set of order parameters, and we anticipate that complex phases may form.

The results for the three di�erent compounds SrTiO3, CaTiO3, and NaNbO3 will be
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FIG. 1. (a) Intersite correlations of AFD local modes haz(0; 0; 0)az(x; y; z)i in SrTiO3 at

T=150K. The correlations in the x-z plane (y = 0, top) and the x-y plane (z = 0, bottom)

are shown. Each small square represents one lattice site; the origin lies at the center. Grey scale

denotes the degree of correlation: black for perfect correlation, white for zero correlation. (b) Same

for FE local-mode correlations hfz(0; 0; 0)fz(x; y; z)i. (c) Corresponding FE local-mode correlations

in BaTiO3 at T=320K.

presented in the three following subsections. Because of the strong sensitivity of struc-
tural phase transition temperatures to the lattice constant and the well-known � 1% LDA
underestimate of lattice constants, we concentrate on presenting calculated transition tem-
peratures and transition sequences at the experimental lattice constants. We thus implicitly
apply a negative �ctitious pressure to the simulation cell, as explained in Sec. IV of Ref. 12.

A. SrTiO3

Thermodynamic properties for this compound have been calculated and published in
Ref. 14. A pressure P0 = �5:4GPa is applied to restore the experimental lattice constant.
A transition from the cubic phase to a tetragonal AFD structure at 130K, and two further
FE phase transitions at 70K and 10K, were predicted. A later quantum path-integral MC
simulation revealed that quantum uctuations suppress the FE phases entirely, and reduce
the AFD phase transition temperature to 110K.21 This gives excellent agreement with ex-
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periment, which reveals a single AFD phase transition at 105K,22 and no unambiguous phase
transition (but the presence of \quantum paraelectric" behavior23{25) at low temperature.
Our calculated pressure-temperature phase diagram showed that the FE and AFD insta-
bilities have opposite trends with pressure, and FE and AFD instabilities tend to suppress
each other.

We have performed some further simulations to investigate the behavior of the AFD
and FE local modes, and in particular the nature of the intersite correlations for FE and
AFD local modes in the cubic phase but just above the phase transition temperature. The
M-point AFD modes do not appear to be important for SrTiO3, so we focus on the two
vector order parameters f(�) and a(R) associated with the zone-center FE modes and the
zone-corner AFD modes. Since the order parameters are vectors, the correlation functions
are second-rank tensors. These can be calculated from our simulations as

S��(x; y; z) = hv�(x0; y0; z0)v�(x0 + x; y0 + y; z0 + z)i ; (19)

where the average is taken over all the sites x0; y0; z0 in the MC simulation cell and over all
MC sweeps t. Here the v� denote the components of the FE or AFD order parameters [f�
for FE, a�(�)l+m+n for AFD, where Ri = lx + my + nz]. We can get a good picture of
the nature of the correlation by investigating the diagonal elements (� = �) only. Since the
three Cartesian directions are equivalent, it su�ces to present Szz(x; y; z).

In Fig. 1(a), we show the calculated AFD correlation function SAFD
zz (x; y; z) in the two

planes x-z and x-y for SrTiO3 at T=150K, in the cubic phase but just above the AFD phase
transition temperature of 130K. We �nd that the correlations are quite strong in x-y plane,
with a correlation length of about three lattice constants. Along the z direction, even the
nearest-neighbor vectors are almost completely uncorrelated. Thus, the shape of the \equal
correlation surface" for AFD local modes is disc-like. This is easy to understand on the basis
of the RUM picture.2 Since the AFD local modes involve a rotation of oxygen octahedra,
and any distortion of the oxygen octahedra involves a large energy cost (as shown by the
large magnitude of j1, j4, and j8), the AFD octahedral rotations about ẑ correlate strongly
in the x-y direction. On the other hand, the rigidness of the octahedra does not impose any
relation between z-polarized AFD modes in di�erent z planes (as reected in the very small
j2). Thus, the pancake-like correlation naturally results.

Fig. 1(b) shows the corresponding FE correlation function SFE
zz (x; y; z) for SrTiO3 at

T=150K (the FE phase transition occurs at 70K). Its behavior is just the reverse of the
AFD modes, being strong along the z direction and weak in the x-y plane, and resulting
in a needle-shaped \equal correlation surface." This behavior is a direct consequence of
the anomalously large mode e�ective charges in the cubic perovskite compounds26 which
strongly suppress the longitudinal FE uctuations and leads to the strong correlation of fz
in the z direction. On the other hand, the transverse FE modes can easily go soft, resulting
in a short correlation length for fz in the x-y plane.

