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We classify the band degeneracies in three-dimensional crystals with screw symmetry nm and
broken P ∗ T symmetry, where P stands for spatial inversion and T for time reversal. The generic
degeneracies along symmetry lines are Weyl nodes: Chiral contact points between pairs of bands.
They can be single nodes with a chiral charge of magnitude |χ| = 1 or composite nodes with |χ| = 2
or 3, and the possible χ values only depend on the order n of the axis, not on the pitch m/n of
the screw. Double Weyl nodes require n = 4 or 6, and triple nodes require n = 6. In all cases
the bands split linearly along the axis, and for composite nodes the splitting is quadratic on the
orthogonal plane. This is true for triple as well as double nodes, due to the presence in the effective
two-band Hamiltonian of a nonchiral quadratic term that masks the chiral cubic dispersion. If T
symmetry is present and P is broken there may exist on some symmetry lines Weyl nodes pinned to
T -invariant momenta, which in some cases are unavoidable. In the absence of other symmetries their
classification depends on n, m, and the type of T symmetry. For spinless T , such T -invariant Weyl
nodes are always double nodes; with spinful T they can be single or triple nodes, with the latter
occurring not only on 6-fold axes but also on 3-fold ones. The in-plane band splitting of T -invariant
triple nodes is cubic, not quadratic as in the case of generic triple nodes. These rules are illustrated
by means of first-principles calculations for hcp cobalt, a T -broken, P-invariant crystal with 63

symmetry, and trigonal tellurium, a T -invariant, P-broken crystal with 3-fold screw symmetry.

I. INTRODUCTION

The study of degeneracies in the energy spectrum of
crystals has a long history in the band theory of solids.
The early works focused on the consequences of symme-
try [1–3], and it was only much later that the topological
aspects of the problem began to be appreciated [4]. The
interplay between topology and crystal symmetry can be
particularly interesting. For example, Michel and Zak [5]
used an argument based on the periodicity of reciprocal
space to show that nonsymmorphic symmetries (screw
axes and glide planes) necessarily lead to degeneracies
on symmetry lines and planes in the Brillouin zone (BZ).

In recent years the study of band crossings has been
reinvigorated by the discovery of gapless topological
phases such as Weyl and Dirac semimetals, where the
presence of degeneracies near the Fermi level can lead to
striking observable effects [6]. A knowledge of the sym-
metry conditions under which certain types of degenera-
cies become possible, or even unavoidable, can greatly
simplify the search and analysis of candidate materials.

Our focus here is on Weyl nodes, i.e., isolated two-
fold degeneracies that occur in three-dimensional (3D)
band structures without having to fine-tune the Hamil-
tonian. In the simplest and most common case, the
two bands split linearly in all directions away from the
node [3]. Such contact points are the generic degenera-
cies in bulk crystals with broken P ∗ T symmetry, where
P and T denote spatial inversion and time-reversal sym-
metry respectively. (If the combined P ∗ T symmetry is
present, the bands are Kramers-degenerate everywhere in
the BZ, and additional isolated degeneracies are known as

Dirac nodes.) Weyl nodes are chiral, acting as monopole
sources and sinks of Berry curvature in the BZ, and when
the quantized Berry flux through some of the Fermi-
surface sheets is nonzero the material is classified as a
Weyl (semi)metal [6].

Weyl nodes are topologically protected by the discrete
translational symmetry of the lattice (they can only be
gapped by anihilating with other Weyl nodes of opposite
chirality), and no further symmetries are needed for their
existence. Nevertheless, the presence of other symmetries
affects their location and characteristics. For example,
4-fold symmetry can stabilize Weyl nodes along a sym-
metry axis in the BZ, and in some cases the bands split
quadratically in the directions perpendicular to the axis
(but still linearly along the axis) [3, 7]. Such quadratic
touchings may be regarded as consisting of two linear
Weyl nodes of the same chirality brought together by ro-
tational symmetry, and for that reason they are known
as “double Weyl nodes” [7]. Furthermore, it has been
shown that while point-group symmetry is not necessary,
it can sometimes be sufficient to guarantee the existence
of isolated band touchings at points of symmetry [8].

In this paper, we classify the band crossings occur-
ring on the symmetry lines of 3D crystals with screw
rotational symmetry and broken P ∗ T symmetry. We
first describe the types of crossings that are possible at
generic points along a symmetry line. We then special-
ize to T -invariant, P-broken crystals and consider the
crossings at T -invariant points on those lines, for both
spinful and spinless T symmetry; the former applies to
electrons in crystals, and the latter to the spectrum of
photonic crystals [9], as well as to electronic bands cal-
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culated without including spin-orbit coupling. We find,
for example, that in nonmagnetic crystals with a 3-fold
screw axis Weyl nodes are unavoidable at the symmetry
points Γ and A when spin-orbit is included. In a crystal
like Te where the band structure is composed of 6-band
complexes, each complex generates a triple Weyl node at
Γ and another at A (in addition to two single Weyl nodes
at each of those points). In contrast, the occurrence of
triple nodes at generic points along a symmetry axis re-
quires 6-fold symmetry [7]. The off-axis splitting of the
bands in the orthogonal plane is qualitatively different in
the two cases: It is cubic when the triple node is pinned
to a T -invariant point (either Γ or A) on a 3-fold or 6-
fold axis, and quadratic when it occurs at a generic point
along a 6-fold axis.

The article is organized as follows. In Sec. II we clas-
sify the Weyl nodes occuring at generic points along a
rotation axis in the BZ. That section follows closely the
discussion in Ref. [7] which we extend from pure rota-
tions to screw rotations, and it also includes a new result
on the in-plane dispersion of triple nodes. In. Sec. III
we apply the classification scheme to Weyl nodes on the
6-fold axis in the BZ of ferromagnetic hcp Co. In Sec. IV
we turn to nonmagnetic acentric crystals and classify the
degeneracies occuring at T -invariant momenta on a ro-
tation axis. As an example, we study in Sec. V the Weyl
nodes on the 3-fold axis in the BZ of trigonal Te, includ-
ing the effect of a perturbation that breaks T symmetry
but preserves the screw symmetry. The conclusions are
drawn in Sec. VI, and some supplementary information
and derivations are given in the appendices.

II. WEYL NODES AT GENERIC POINTS
ALONG A ROTATION AXIS

In this section we consider the most general scenario
in which Weyl points can occur along a symmetry line.
Since their presence anywhere in the BZ requires broken
P ∗ T symmetry, we assume this to be the case for our
crystal. Examples include ferromagnetic metals such as
body-centered cubic Fe [10] and hexagonal close-packed
(hcp) Co, nonmagnetic acentric semiconductors such as
trigonal Te [11, 12], and polar conductors such as TaAs,
a Weyl semimetal [13, 14]. In the first two examples T
symmetry is broken and P symmetry is present, while
the reverse is true for the others. Note that certain anti-
ferromagnets such as Cr2O3 do not qualify: They break
P and T individually, but respect P ∗ T .

