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A converse approach to the calculation of NMR shielding tensors
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We introduce an alternative approach to the first-principles calculation of NMR shielding tensors.
These are obtained from the derivative of the orbital magnetization with respect to the application
of a microscopic, localized magnetic dipole. The approach is simple, general, and can be applied to
either isolated or periodic systems. Calculated results show very good agreement with established
methods and experimental results.
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Nuclear magnetic resonance (NMR) measures the tran-
sition frequencies for the reorientation of nuclear mag-
netic moments in an applied magnetic field. Since the
local magnetic field differs from the external one as a
result of electronic screening, NMR spectroscopy [1] has
been recognized since 1938 [2] to be a powerful experi-
mental probe of local chemical environments, including
structural and functional information on molecules, liq-
uids, and increasingly, on solid-state systems.

First-principles calculations of NMR spectra were first
developed in the quantum chemistry community [3] and
applied to molecules and clusters, but applications to
extended crystalline systems were hindered by the dif-
ficulty of including macroscopic magnetic fields, which
require a non-periodic vector potential and therefore de-
stroy Bloch symmetry. In 1996, Mauri et al. developed a
linear-response approach for calculating NMR shieldings
in periodic crystals based on the long-wavelength limit of
a periodic modulation of the applied magnetic field [4],
while in 2001 Sebastiani and Parrinello used the Wannier
representation to derive an alternative linear-response
approach based on the application of an infinitesimal uni-
form magnetic field [5]. More recently, attention has fo-
cused on the development of these approaches in the con-
text of pseudopotential and projector-augmented wave
(PAW) descriptions [6–8], leading to a growing use of
these methods in combination with modern plane-wave
pseudopotential codes [9, 10]. Despite these advances,
existing methods for computing NMR shifts in crystalline
systems remain complex, in that they require a linear-
response implementation with significant extra coding.
In principle, the long-wavelength approach [4] could be
implemented using standard ground-state calculations,
but only at the cost of introducing prohibitively large
supercells. Furthermore, constant magnetic fields can
be dealt with in supercell calculations—such as e.g. in
Ref. [11]—provided they are commensurate, with an in-
teger number of flux quanta per supercell. The draw-
back is that, even for large supercells, the lower limit of
commensurate fields is much larger than the field values
actually achievable in a laboratory.

In this Letter, we reformulate the problem of comput-
ing NMR shielding tensors in such a way that the need for
a linear-response framework is circumvented. For clarity,
the previous formulations shall be referred to here as di-

rect approaches, in that a magnetic field is applied and
the local field at the nucleus is computed. Our alterna-
tive, converse approach obtains the NMR shifts instead
from the macroscopic magnetization induced by magnetic
point dipoles placed at the nuclear sites of interest. We
demonstrate the method by a first application to small
molecules, finding excellent agreement with experiment
and with calculations using the direct approach. Our new
method is both simple and general, provides a straight-
forward alternative avenue to the computation of NMR
shifts in complex materials that requires very little cod-
ing, and can be extended to electronic-structure methods
where a linear-response formulation is impractical.

Let us start by considering a sample to which a con-
stant external magnetic field Bext is applied. The field
induces a current that, in turn, induces a magnetic field
Bind(r) such that the total magnetic field is B(r) =
Bext + Bind(r). In NMR experiments the applied fields
are small compared to the typical electronic scales; the
absolute chemical shielding tensor σ

↔
is then defined via

the linear relationship

Bind
s = −σ

↔
s · Bext , σs,αβ = −

∂Bind
s,α

∂Bext
β

. (1)

The index s indicates that the corresponding quantity is
to be taken at position rs, i.e., the site of nucleus s. NMR
experiments usually report the isotropic shielding σs =
1
3Tr[ σ↔s ] via a chemical shift that is defined by convention
as −[σs − σref]. Here σref is the isotropic shielding of a
reference compound, e.g., tetramethylsilane for 1H and
13C NMR.

As mentioned above, direct approaches [4–8] calculate
the chemical shielding from the current response of the
system to an external magnetic field using perturbation
theory. We propose a fundamentally different approach
that circumvents the need to apply an external mag-
netic field, relying instead on a thermodynamic relation-
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ship between mixed partial derivatives. Using Bs,α =
Bext

α +Bind
s,α, Eq. (1) becomes δαβ −σs,αβ = ∂Bs,α/∂B

ext
β .