The above picture of the correlation functions for AFD and FE local modes are presum-
ably quite general for the cubic perovskite compounds. For the FE modes, we decided to
repeat the calculations for the case of BaTiO3, where the AFD instability does not intervene.
We show in Fig. 1(c) the correlation function calculated in the cubic phase at T=320K, about
20K above the FE phase transition temperature. We can see the behavior of the correlations
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FIG. 2. The probability distribution of the Cartesian component of the local-mode variable ax
for SrTiO3 in the cubic phase at T=140K (dashed line) and T=150K (solid line).

is again needle-like and even more pronounced than for SrTiO3, presumably because we are
closer to the FE transition temperature. (An elongated supercell was used to accomodate
the correlations in this case.)

As was done for the FE modes in BaTiO3,11 it is revealing to compute the equilibrium
distribution of one cartesian component of the AFD order parameter a(R) in the cubic phase
just above the phase transition temperature in SrTiO3. This is shown in Fig. 2, where it
can be seen that the distribution looks approximately Maxwellian. This is indicative of a
transition having a character much closer to the displacive than to the order-disorder limit.

B. CaTiO3

CaTiO3 is one of the more complicated perovskites. Experimentally, it is found to have
two stable phases, an orthorhombic phase at lower T and a cubic phase above 1530K.27 Some
recent experiments suggest that the transition is to a highly disordered cubic phase.28 The
room-temperature orthorhombic phase has a very complicated structure with a 20-atom unit
cell. The displacements of all the atoms away from their idea positions have been determined
in Ref. 29. The re�ned structure as a function of temperature has also been determined
recently using X-ray di�raction.30;31 This complicated structure can be decomposed into a
simultaneous freezing in of three AFD modes: an R-point mode polarized along (1�10) with
rotation angle 0.20 (angles in radians), an M-point mode polarized along (001) with rotation
angle 0.14, and an X-point mode polarized along (1�10). The X-point mode involves not only
the rotation of oxygen octahedra, but also an associated displacement of Ca atoms. The
ratio of O and Ca displacement is about 1 : �3 and the oxygen octahedral rotation angle is
only about 0.03.

For such a complicated structure, even a complete �rst-principles determination of its
T = 0 structure would be very di�cult. However, we can arrive at a partial understanding
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FIG. 3. (a) Calculated AFD order parameters a(R) of CaTiO3 vs. T at P0 = �11:3GPa. (b)

Calculated FE and AFD order parameters of NaNbO3 vs. T at P0 = �4:3GPa.

of this structure as follows. Our calculations show that the reference cubic structure is
unstable towards either the R-point or the M-point AFD mode individually (negative !2),
whereas it is stable with respect to the X-point mode individually (positive !2, no double-well
behavior). In fact, the X-point mode involves a strong distortion of the oxygen octahedron,
and thus is far from soft. However, the symmetry of the crystal is such that if both the
R-point and M-point AFD mode distortions are already simultaneously present, then the Ca
and O atoms experience forces in the pattern of the X-point mode, as a result of the cubic
anharmonic interactions discussed in Sec. IIB. Thus, under these conditions the crystal would
necessarily acquire some X-point mode distortion. We therefor conclude that the appearance
of the X-point mode distortion must be the result of the third-order coupling between R-,
M-, and X-point AFD modes. This is a major reason why we chose to include the third-order
coupling in our model Hamiltonian. The strain coupling is expected to be important in the
determination of the actual magnitude of the X-mode distortion, complicating the problem
and making a complete quantitative LDA determination of the X-mode amplitude di�cult.

To obtain the phase transition sequence, we start the MC simulation at a high tem-
perature (T > 2000K) and equilibrate the system for 10,000 MC sweeps. An isotropic
pressure P0 = �11:3GPa is imposed to restore the experimental lattice constant, and all
the subsequent simulations are done under this pressure. The temperature is reduced in
small steps (as small as 10K around the transition temperature) with 30,000 MC sweeps
at each T to ensure equilibration. The order parameters are accumulated over the last
20,000 MC sweeps, after checking that they do not vary signi�cantly over this period. In
our simulation, we �nd that except for the R-point AFD order parameters a(R), all other
FE or AFD order parameters are zero throughout the simulation. So the only phase tran-
sition we observe is associated with a(R). Fig. 1(a) shows the calculated order parameters
a(R) as a function of temperature. (What we actually plot are the averaged maximum,
intermediate, and minimum absolute values of the order-parameter components.) At high
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temperature (T > 1800K) the system is in the cubic structure, where all the components
are zero. The material goes through a phase transition at 1750K, where all three order
parameter components increase simultaneously. Our phase transition temperature is close
to the experimentally measured 1530K, but we obtain the wrong low-temperature structure.
Ours is rhombohedral with a 10-atom cell, instead of orthorhombic with a 20-atom cell as
observed experimentally.