We further assume that our crystal is left invariant
under either a pure rotation or a screw operation n′m′ ,
where n′ = 2, 3, 4, 6 denotes a counterclockwise 2π/n′

rotation around the +ẑ axis, and the non-negative integer
m′ < n′ indicates a translation along +ẑ by a fraction
m′/n′ of the lattice constant c (which we take as the unit
of length). If n is a divisor of n′, invariance under n′m′

implies invariance under nm about the same axis, where
m = m′ mod n. In the presence of nm symmetry the

Bloch Hamiltonian Hij(k) = 〈ψik|H|ψjk〉 satisfies

CnmH(k)C−1
nm = H(Rnk), (1)

where the matrix Cnm represents the nm operation in the
Bloch basis and Rnk is the vector obtained by applying a
counterclockwise rotation of 2π/n to k. In writing Eq. (1)
we have adopted the “active picture” where the action of
a transformation S on a function f(r) is described by
Sf(r) = f(S−1r).

We want to study the possible crossing between two
eigenstates |u〉 and |v〉 of H(k) along a rotationally-
invariant line (a line where RnK = K mod G at every
point K). For clarity we will focus on the axis

K = (0, 0,Kz) (2)

that has the highest rotational symmetry n = n′, but
our analysis also applies to the other invariant lines that
are present in the BZ as a result of lattice periodicity.
Henceforth we will use the symbol K to refer to a point
with coordinates given by Eq. (2).

If the two states are very close in energy at K and
comparatively far from other bands, we can work in the
basis |u〉 = (1, 0)T and |v〉 = (0, 1)T choosing |u〉 as the
higher-energy state at Kz + δ when δ → 0+, and approx-
imate the Bloch Hamiltonian around K by

Heff(K+q) = d(q)1+ f(q)σ+ + f∗(q)σ−+ g(q)σz, (3)

where q = (qx, qy, qz), 1 is the 2 × 2 identity matrix,
σ± = σx ± iσy, and a dependence of the functions d, f ,
and g on K is implied. In this approximation the two
basis states are eigenstates of Heff(K), which means that
f(q = 0) = 0. The condition for a crossing to occur at
K is that g(q = 0) = 0 as well, and in the following it
is assumed we have found such a point. The functions f
and g can then be expanded around K as

f(q+, q−, qz) =
∑

n1n2n3

An1n2n3q
n1
+ qn2
− q

n3
z , (4a)

g(q+, q−, qz) =
∑

m1m2m3

Bm1m2m3
qm1
+ qm2

− qm3
z , (4b)

where q± = qx ± iqy, An1n2n3 and Bm1m2m3 are Kz-
dependent complex coefficients with ni,mi ≥ 0, and
A000 = B000 = 0 by assumption. The requirement that
Eq. (3) be Hermitian implies that g(q) is real, leading to
the relation

Bm1m2m3
= B∗m2m1m3

. (5)

The types of crossings that can occur at generic points
along the axis, where nm symmetry is present but T is
broken, were classified in Ref. [7] by imposing the ro-
tational constraint (1) on the effective Hamiltonian of
Eqs. (3) and (4). The authors specialized to pure n-fold
rotations (m = 0), and in the following we extend their
treatement to include screw rotations. As we shall see,
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the resulting classification is independent of the pitch of
the screw.

At any point along the axis Eq. (1) reduces to
[Cnm , H(K)] = 0, so that the energy eigenstates are also
eigenstates of Cnm . The rotational eigenvalues α(Kz) are
determined by noting that (nm)n describes a 2π rotation
around the +ẑ axis followed (or preceeded) by a trans-
lation by mẑ. The former leaves a spinless wavefunction
unchanged but flips the sign of a spinful wavefunction,
and the latter gives an extra phase factor e−imKz (the
minus sign comes from using the active picture). Taking
the n-th roots we find

αp(Kz) = γnm(Kz) e
i2πp/n, (6a)

γnm(Kz) = eiπ(F−F ′m)/n, (6b)

where p is an integer chosen between 0 and n− 1, F = 0
(F = 1) for spinless (spinful) T symmetry, and F ′ =
Kz/π. In the same basis of Eq. (3), then, the matrix
describing the nm operation reads

Cnm(Kz) = γnm(Kz)

(
ei2πpu/n 0

0 ei2πpv/n

)
. (7)

Combining Eqs. (1), (3), and (7) gives

ei
2π
n (pu−pv)f(q+, q−, qz) = f

(
q+e

i 2πn , q−e
−i 2πn , qz

)
,

(8a)

g(q+, q−, qz) = g
(
q+e

i 2πn , q−e
−i 2πn , qz

)
.

(8b)

Inserting Eq. (4a) in Eq. (8a) and Eq. (4b) in Eq. (8b)
we find

n1 − n2 = pu − pv mod n, (9a)

m1 −m2 = 0 mod n. (9b)

The only nonzero elements of An1n2n3
or Bm1m2m3

occur
when Eq. (9a) or (9b) is satisfied, respectively. When
pu = pv the degeneracy is nonchiral and can be gapped
by a small perturbation that respects nm symmetry (see
Appendix A), whereas for pu 6= pv it is chiral and robust.

We will use two criteria to classify the Weyl nodes that
occur for pu 6= pv: (i) the power laws that describe at
leading order the splitting of the bands as one moves away
from the node along the axis and in the orthogonal di-
rections, and (ii) the chiral charge of the node. Consider
first the splitting of the bands. Regarding the behav-
ior along the axis, the only surviving terms in Eqs. (4a)
and (4b) when q+ = q− = 0 are those with n1 = n2 = 0
and m1 = m2 = 0 respectively. Then A00n3

vanishes for
all n3 because of Eq. (9a), and to leading order in qz we
find

Heff(0, 0,Kz + qz) = B001σzqz. (10)

From this we conclude that the band splitting is generi-
cally linear along the symmetry axis. With our choice of

TABLE I. Classification of Weyl nodes at generic points on
an n-fold axis in the BZ of a crystal with nm symmetry and
broken P∗T symmetry. αu and αv are the rotational eigenval-
ues of the crossing states, with u denoting the higher-energy
state on the higher-Kz side of the crossing. The Hamilto-
nian near a node on the plane perpendicular to the axis is
Heff(qx, qy,Kz) = heff + h†eff , and q± = qx ± iqy. In each
row the complex parameters a and b correspond to specific
coefficients An1n20 in Eq. (4a), and c = B110/2 from Eq. (12)
is real. χ is the chiral charge with χab = sgn(|b| − |a|), and
the off-axis band splitting at leading order is indicated as q⊥
(linear) or q2

⊥ (quadratic).