For the moment, we assume that Bext can be replaced by
the total macroscopic B-field in the denominator of this
equation, thus neglecting the macroscopic induced field.
(This restriction, appropriate for normal components in
a slab geometry, will be relaxed shortly.) The numerator
may be written as Bs,α = −∂E/∂ms,α, where E is inter-
preted either as the energy of a virtual magnetic dipole
ms at one nuclear center rs in the field B for a finite
system, or as the energy per cell of a periodic lattice of
such dipoles; we adopt the latter view. Then, writing
the macroscopic magnetization as Mβ = −Ω−1 ∂E/∂Bβ

(where Ω is the cell volume),

δαβ −σs,αβ = −
∂

∂Bβ

∂E

∂ms,α
= −

∂

∂ms,α

∂E

∂Bβ
= Ω

∂Mβ

∂ms,α
.

(2)
Thus, σ↔s accounts for the shielding contribution to the
macroscopic magnetization induced by a magnetic point
dipole ms sitting at nucleus rs and all of its periodic repli-
cas. In other words, instead of applying a constant (or
long-wavelength) field Bext to an infinite periodic system
and calculating the induced field at all equivalent s nu-
clei, we apply an infinite array of magnetic dipoles to all
equivalent sites s, and calculate the change in magnetiza-
tion. Since the perturbation is now periodic, it can sim-
ply be computed using finite differences of ground-state
calculations; isolated system can be handled straightfor-
wardly in the spirit of the supercell approximation. This
is our principal result, and it is viable for periodic sys-
tems only because of the availability of the recently in-
troduced modern theory of magnetization [12–15]. Note
that M = ms/Ω + Mind, where the first term is present
merely because we have included magnetic dipoles by
hand. It follows that the shielding is related to the true
induced magnetization via σs,αβ = −Ω ∂M ind

β /∂ms,α.
It is useful to pause here and consider the analogy

of the Born [16] (or dynamical) effective charge tensor
Z∗

s,αβ , which may be regarded as (i) the component of the
force Fs in direction α on site rs by a unit macroscopic
electric field E in direction β (at zero nuclear displace-
ment), or alternatively as (ii) the β-component of the
macroscopic electric polarization P linearly induced by a
unit displacement of nucleus s and its periodic replicas in
direction α in vanishing macroscopic electric field. Since
the force on nucleus s is given by Fs,α = −∂E/∂rs,α, (i)
and (ii) are related by

Z∗
s,αβ = −

∂

∂Eβ

∂E

∂rs,α
= −

∂

∂rs,α

∂E

∂Eβ
= Ω

∂Pβ

∂rs,α
, (3)

in close analogy with Eq. (2). Note that, in order to com-
ply with the Born definition, one must choose the lattice-

periodical solution of Poisson’s equation, corresponding
to vanishing macroscopic electric field. Other choices
are possible and lead to other kinds of effective charges,

which are all related to each other by means of the di-
electric constant [17]. By comparing Eq. (3) to Eq. (2)

we notice that the genuine analogue to
↔
Z∗

s is 1− σ↔s (and
not σ↔s), as indeed the names “effective” vs. “shielding”
imply. The analogy between the electric and magnetic
cases would be more direct if only the nucleus carried
a magnetic monopole charge; the NMR shielding would
then be related to the magnetic force on site s induced
by a macroscopic magnetic field, just as Z∗ is the electric
force induced at rs by a macroscopic electric field.

As in the electrical case [17], the choice of mag-
netic boundary conditions corresponds to a choice of
the shape of a macroscopic finite sample. Following
Ref. [18], the shape effects are embedded in the depo-
larization coefficients nα (with

∑

α nα = 1), whose spe-
cial cases are the sphere (nx=ny=nz=1/3), the cylin-
der along z (nx=ny=1/2, nz=0), and the slab normal
to z (nx=ny=0, nz=1). The main relationship for the
macroscopic fields in Gaussian units may be written as
Bα = Bext

α + 4π(1 − nα)Mα. It can be seen that for
the slab the normal component of B coincides with the
one of Bext. Hence our computed σs,zz are suitable
for direct comparison with measurements of the normal
component performed on a slab-shaped sample. Assum-
ing non-magnetic media with small, isotropic suscepti-
bility χ, it can be shown that the shielding for a gen-
eral shape is related to our calculated one by σshape

s,αβ ≃
σs,αβ−δαβ 4πχ(1−nβ). For the special case of a spherical

sample we have σsphere
s,αβ ≃ σs,αβ − (8π/3)χ δαβ.