The di�erence between our theoretical result and experiment is not quite as dramatic as
it might seem. Both the structure and the structural energy are very similar for the R-point
and the M-point AFD mode polarized along (001). Note that in the observed structure, the
amplitude of the M-point mode is about

p
2=2 times the the amplitude of the R-point mode

polarized in the (1�10) direction. Thus, we can say that the main di�erence between our
calculated structure and the observed one is that one component of the R-point AFD mode
is replaced by an M-point mode in the observed structure. As argued above, the additional
presence of the X mode is just a result of third-order anharmonic coupling. In fact, we
�nd that if we arti�cially increase the third-order coupling constant B3 by a factor of 5, we
recover the experimental T = 0 structure in our MC simulations.

Clearly, the fact that the structure is strongly a�ected by relatively weak anharmonic
intersite interactions makes the determination of the correct low-temperature phase very
di�cult in CaTiO3. It is possible that a more careful treatment of the cubic intersite inter-
actions (for example, an independent determination of the coupling constants associated with
all three of the cubic anharmonic invariants discussed in Sec. II.B, or three-site or further-
neighbor terms) might bring a better agreement with experiment, although one should not
rule out the possibility that neglect of quantum uctuations21 or intrinsic limitations of the
LDA might be at fault.

C. NaNbO3

Experimentally, NaNbO3 is probably the most complex cubic perovskite known. The
high-temperature phase is the simple prototype cubic structure as in the other cubic per-
ovskites. Below 910K, a whole series of structural phase transitions has been found and at
least six more phases have been identi�ed. As the temperature decreases, the compound �rst
goes through a cubic{tetragonal transition at 910K with freezing in of a(R) modes polarized
along one axis. There are then three orthorhombic phases present in the temperature range
845{638K, the most complicated having a unit cell containing 24 NaNbO3 formula units.
All of these phases can be regarded as given by rigid rotations of oxygen octahedra, accom-
panied by small induced X-point distortions. From 638K down to at least 170K, NaNbO3

is antiferroelectric with an orthorhombic unit cell containing eight formula units. At even
lower temperature, the crystal has been reported to transform into either a rhombohedral32

or monoclinic1 structure.
The complexity of the structural phase-transition sequence suggests the presence of sev-

eral competing structural instabilities with very similar free energies. In principle, all the
distortions involved in the observed structures of NaNbO3 are included in our model. How-
ever, it is not realistic to expect that the calculated structural energies and free energies will
be in exactly the right order, given the complexity of the problem and the level of accuracy
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of current �rst-principles based approaches. Nevertheless, we believe a �rst-principles study
of NaNbO3 is still important in identifying the most prominent distortions, as well as for
demonstrating the limitations of such approaches.

The determination of the structure is done using MC simulations on a cubic 12�12�12
simulation supercell. An isotropic pressure P0 = �4:3GPa is imposed to restore the experi-
mental lattice constant, and all the subsequent simulations are done under this pressure. We
start the simulation at very high temperature and equilibrate. The temperature is reduced
in small steps ranging from 10K to 50K depending on proximity to a phase transition. At
each temperature step, at least 40,000 MC sweeps are used to ensure that equilibrium is
reached. The order parameters are accumulated over the last 30,000 MC sweeps.

The calculated averages of order parameters a(R) and f(�) are shown in Fig. 1(b) as a
function of temperature. All other modes are found to be zero throughout the simulation.
As was the case for CaTiO3, the averaged maximum, intermediate, and minimum absolute-
value components are plotted. At high temperature (T > 800K), the system is in the cubic
structure with all the order-parameter components close to zero. As T decreases to about
700K, one AFD component increases rapidly and becomes signi�cantly non-zero, and the
structure transforms from cubic to tetragonal. With further decrease of temperature, a
second component became non-zero, indicating the occurrence of an orthorhombic phase.
Below 560K, a third AFD component grows and the structure becomes rhombohedral. At
very low temperature (below 50K), the simulation also apparently shows a sequence of three
ferroelectric transitions, and the compound ends up in a rhombohedral ferroelectric structure
at very low temperature.