n αu/αv heff χ Splitting

2 -1 (aq+ + bq−)σ+ χab q⊥

3 e±i2π/3 aq±σ+ ∓1 q⊥

4 ±i aq±σ+ ∓1 q⊥

4 -1 c
(
q2
x + q2

y

)
σz +

(
aq2

+ + bq2
−
)
σ+ 2χab q2

⊥

6 e±iπ/3 aq±σ+ ∓1 q⊥

6 e±2iπ/3 c
(
q2
x + q2

y

)
σz + aq2

±σ+ ∓2 q2
⊥

6 −1 c
(
q2
x + q2

y

)
σz +

(
aq3

+ + bq3
−
)
σ+ 3χab q2

⊥

|u〉 = (1, 0)T as the higher-energy state on the higher-Kz

side of the crossing, B001 is positive [15].
The behavior on the orthogonal plane is described

by Heff(qx, qy,Kz). We now need to collect the lead-
ing terms with n3 = 0 in Eq. (4a) that satisfy condi-
tion (9a). Those terms determine the magnitude of the
chiral charge, and their form only depends on n and on
the ratio

αu
αv

= ei2π(pu−pv)/n (11)

between the rotational eigenvalues of the crossing states.
We must also collect terms with m3 = 0 in Eq. (4b) that
comply with condition (9b). At leading order we find
g(q+, q−, 0) = B110q+q−, or equivalently,

g(qx, qy, 0) = B110(q2
x + q2

y). (12)

This term is allowed for all n, and it appears to have
been overlooked in Ref. [7]. It does not affect the sign or
magnitude of the chiral charge, but in some cases it qual-
itatively changes the off-axis band splitting. For triple
nodes, in particular, this term dominates the band split-
ting in the plane normal to the axis, although a cubic
splitting would still be evident if one could follow the
parabolic g(q)=0 surface instead of the fixed-qz plane.

By now we have gathered all the needed information
to catalog the Weyl crossings that can occur at generic
points on a rotation axis. The classification is given in
Table I, and as anticipated it does not depend on the
pitch m/n of the screw. The main conclusions are as
follows. The occurrence of triple Weyl nodes requires
6-fold symmetry, double nodes require 4-fold or 6-fold
symmetry, and rotation axes of any order can host single
Weyl nodes. At leading order the band splitting along
the axis is linear in all cases, while on the orthogonal
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plane it is linear for single nodes and quadratic for both
double and triple nodes. These conclusions agree with
Ref. [7], except for the realization that the in-plane split-
ting of a triple Weyl node is generally quadratic, not cu-
bic. In Sec. IV we will encounter triple nodes for which
the quadratic term (12) is disallowed by symmetry, re-
sulting in a cubic in-plane dispersion.

III. APPLICATION TO HCP COBALT

In order to illustrate the preceeding discussion, we have
performed an ab-initio study of the bandstructure of hcp
Co. The technical details of the calculation are given in
Appendix B. In the hcp structure (space group P63/mmc,
No. 194), the c axis is a 63 screw axis. This is a “neutral
screw” (a screw that has neither right or left sense [16])
that coexists with P symmetry, while T is broken by
the ferromagnetic order. The spontaneous breaking of T
symmetry occurs in the spin channel via the exchange
interaction, and is then transmitted to the orbital wave-
functions and to the band structure by the spin-orbit
interaction. In our calculation, the magnetization points
along the positive haxagonal axis.

Figure 1(a) shows the energy bands near the Fermi
level on a segment of the 6-fold axis ΓA. (For a more com-
plete picture of the band structure of Co, see Ref. [17].)
The different branches are color-coded by the rotational
labels p in Eq. (6), which were determined directly from
the Bloch wavefunctions. Already in this narrow energy
range of ∼ 0.8 eV one can find all the types of crossings
listed in Table I for n = 6. For example, the crossing be-
tween the pu = 4 and pv = 2 branches near the bottom
of the figure is a double Weyl node of negative chirality
(chiral charge χ = −2) because αu/αv = ei2π/3, while
the two crossings with (pu, pv) = (2, 3) and (3, 2) have
χ = +1 and χ = −1, respectively. As expected, the
crossing between the two branches with p = 3 is avoided.
Triple Weyl nodes are generated at the crossings where
pu − pv = 3 mod 6, namely (pu, pv) = (0, 3) and (4, 1);
in this case the chirality sgn(χ) cannot be extracted
from the symmetry labels. For each node, we have eval-
uated χ explicitly from the quantized Berry-curvature
flux through a small enclosing box, as described in Ap-
pendix B. For the single and double nodes, the calculated
values of χ agree in sign and magnitude with those pre-
dicted from the symmetry labels.

Figure 1(a) confirms that the band dispersions along
the axis are linear around every Weyl node. The disper-
sions are also linear in the transverse directions when
|χ| = 1 (not shown), but not when |χ| > 1. Fig-
ures 1(b) and (c) show the dispersions near a double
and a triple node respectively, along the in-plane direc-
tion ΓM (denoted as q⊥) on the constant-kz plane of
the node; in both cases, the in-plane dispersion is fairly
isotropic near q⊥ = 0. Figures 1(d) and (e) show the
band splittings with increasing q⊥, together with their
best fits by quadratic and cubic functions. The splitting
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FIG. 1. (Color online) (a) Calculated band structure of hcp
Co along the six-fold symmetry line ΓA. Energies are mea-
sured from the Fermi level, and each color denotes a branch
labeled by the integer p in Eq. (6). Markers denote Weyl cross-
ings with the indicated chiral charges χ. The inset shows the
hexagonal BZ and its high-symmetry points. Panels (b) and
(c) show the in-plane dispersions near a double and a triple
Weyl node respectively, and panels (d) and (e) show the corre-
sponding band splittings away from the nodes, together with
the quadratic and cubic best fits.

at small q⊥ is accurately described by ∝ q2
⊥ (rather than

∝ q3
⊥) for both the double and the triple node. This

confirms that the in-plane dispersion of a triple node is
dominated by the nonchiral quadratic term in Eq. (12),
which masks the cubic dispersion from the chiral term(
A300q

3
+ +A030q

3
−
)
σ+ in the last row of Table I.

We are aware of one other work [18] where triple Weyl
nodes at generic points on a 6-fold axis were studied nu-
merically (for a haxagonal photonic crystal). That work
only reports the band dispersions along the axis, which as
expected are linear around each node (see Fig. 4 therein).
The authors state that the in-plane dispersion is cubic for
the triple nodes, but it is unclear whether this was veri-
fied numerically, or if it is simply a remark based on the
conclusions of Ref. [7].
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IV. WEYL NODES AT TIME-REVERSAL
INVARIANT MOMENTA ON A ROTATION AXIS

A. Formal derivation

Let us resume the formal development of our system-
atic classification. In Sec. II we considered a broken-
P ∗T crystal with nm symmetry, and classified the Weyl
nodes occurring at generic points on the rotation axis of
Eq. (2). For the remainder of this work we specialize to a
T -invariant, P-broken crystal, and focus on points along
that axis where T symmetry is present (the time-reversal
invariant momenta, or TRIM). Since T maps k onto −k
mod G, such points occur at Kz = 0 and π, correspond-
ing to F ′ = 0 and 1 respectively in Eq. (6). As for the
additional symmetry lines not passing through Γ, they
only contain TRIM if they are 2-fold or 4-fold axes [19].