In order to calculate the shielding tensor of nucleus
s using Eq. (2), it is necessary to calculate the induced
orbital magnetization due to the presence of an array of
point magnetic dipoles ms at all equivalent sites rs. The
vector potential of a single dipole in Gaussian units is
given by [19]

A0(r) =
ms × (r − rs)

|r − rs|3
. (4)

For an array of magnetic dipoles A(r) =
∑

R
A0(r−R),

where R is a lattice vector. Since A is periodic, the
average of its magnetic field ∇ × A over the unit cell
vanishes; thus, the eigenstates of the Hamiltonian re-
main Bloch-representable. In the Fourier representation
A(r) =

∑

G 6=0 Ã(G) eiG·r with

Ã(G) = −
4πi

Ω

ms × G

G2
e−iG·rs , (5)

where the reciprocal lattice vector G = 0 may be ex-
cluded from the sum with no loss of generality. Note that
we have implicitly chosen the transverse gauge ∇·A = 0,
which is apparent from G · (ms × G) = 0. The periodic
vector potential A(r) can now be included in the Hamil-
tonian with the usual substitution for the momentum
operator p → p − e

cA. As a result, the kinetic energy
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operator becomes

p2

2me
−→

p2

2me
−

e

mec
A · p +

e2

2mec2
A2 , (6)

where me is the electronic mass and c is the speed of
light. Due to our choice of gauge, p and A commute. We
can now calculate the shielding according to Eq. (2) by
solving for the ground state with the additional terms of
Eq. (6) included in the Hamiltonian, and then calculating
the resulting change in orbital magnetization [20].

As an initial test, we have applied our converse ap-
proach to the calculation of the NMR chemical shifts for
small molecules in a supercell geometry, since these can
be directly compared with previous results obtained by
Mauri et al. using the direct method [4]. Because we use a
large supercell with vacuum between molecules, the mag-
netic susceptibility of the system effectively vanishes, and
our computed σ↔s can be compared to the experimental
one without any shape correction. For the same reason,
the recently-developed theory of orbital magnetization
for extended systems [12–15] or its single k-point exten-
sion [21] is not needed, and we compute the induced mag-
netization directly from the current distribution (param-
agnetic plus diamagnetic), which is

j(r) =

occ
∑

n=1

[ eh̄

me
Im

[

ψ∗
n(r)∇ψn(r)

]

−
e2

mec
A(r)|ψn(r)|2

]

.

(7)
We implemented this approach into pwscf, part of the
Quantum-ESPRESSO distribution [22]. Here, the sim-
plicity of the converse method becomes obvious—the im-
plementation only required additional coding of the order
of 100 lines. We used a local-density exchange-correlation
functional as in Ref. [4], and the structural parameters
have been taken from footnote [22] therein, in order to
allow for a close comparison between the direct and con-
verse methods. We chose a dipole perturbation |ms| of
1µB, although the results are numerically insensitive to
dipoles in the range from 10−6 to 103µB.

First, we used Coulombic potentials (i.e., a plane-wave
all-electron approach) with a high plane-wave energy cut-
off of 500 Ry to calculate the 1H NMR chemical shielding
of several small molecules. Our results are given in Ta-
ble I together with experimental and theoretical values.
It is immediately obvious that the direct and converse
methods give almost identical results, validating our ap-
proach.

Second, we performed these calculations in a pseu-
dopotential approximation, since plane-wave codes use
pseudopotentials to allow the use of a lower kinetic-
energy cutoff and, hence, greater computational effi-
ciency. Two complications need to be taken into account
in this case. First, a Blöchl-like PAW reconstruction
needs to be performed, as shown by Pickard and Mauri
[6], for all elements beyond the first row. Since, at the
moment, we are only concerned with hydrogen shielding,

TABLE I: Hydrogen NMR chemical shielding σ in ppm for
several different molecules. Values for the direct method are
taken from Ref. [4]. The pseudopotential results for the direct
method—according to footnote [21] of Ref. [4]—have been
corrected by 0.3 ppm in order to allow a better comparison
between the direct and converse methods.