Our �rst cubic{tetragonal phase transition compares favorably with experiment; we ob-
tain the correct structure and underestimate the transition temperature by only �20%. In
the orthorhombic phase, however, the calculated structure is much simpler than the ob-
served one. Only one orthorhombic phase seems to occur in our simulation. However,
Fig. 1(b) shows signs of uctuations occurring in the vicinity of this phase (these uctua-
tions persist even if the number of MC sweeps is increased signi�cantly). This indicates that
the orthorhombic phase is not very stable, and may involve a mixing of di�erent phases.
Moreover, the transitions do not appear very distinct in Fig. 1(b) as a result of �nite-size
broadening, so increasing the lattice size may help to resolve the di�erent phases. However,
the computational load increases rapidly with increasing lattice size, and it becomes im-
practical to carry out simulations at much larger size. Our inability to get the correct AFE
phase at room temperature is probably the most signi�cant failure of our approach. Our
zero-temperature structure is ferroelectric, but since the FE phases occur only at such low
temperatures, it is likely that quantum uctuations would need to be included to determine
the actual low-temperature structure.21

V. DISCUSSION AND CONCLUSION

In this and previous studies, we perform a series of ab initio studies of the thermody-
namic properties of perovskite compounds. Without introducing any adjustable parameters,
we have calculated structural transition sequences, transition temperatures, phase diagrams,
and other thermodynamic properties based on �rst-principles calculations. For compounds
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with simple phase transitions, like BaTiO3 and SrTiO3, our calculated thermodynamic prop-
erties agree very well with experiment observations. For more complicated compounds like
CaTiO3 and NaNbO3, our results are less satisfying.

There are two major sources of errors, the inaccuracy of LDA calculations and the im-
perfection of our models. Our LDA calculations have been carefully performed to avoid
possible errors, and convergence has been carefully tested. As for the intrinsic accuracy of
LDA, our calculated structural parameters and energies are within a few percent of experi-
mental values. Although this is the usual high accuracy observed generally for the LDA, it
is unfortunately not enough for truly accurate determination of the thermodynamic prop-
erties of perovskites. For example, it is embarrassing that we are forced to choose between
carrying out the calculations at the theoretical equilibrium lattice constant or the experi-
mental lattice constant (negative �ctitious pressure); this choice can a�ect phase transition
temperature by �100%. We regard this as being the most important probable source of
error in our calculations.

It is also possible to improve our model Hamiltonian. For example, our restricted as-
sumption for the form of the third-order intersite interactions may be lifted, resulting in a
signi�cantly more complicated model Hamiltonian. Also, other higher-order terms can be
included in the Hamiltonian. It would also be possible to include more degrees of freedom
per cell, or include eigenvector information from more k-points of the Brillouin zone when
de�ning the local-mode vectors, to treat other phonon excitations more accurately.33 How-
ever, in view of the current accuracy of �rst-principles calculations, we are not sure that
these modi�cations would dramatically improve our results.

Finally, we emphasize that all of the MC simulations reported here treat the atomic mo-
tion purely classically. As mentioned above, we have recently reported results of quantum
path-integral MC simulations showing that quantum uctuations of the atomic coordinates
(i.e., zero-point motion) can shift transition temperatures by tens of degrees, and in some
cases even eliminate delicate phases.21 Certainly this remains an important avenue of in-
vestigation for CaTiO3 and NaNbO3, but we nevertheless think it unlikely that inclusion
of quantum uctuations would immediately resolve the discrepancies with the experimental
phase diagrams for these compounds.

In conclusion, we have extended our previous �rst-principles theory for perovskite ferro-
electric phase transitions to treat also antiferrodistortive transitions. We apply this approach
to the three cubic perovskite compounds SrTiO3, CaTiO3, and NaNbO3, and calculate their
thermodynamic properties including phase transition sequences and transition temperatures.
For SrTiO3, our calculated results are in good agreement with experiment. For CaTiO3 and
NaNbO3, our calculated structural transitions have the correct general trend and the tran-
sition temperatures are in rough agreement with experiment, but the calculated transition
sequences are not correct in detail. We attribute this to the larger distortions and many
multiple competing instabilities in these compounds. For SrTiO3, we also analyzed the in-
tersite correlations for both FE and AFD local modes, �nding needle-like and pancake-like
correlations respectively for FE and AFD modes as expected on physical grounds.
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