We now find it more convenient to identify an eigen-
value of Cnm by an index j via [compare with Eq. (6)]

αj = eiπj/n where j = 2p+ F − F ′m, (13)

so that the j are integers spaced two units apart. With
this notation, T maps αj into α−j . If the two time-
reversed states |u〉 and |v〉 = T |u〉 are distinct, they form
a degenerate pair [20] to which we assign the labels ju =
j and jv = −j. We then wish to understand whether
and how this pair splits as we move off the symmetry
axis as described by Eqs. (3) and (4a), and to determine
the monopole charge when the crossing is chiral. In this
context, the results of the rotational symmetry analysis
in Sec. II can be expressed via pu− pv = (ju− jv)/2 = j,
so that the only nonzero elements of An1n2n3 occur when

n1 − n2 = j mod n, (14)

while nonzero elements of Bm1m2m3
must still comply

with condition (9b).
Let us now turn to the conditions imposed by T itself,

which are different depending on whether F = 0 or 1 be-
cause T 2 = (−1)F . The first thing to note is that unless
the two time-reversed states have different rotational la-
bels, when F = 0 they are actually the same state and
there is no T -protected degeneracy. Thus, we impose

j 6= 0, n when F = 0. (15)

(From here on, j is chosen between 0 and 2n− 1.) When
F = 1, the Kramers theorem guarantees that the two
states are different [21] and the above restriction does not
apply. These conclusions are in line with the “Wigner
rules” for degeneracies in the presence of T symme-
try [22].
T symmetry also imposes the restrictions

n1 + n2 + n3 = F mod 2, (16a)

m1 +m2 +m3 = 1 mod 2 (16b)

on the nonzero elements of An1n2n3
and Bm1m2m3

, re-
spectively. Both follow from the relation

T H(k)T −1 = H(−k). (17)

To show this, let us express T in our basis by acting
with it on a state |w〉 = a|u〉 + b|v〉. From T |v〉 =
(−1)F |u〉 and the antilinearity of T we obtain T = σxK
(F = 0) and T = −iσyK (F = 1) with K the complex
conjugation operator, so that T f(q)T −1 = f∗(q) and
T σ±T −1 = (−1)Fσ∓. Inserting Eq. (3) in Eq. (17) and
using these identities gives f(−q) = (−1)F f(q), which
leads to Eq. (16a) when combined with Eq. (4a). Simi-
larly, from T g(q)T −1 = g(q) and T σzT −1 = −σz we get
g(−q) = −g(q), which leads to Eq. (16b).

Armed with the above relations, we can proceed
to classify the degeneracies at the TRIM (0, 0, 0) and
(0, 0, π). We begin with the on-axis band splittings. As
in Sec. II, we collect terms in Eq. (4b) with m1 = m2 = 0,
excluding B000 which vanishes by assumption. Equa-
tion (9b) is automatically satisfied and Eq. (16b) forces
m3 to be odd, and so the leading term is generically

g(0, 0, qz) = B001qz. (18)

Turning to the expansion (4a) of f(0, 0, qz), we keep
terms with n1 = n2 = 0 excluding A000. Equation (14)
requires j = 0 or n which conflicts with Eq. (15) when
F = 0, and when F = 1 Eq. (16a) requires n3 to be odd.
Thus

f(0, 0, qz) =

{
A001qz, when F = 1 and j = 0 or n

0, otherwise.

(19)
In all cases Heff(0, 0,Kz + qz) is linear in qz, producing
a linear band splitting along the axis.

In order to describe the in-plane behavior, let us col-
lect the leading terms with n3 = 0 in Eq. (4a). Equa-
tion (16a) can then be written as

n1 − n2 = F mod 2, (20)

which together with Eqs. (14) and (15) constrains the
form of f(q+, q−, 0). Turning to g(q+, q−, 0) and setting
m3 = 0 in Eq. (16b) we conclude that m1 − m2 must
be odd, which excludes terms with m1 = m2 such as
Eq. (12). The requirement that m1−m2 be odd conflicts
with condition (9b) when n is even, and so we find

g(q+, q−, 0) =

{
2Re

(
B300q

3
+

)
, for n = 3

0, for n = 2, 4, 6.
(21)

In summary, the band splitting moving away from a
degeneracy protected by T and nm symmetry at Kz = 0
or π is generically linear along the axis. Assuming no
other symmetries, the form of the in-plane Hamiltonian
Heff(q+, q−,Kz) is constrained by Eqs. (14), (15), (20),
and (21); the type of T symmetry (F ) enters the first
three equations, and an additional dependence on the
pitch m/n is introduced by Eqs. (14) and (15) at Kz = π.
The Weyl-like solutions compatible with lattice periodic-
ity are listed in Table II for spinless T , and in Table III
for spinful T . With spinless T all Weyl degeneracies are
double nodes, and with spinful T they are either single
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TABLE II. Classification of spinless Weyl nodes at the TRIM
Kz = 0 and π on an n-fold axis in the BZ of a crystal with
nm and T symmetries. Each row is uniquely identified by the
values of n and of the symmetry label j defined in Eq. (13),
from which the remaining columns can be generated. The
values of m for which the given j occurs at Kz = 0 and π are
listed under m(0) and m(π), respectively, and the rest of the
notation is as in Table I.

n m(0) m(π) j heff χ Splitting

3 — 1 1 aq2
−σ+ +2 q2

⊥

3 all 0,2 2 aq2
+σ+ −2 q2

⊥

3 all 0,2 4 aq2
−σ+ +2 q2

⊥

3 — 1 5 aq2
+σ+ −2 q2

⊥

4 all 0,2 2
(
aq2

+ + bq2
−
)
σ+ 2χab q2

⊥

4 all 0,2 6
(
aq2

+ + bq2
−
)
σ+ 2χab q2

⊥

6 all 0,2,4 2 aq2
+σ+ −2 q2

⊥

6 all 0,2,4 4 aq2
−σ+ +2 q2

⊥

6 all 0,2,4 8 aq2
+σ+ −2 q2

⊥

6 all 0,2,4 10 aq2
−σ+ +2 q2

⊥

TABLE III. Classification of spinful Weyl nodes at the TRIM
Kz = 0 and π on an n-fold axis in the BZ of a crystal with nm
and T symmetries. The notation is the same as in Tables I
and II, except that c = B300 is a complex coefficient.

n m(0) m(π) j heff χ Splitting

2 all 0 1 aq−σ+ +1 q⊥

2 all 0 3 aq+σ+ −1 q⊥

3 — 1 0
(
aq3

+ + bq3
−
)
σ+ + cq3

+σz 3χab q3
⊥

3 all 0,2 1 aq+σ+ −1 q⊥

3 — 1 2 aq−σ+ +1 q⊥

3 all 0,2 3
(
aq3

+ + bq3
−
)
σ+ + cq3

+σz 3χab q3
⊥

3 — 1 4 aq+σ+ −1 q⊥

3 all 0,2 5 aq−σ+ +1 q⊥

4 all 0,2 1 aq+σ+ −1 q⊥

4 all 0,2 3 aq−σ+ +1 q⊥

4 all 0,2 5 aq+σ+ −1 q⊥

4 all 0,2 7 aq−σ+ +1 q⊥

6 all 0,2,4 1 aq+σ+ −1 q⊥

6 all 0,2,4 3
(
aq3

+ + bq3
−
)
σ+ 3χab q3

⊥

6 all 0,2,4 5 aq−σ+ +1 q⊥

6 all 0,2,4 7 aq+σ+ −1 q⊥

6 all 0,2,4 9
(
aq3

+ + bq3
−
)
σ+ 3χab q3

⊥

6 B all 0,2,4 11 aq−σ+ +1 q⊥

or triple nodes. Triple nodes occur not only for n = 6
as in Table I but also for n = 3, and in both cases the
in-plane splitting is cubic, not quadratic as in Table I.