exp. all-electron pseudopotential

direct converse direct converse

H2 26.26 a 25.9 25.9 25.6 25.6

HF 28.51 a 28.4 28.5 28.1 28.1

CH4 30.61 a 30.7 30.7 30.4 30.4

C2H2 29.26 b 28.6 29.2 28.3 28.2

C2H4 25.43 b 24.5 25.4 24.2 24.0

C2H6 29.86 b 29.7 29.7 29.4 29.4
a Reference [23].
b Reference [24].

we have neglected this issue. A second and more sub-
tle point concerns pseudopotentials that contain nonlocal
projectors (as it is usually the case when the Kleinman-
Bylander separable form is used [25]). This becomes ap-
parent if the effect of applying a constant vector potential
A0 is considered. Such a gauge change should not pro-
duce any observable effects, and indeed does not because
of cancellations between the substitution p → p − e

cA0

for the momentum operator and ψ → ψe(ie/h̄c)A0·r for all
wavefunctions. However, if the pseudopotential is nonlo-
cal, a similar cancellation is ensured only if the nonlocal
projectors |βlm〉 are phase-twisted according to [6, 26]

∑

lm

vl|βlm〉〈βlm| →
∑

lm

vl e
ie

h̄c
A0·r|βlm〉〈βlm|e−

ie

h̄c
A0·r ,

(8)
where the indices l and m correspond to orbital and
azimuthal angular momenta and vl is the Kleinman-
Bylander coefficient. When the vector potential is not
constant, as in Eq. (4), the correct choice of phase twist
is generally not obvious. Nevertheless, it is a reasonable
first approximation to adopt Eq. (8) with A0 replaced by
A(ri) for all nonlocal projectors located on the atom at
ri. That is, we assume that A(r) is constant throughout
the small core region in which the projector differs from
zero. Because this approximation is not perfect, however,
the current density j(r) still has an erroneous contribu-
tion jerr(r) inside the core regions. We have found that
we can largely correct for this remaining error by identify-
ing jerr(r) through its unphysical property ∇· jerr(r) 6= 0.
More precisely, we calculate the first moment of the cur-
rent divergence

∆Ji =

∫

core i

d3r r
(

∇ · j(r)
)

, (9)

and add to the total current of Eq. (7) a “current δ-
function” of strength −∆Ji located at ri before comput-
ing the magnetization.



4

Taking all the above into account, we have again calcu-
lated the hydrogen NMR chemical shieldings of the same
molecules as before. Our pseudopotentials were of the
Troullier-Martins type [27]; for H we used a local pseu-
dopotential, and for all other atoms we included a nonlo-
cal s-projector. We find convergence of the shielding for
a cutoff of 70 Ry, and our results for the isotropic shield-
ing are reported in Table I. Again, it can be seen that
the direct and converse approaches give almost identical
results.

We turn now to a discussion of the relative advantages
and disadvantages of the converse method compared with
the direct method. A potential disadvantage of the con-
verse method is that in order to calculate the shielding
tensor for N atoms, we need to perform 3N calculations.
Using the direct method, on the other hand, one obtains
the shieldings of all N atoms at once by only perform-
ing three calculations. However, in many cases one is
not interested in the shielding of all atoms in the system,
but rather only in a few, e.g., near a binding site of a
large molecule. In this case, the methods may be com-
petitive. But the main advantage of the converse method
is really the simplicity of its implementation, in that it
works via finite differences of ground-state calculations
and does not require a linear-response implementation.
This is likely to be a significant advantage for future
applications in conjunction with more complex forms of
exchange-correlation functionals such as DFT+U, exact
exchange, or hybrid functionals.

In conclusion, we have derived an alternative first-
principles method for calculating NMR chemical shield-
ing tensors. The new approach is considerably simpler,
since difficulties concerning the choice of the gauge ori-
gin are avoided and the need for a linear-response imple-
mentation is circumvented. We have demonstrated the
correctness and viability of our approach by calculating
the shieldings of simple molecular systems and finding
excellent agreement with previous theoretical and exper-
imental results. Applications to more complex systems,
including crystalline systems for which the orbital mag-
netization will need to be computed [12–15], are currently
in progress.
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