B. Schematic description: (F, nm) diagrams

Let us illustrate the use of Tables II and III by consid-
ering some specific combinations (F, nm). We start with

(a) (b)

FIG. 2. (Color online) Schematic representation of the de-
generacies at the TRIM along a 31-invariant axis. Panel (a)
is for spinless T (F = 0), and panel (b) for spinful T (F = 1).
Solid gray circles represent the complex unit circle, with the
rotational eigenvalues of Eq. (13) at Kz = 0 (bottom) and
Kz = π (top) marked as spheres labeled by j, and their wind-
ings with Kz represented by lines with matching colors. A
dashed line or loop connecting spheres indicates that a pair
of time-reversed states with those labels forms a single ( ),
double (�), or triple (N) Weyl node.

(0, 31), i.e., spinless T and a right-handed 3-fold screw.
AtKz = 0 along a 31-invariant axis the states carry labels
j = 0, 2, 4 [Eq. (13)]. The j = 0 states are nondegenerate
[Eq. (15)], while time-reversed pairs of states with labels
(j,−j + 2n) = (2, 4) or (4,2) form double Weyl nodes
of negative or positive chirality respectively (second and
third rows of Table II). At Kz = π the possible labels are
j = 1, 3, 5; the j = 3 states are nondegenerate, and the
pairs (1,5) and (5,1) form double Weyl nodes of positive
and negative chirality respectively. As Kz goes from 0 to
π the rotational eigenvalues of Eq. (13) wind as e−iKz/3,
so that j = 0 goes into j = 5, j = 2 into j = 1, and j = 4
into j = 3. Except for the chiralities, all this information
is presented schematically in Fig. 2(a).

Figure 2(b) shows the (1, 31) diagram, where the al-
lowed j values have shifted by +1 compared to Fig. 2(a).
With spinful T the restriction (15) does not apply, and all
bands pair up to form either single or triple Weyl nodes
at both Kz = 0 and π. The triple nodes are formed be-
tween Kramers pairs with the same label j = 0 or j = 3
located on the equator of the unit circle.

Consider now the (0, 21) diagram in Fig. 3(a). The
symmetry labels at Kz = 0 are j = 0, 2. Since F = 0 and
these labels lie on the equator, the states are nondegener-
ate; this explains their absence from Table II. At Kz = π
the labels are j = 1, 3, and they also do not appear in
Table II (where there are no entries with n = 2) even
though such states must be pairwise degenerate accord-
ing to the Wigner rules. The reason is that the degen-
eracy is not an isolated Weyl node. Instead, the bands
remain glued together over the entire BZ face [2, 22]. A
dashed line without a marker is used to represent this
nonchiral “sticking of the bands.”

The (1, 21) diagram of Fig. 3(b) shows that with spinful
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(a) (b)

FIG. 3. (Color online) Same as Fig. 2, but for a 21-invariant
axis. Dashed-line connectors without a marker in the mid-
dle represent nonchiral degeneracies caused by band-glueing
across the BZ face orthogonal to the symmetry axis.

T all bands pair up to form single Weyl nodes at Kz = 0.
The bands are again glued together over the entire BZ
face at kz = π, but now the degenerate partners share
the same label, j = 0 or 2, on the rotation axis.

Band-glueing across a BZ face orthogonal to a 21 axis
occurs in T -invariant crystals because points on the BZ
face are mapped onto themselves by T ∗ 21; the fact that
this symmetry operation is antiunitary and squares to −1
(for both F = 0 and F = 1) then forces a Kramers degen-
eracy [21]. Since the presence of either 41, 43, 61, 63 or 65

symmetry implies the presence of 21 symmetry, the band
sticking occurs for all of them. Indeed, one can see that
Eqs. (14) and (20) require F ′m to be even when n is even.
As a result, f(q+, q−, 0) vanishes when n is even, m odd,
and Kz = π. Together with Eq. (21), this implies that
when n is even and m is odd the dispersion on the kz = π
plane is described by Heff(qx, qy, π) = d(qx, qy, 0)1, con-
firming that the bands remain glued together across the
BZ face. The combination of T with screw symmetries
other than the ones listed above (i.e, with 31, 32, 42, 62,
or 64) does not provoke band-glueing and can stabilize
Weyl nodes at Kz = π, as we already saw for 31.

The complete set of (F, nm) diagrams is given in the
Appendix C. A few special cases of our systematic classi-
fication have been noted in the recent literature. Double
Weyl nodes protected by 30 and spinless T symmetry
[see the (0, 30) diagram in Appendix C] were treated in
Ref. [18], and triple nodes protected by 6-fold symmetry
and spinful T symmetry are mentioned in Ref. [23].

V. APPLICATION TO TRIGONAL
TELLURIUM

Elemental Te is a nonmagnetic semiconductor that
crystalizes in two enantiomorphic structures with space
groups P3121 (No. 152, right-handed) and P3221 (No.
154, left-handed). The unit cell contains three atoms
disposed along a spiral chain, with the chains arranged

−4

−3

AA

4
2
0

3
1
5

3
5

1

−

FIG. 4. (Color online) A connected group of three valence
bands in trigonal tellurium along the rotationally-invariant
line ΓA, calculated without including spin-orbit coupling. En-
ergies are measured from the valence-band maximum, and
each color denotes a branch labeled by the integer p in Eq. (6).
For each branch, the values of the label j in Eq. (13) at −A,
Γ and A (respectively, Kz = −π, 0 and π) are also indicated.
Markers denote Weyl crossings with chiral charges χ.

on a hexagonal net. The structure and its symmetries
are detailed in Refs. [24, 25], where it can be seen that
the spiral chains reduce the symmetry from hexagonal to
trigonal. In the following we pick right-handed Te and
classify the Weyl crossings along the trigonal axis ΓA in
the hexagonal BZ shown in Fig. 1(a). (For left-handed
Te the band structure is identical, but the chiral charges
flip sign.)

The valence-band maximum and conduction-band
minimum of trigonal Te occur close to the H point on
the HK line. Without spin-orbit coupling the conduction-
band minimum is exactly at H, and with spin-orbit the
topmost valence band has a “camelback” shape, with a
local minimum at H and two maxima at either side of
H along HK [26]. States along the ΓA line are far from
the band edges and hence do not participate in the low-
energy physics. We will study them with the sole purpose
of illustrating our classification scheme for Weyl nodes.

A. Spinless bands

We begin with a calculation that does not include spin-
orbit coupling. The bands split into “elementary repre-
sentations” [5] containing three bands each, and in Fig. 4
we plot along ΓA the second-highest valence-band com-
plex. As in Fig. 1, each color denotes a branch labeled
by the integer p in Eq. (6), with the branch cuts cho-
sen at Kz = π mod 2π. The labels were determined
in two ways: (i) by direct calculation starting from the
wavefunctions, and (ii) using p = j(Γ)/2 [Eq. (13)], after
determining the j labels at Γ and A as explained below.

It can be seen from Eq. (6) that as Kz changes by 2π,
branch p connects with branch p − m mod n, which in
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the present case amounts to p − 1 mod 3. This is the
monodromy phenomenom described in Ref. [5], and it
implies that the three bands must be connected along the
ΓA line in such a way that one can travel continuously
through all of them. The argument only relies on screw
symmetry and is silent on the nature and location of the
contact points, which also depend on the T symmetry [5].

Let us first classify the degeneracies at Γ and A in
Fig. 4, with the help of the (0, 31) diagram in Fig. 2(a).
The band that is nondegenerate at Γ has j = 0, and the
two degenerate bands have j = 2 and 4. The j = 4 state
evolves to become the nondegenerate j = 3 state at A,
while j = 2 evolves into j = 1 to become degenerate
with the j = 5 state which evolved from j = 0. The two
degenerate pairs, one at Γ and one at A, form double
Weyl nodes. By consulting Table II we conclude that
both have negative chirality [for the node at Γ (A), the
higher-energy state at Kz = 0+ (Kz = π+) has label
j = 2 (j = 5)]. As in Sec. III we have checked these
results by calculating the chiral charges explicitly from
the Berry curvature, and the same was done for the other
cases discussed below.

We have been assuming that the only symmetries
present at Γ and A are 31 and T , when in fact those
points are also left invariant under 2-fold rotations along
the ΓK and AH axes respectively [24, 25]. This does not
change our conclusions, because the presence of 20 sym-
metry does not lead to degeneracies at either Γ or A, as
can be seen from the (0, 20) diagram in Fig. 7 of Ap-
pendix C. Hence, the degeneracies that do occur at those
symmetry points are correctly described by the (0, 31)
diagram.

Let us now determine the chiral charges of the two
non-TRIM crossings in Fig. 4; since they are related by
a 2-fold rotation it is sufficient to focus on one of them,
e.g., that between the red and blue branches on the right-
hand side of the figure. Recalling that |u〉 and |v〉 are
respectively the higher- and lower-energy states after the
crossing, we assign pu = 0 and pv = 2. Equation (11)
then gives αu/αv = ei2π/3, and consulting Table I we
find χ = −1, in agreement with the calculated value.

In this particular example, it was possible to charac-
terize all the contact points on the symmetry axis with-
out having to calculate explicitly from the wavefunctions
either their chiral charges or the rotational symmetry la-
bels of the crossing bands. While the crossings at Γ and
A are topologically required by the monodromy argu-
ment, those at intermediate Kz values can be eliminated
by changing the Hamiltonian without changing the sym-
metry [5]. This is discussed further in Appendix D.

B. Spinful bands

Upon inclusion of spin-orbit coupling the 3-band com-
plex of Fig. 4 turns into the 6-band complex of Fig. 5(a).
The branches are color-coded by the symmetry labels
p = 0, 1, 2 in the same way as in Fig. 4, with two branches

A
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5
3
1

4
2
0

0
4
2
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(b)
0

0 02 0 01 0 0 01 0 02

0

1

2

calc.

fit
fit

-5

-10

(c)

(a)

FIG. 5. (Color online) (a) Same as Fig. 4 but with spin-
orbit coupling included, resulting in a connected group of six
bands. (b) Off-axis dispersion near the triple Weyl point at Γ.
(c) The corresponding splitting of the bands, together with
its cubic and quadratic best fits. The band splittings along
the ΓM and ΓK directions were fitted separately.

for each p. Let us label the bands, ordered in energy
at each k, from one to six. If we start at −A on the
sixth band and follow the topmost p = 2 branch from
Kz = −π to Kz = π, it connects with the fourth band
on a p = 1 branch. After one more monodromy cycle
that branch connects with the the second band at −A
on a p = 0 branch, which connects back with the origi-
nal p = 2 branch on the sixth band after a third cycle.
So far we have only covered half of the band complex;
in order to span the other half (comprising three more
branches with p = 0, 1, 2), we can carry out a new se-
quence of monodromy cycles starting from the fifth band
at −A. Each band is split in half between the two groups
of three branches, and the two groups are connected to
one another by the continuity in k of energy bands.
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As in the spinless case, the qualtitative features of
the degeneracies at Γ and A can be inferred by sim-
ply inspecting the band structure and referring to the
corresponding diagram in Fig. 2(b). According to that
diagram, Weyl nodes are unavoidable at both points;
since all allowed j labels occur the same number of times
within the complex, at each TRIM two of the nodes must
be single Weyl nodes and one a triple node. Note also
that states forming the triple node at one TRIM must
hook up with states belonging to different single nodes
at the other. It is then sufficient, in order to label all six
bands, to identify one of the triple nodes (e.g., by exam-
ining the in-plane band splittings and selecting the one
that is nonlinear). Suppose we have established that the
triple node at Γ is the middle one in energy, as indicated
in the figure. Since it connects with the two lower-energy
nodes at A, these must be single nodes; as expected, the
remaining (triple) node at A connects with the two sin-
gle nodes at Γ. We can now assign all the j labels at Γ
and A, and Table III then gives the chiralities of all four
single nodes at those two points (but not of the two triple
nodes, whose chiralities are not fixed by the symmetry la-
bels and had to be determined from the Berry flux).

Figures 5(b) and 5(c) show the in-plane dispersion and
splitting of the bands around the triple Weyl node at
Γ. In this case the splitting is cubic as predicted in
Sec. IV A, not quadratic as for triple nodes occuring at
generic points along a 6-fold axis [e.g., Fig. 1(e)].

Finally, consulting Table I we find the chiralities of the
five band crossings between Γ and A in Fig. 5, which must
be single Weyl nodes since the axis has 3-fold symmetry.
Amusingly, the rules for determining the chiralities in this
case are those of the game “Rock–paper–scissors”[27]: A
red branch is “rock,” blue is “paper,” and green is “scis-
sors.” If the higher-energy state after the crossing is the
winner then χ = +1, otherwise χ = −1; since branches
of the same color do not cross, there can be no tie. In
Appendix D we repeat the above analysis for two more
6-band complexes in the spinor band structure of Te.

In closing, we mention that Weyl nodes in the spinor
band structure of Te were studied in Refs. [11, 12]. The
main focus of both works was on the nodes occuring close
to the valence-band maximum and conduction-band min-
imum near the H point. The existence of triple Weyl
nodes at Γ and A is not mentioned in either work, where
all the reported Weyl points have |χ| = 1.

C. Effect of a T -breaking perturbation

In this section we study how the Weyl nodes located on
the ΓA line are effected by a perturbation that breaks T
symmetry but preserves the 31 symmetry of Te. For this
purpose we recalculate the spinor band structure in the
presence of a weak local Zeeman field directed along the
trigonal axis, which induces a finite magnetic moment
µ = µz ẑ on each Te atom. Technically this is achieved
by adding a “penalty term” of the form λ

∑3
i=1 |µ−µi|2

+1

1-

0

FIG. 6. Solid lines: Ground-state band structure of Te color-
coded by the expectation value of the spin (in units of ~/2)
projected along the trigonal axis ẑ. Dashed lines: The band
structure in the presence of a macroscopic magnetization
amounting to a magnetic moment per atom of µz = 0.01µB.
Symbols denote Weyl nodes in the ground state with µ = 0,
and energies are measured from the ground-state valence-
band maximum.

to the density functional during the self-consistent loop.
Here µi is the self-consistent magnetic moment on the
i-th atom in the unit cell, and λ > 0 is an adjustable
parameter.

To lowest order, the contribution of the induced mag-
netization to the Hamiltonian takes the form

∆H ∝Mzτz (22)

in the basis of the unperturbated eigenstates. Here Mz is
the magnetization and τz is the Pauli matrix describing
the spin degree of freedom, not to be confused with the
pseudospin matrix σz in Eq. (3). Since our discussion will
be qualitative, we are content to leave Eq. (22) expressed
as a proportionality.

Figure 6 shows how the band structure on the ΓA line
changes in the presence of a small positive Mz. The
“generic” Weyl nodes away from Γ and A, which are
pinned to the symmetry axis by the 31 symmetry, re-
main on the axis because that symmetry is preserved with
M ‖ ẑ. However, they move in energy and wavevector,
in a way that depends on the spin projections of the two
crossing states. This behavior can be understood from
the effective 2-band Hamiltonian near a generic Weyl
node of charge χ = ∓1, which reads

Heff(q+, q−, qz) =

(
αqz +Mzsu 2aq±

2a∗q∓ −αqz +Mzsv

)
(23)

with the zero of energy placed at the unperturbed cross-
ing. Here su = 〈u|τz|u〉 and sv = 〈v|τz|v〉 are the spin
projections of the upper- and lower-energy states on the
right-hand side of the crossing. Note that the perturba-
tion (22) does not introduce off-diagonal terms in the ef-
fective Hamiltonian: Since pu 6= pv for single Weyl nodes,
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〈u|τz|v〉 vanishes according to Appendix A. For Mz = 0
and qz = 0 Eq. (23) reduces to the Hamiltonian given in
the second row of Table I; for Mz = 0 and q+ = q− = 0
it reduces to Eq. (10), with the positive coefficient B001

written here as α.
Assuming the crossing states are the eigenstates of the

spin projection Sz (implying |su| = |sv| = 1), we can
derive from Eq. (23) with q+ = q− = 0 the following
rules for how generic Weyl nodes on the ΓA line shift
under a small positive Mz:

sgn(su) sgn(sv) direction of shift

+ + to higher energy

− − to lower energy

+ − to lower Kz

− + to higher Kz

Even though the crossing states are generally not eigen-
states of Sz, these simple rules describe fairly well the
shifts of most of generic nodes in Fig. 6.

Let us turn now to the Weyl nodes pinned to Γ and
A by T symmetry. In this case the unpreturbed crossing
states are time-reversal partners, so that sv = −su. Con-
sider first the nodes with |χ| = 1. When T is broken by
Mz, those nodes move away from the TRIM but remain
on the ΓA axis by virtue of the unbroken 31 symmetry,
and their motion along the axis obeys the same rules dis-
cussed above for the generic single Weyl nodes. Note that
the positive node at A and ∼ −4.5 eV moves to the left
and anihilates with the negative node at ∼ −4.0 eV and
halfway between Γ and A, which moves to the right.

The most striking effect of the axial Zeeman field is
on the triple Weyl nodes at Γ and A. In Fig. 6, gaps
open up near those nodes when Mz 6= 0. That happens
because T symmetry not only pins those nodes to the
TRIM, but is essential for their existence on a 3-fold axis
(recall that without T symmetry, triple nodes can only
occur on 6-fold axes). Once the T symmetry is broken,
each triple node splits into three single nodes; these are
not visible in Fig. 6 because they are located off the ΓA
axes on ΓMLA planes (see below).

In order to understand the splitting pattern, let us
write the effective Hamiltonian for a triple node including
the perturbing term (22). Taking the unperturbed terms
with qz = 0 from the third row in Table III and the
unperturbed terms with q+ = q− = 0 from Eq. (19) we
find, setting A001 = β and using sv = −su,

Heff(q+, q−, qz) = (αqz + cq3
+ + c∗q3

− + suMz)σz +[
(aq3

+ + bq3
− + βqz + γMz)σ+ + H.c.

]
, (24)

where γ = 1
2 〈u|τz|v〉 and “H.c.” stands for Hermitian

conjugate. Without additional symmetries all coefficients
here are generally complex, except for α which is real and
positive. The condition for a degeneracy to occur is that
the prefactors of the σz and σ± matrices should vanish
simultaneously. Thus

qz = − 1

α
(suMz + cq3

+ + c∗q3
−), (25)

which inserted into the prefactor of σ+ gives

ãq3
+ + b̃q3

− + γ̃Mz = 0, (26)

where ã = a− cβ/α, b̃ = b− c∗β/α and γ̃ = γ − βsu/α.
Writing q± as q⊥e

±iφ with q⊥ > 0 leads to

q3
⊥(ãei3φ + b̃e−i3φ) + γ̃Mz = 0. (27)

The condition arg(ãei3φ + b̃e−i3φ) = arg(−γ̃Mz) for the
phase has three roots separated by 2π/3. This means
that the in-plane splitting pattern of a triple node re-
spects 3-fold symmetry, as expected. For the magnitude
of the splitting we get

q3
⊥ =

∣∣∣∣ γ̃Mz

ãei3φ + b̃e−i3φ

∣∣∣∣ . (28)

Thus the in-plane splitting increases as |Mz|1/3, and from
Eq. (25) we conclude that the vertical shift of the three
split nodes is instead linear in |Mz|. However, unlike for
a single Weyl node, the direction of the on-axis shift of
a triple node in not uniquely defined by the spin projec-
tions of the crossing states, but depends on microscopic
parameters.

The previous analysis correctly predicts a 3-fold sym-
metric in-plane splitting of a T -invariant triple node on a
3-fold axis, but it does not determine its absolute orien-
tation. In order to do so it is necessariy to take into con-
sideration an additional symmetry of trigonal Te, namely
the two-fold rotation. In Appendix E we show that this
symmetry pins the three split Weyl nodes to the ΓMLA
planes, as confirmed by the first-principles calculations.

In the case of a T -invariant triple node on a 6-fold
axis, the effect of an axial Zeeman field would have been
quite different. Instead of splitting into three single nodes
the triple node would simply move away from the TRIM
along the axis, and its in-plane dispersion would change
from cubic to quadratic.

VI. CONCLUSIONS

We have carried out a systematic classification of the
types of degeneracies that can occur on symmetry lines
in the BZ of a 3D crystal with pure rotational or screw
symmetry nm, assuming broken P ∗ T symmetry and in
the absence of other crystallographic symmetries. We
first presented the classification for the generic case, and
then specialized to T -invariant, P-broken crystals, treat-
ing both spinless and spinful T . At generic points along
a symmetry axis the degeneracies are Weyl nodes. At T -
invariant points on an axis they can be either Weyl nodes
or, when n is even and m is odd, glueing of pairs of bands
extending over the entire perpendicular BZ face.

It was known from previous work [7] that the presence
of either 4-fold or 6-fold rotational symmetry without T
symmetry can stabilize Weyl nodes with a chiral charge
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of magnitude larger than one, namely |χ| = 2 when n = 4
or 6 and also |χ| = 3 when n = 6. In this work we have
found a new type of triple Weyl node that can occur in
crystals with spinful T symmetry and any of the following
symmetries: 30, 31, 32, 60, 62, 64. The two types are qual-
itatively different: Generic triple nodes protected by 6-
fold symmetry alone are dressed, with the in-plane cubic
chiral dispersion masked by a nonchiral quadratic disper-
sion that dominates the band splitting; thus, at leading
order the band splitting is indistinguishable from that of
a double node. Instead, T -invariant triple nodes on a 3-
fold or a 6-fold axis are naked, displaying a purely cubic
in-plane splitting. This means that there is no one-to-
one correspondance between the chiral charge of a Weyl
node on a symmetry axis and the leading-order in-plane
splitting of the bands. Hexagonal close-packed Co and
trigonal Te are examples of materials possessing dressed
and naked triple Weyl nodes, respectively.

In summary, we have shown that composite Weyl
nodes are more common and more diverse than pre-
viously thought, and that in some cases they are un-
avoidable. We hope that these findings will stimulate
the search for new classes of Weyl semimetals where T -
invariant Weyl nodes on symmetry axes occur close to
the Fermi level.
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Appendix A: Level repulsion versus level crossing at
generic points on a rotation axis

Let |u〉 and |v〉 be two distinct eigenstates of the screw
symmetry operator Cnm at a generic point Kz along the
rotation axis of Eq. (2), and let αpu and αpv be the corre-
sponding eigenvalues given by Eq. (6). Suppose the two
states are also degenerate eigenstates of the Hamiltonian
H, which by assumption commutes with Cnm . Now add
a small perturbation ∆H that respects the Cnm symme-
try. We want to know the conditions under which ∆H
can couple the two states and open a gap. If the cross-
ing can be removed in this way then it means that the
original Hamiltonian H was fine-tuned.

The coupling matrix element is

〈v|∆H|u〉 = 〈v|C−1
nm

(
Cnm∆HC−1

nm

)
Cnm |u〉

= ei2π(pu−pv)/n〈v|∆H|u〉, (A1)

where we used [∆H,Cnm ] = 0. There are two cases:

1. If pu 6= pv mod n Eq. (A1) can only be satisfied
with 〈v|∆H|u〉 = 0, which means that the pertur-
bation does not open a gap: The crossing is robust
against symmetry-preserving perturbations.

2. If pu = pv mod n then 〈v|∆H|u〉 can be nonzero,
and ∆H will generically split the degeneracy.

Appendix B: Details of the numerical calculations

1. Ground state calculations

The electronic structure calculations of Secs. III and V
were carried out within the framework of density-
functional theory, as implemented in the VASP code pack-
age [28, 29]. This code uses a plane-wave basis set to
expand the valence wave functions, and the projector-
augmented wave method to describe the core-valence in-
teraction [30, 31]. Except for Sec. V A, the calculations
reported in this work include spin-orbit coupling in the
core-valence interaction.

Fully-relativistic total energy calculations for hcp Co
in its ferromagnetic ground state were carried out using
the experimental lattice parameters a = 2.506 Å and
c = 4.067 Å [32]. Exchange and correlation effects
were treated using the Perdew, Burke, and Ernzerhof
generalized-gradient approximation [33].

For the calculations on trigonal Te we used the exper-
imental parameters a = 4.458 Å and c = 5.925 Å [34],
and a relaxed value of u = 0.274 for the dimensionless
helix parameter [24], which differs slightly from the ex-
perimental value of u = 0.255 [34]. Both the generalized-
gradient approximation and the local-density approxima-
tion incorrectly predict a semi-metallic rather than semi-
conducting ground state for this material, due to a closing
of the gap at the H point. Although this issue does not
greatly affect our study of degeneracies along the ΓA line,
we have opted to correct it by using instead the so-called
HSE06 hybrid functional [35]. In this way we obtained
an energy gap of 0.312 eV at H from a fully-relativistic
calculation, in good agreement with both the calculated
value of 0.314 eV obtained using the GW method [11]
and the experimental value of 0.323 eV [36].

2. Post-processing using a Wannier-function basis

In order to interpolate the energy bands and calculate
the chiral charges of the Weyl nodes, we use the formal-
ism of maximally-localized Wannier functions [37, 38] as
implemented in the Wannier90 code package [39, 40].

Exploring the bandstructure of hcp Co over the BZ we
find that the bands shown in Fig. 1 cross with higher-
lying bands [17], and thus we use the disentanglement
procedure [38] to construct the Wannier functions. The
trial orbitals are chosen to be sp3 hybrids and atom-
centered d orbitals, totaling nine Wannier functions per
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FIG. 7. (Color online) Schematic representation of the
types of degeneracies protected by T and nm symmetry at
the TRIM Kz = 0 and π along an nm-invariant axis (0, 0,Kz)
in the BZ. Each diagram is labeled by (F, nm), and here we
show the diagrams for spinless T (F = 0) and all nm sym-
metries compatible with lattice periodicity. For a detailed
explanation, see the captions of Figs. 2 and 3.

atom and spin channel. The outer energy window [38]
spans the range from −20 eV to +70 eV relative to the
Fermi level, which covers all 4s, 4p and 3d states present
in the pseudopotential calculation, while the frozen en-
ergy window [38] goes from −20 eV to +7 eV.

The 5p bands of trigonal Te are well separated from
the lower 5s states, and they cross with higher-lying sates
only in a small region of the BZ. The outer energy win-
dow goes from −8 eV to +5 eV relative to the valence-
band maximum, the inner frozen window from −8 eV to
+2.5 eV, and we use atom-centered p-type trial orbitals
for the initial projections. The resulting Wannier func-

FIG. 8. (Color online) Same as Fig. 7, but for spinful T
(F = 1).

tions are similar to those obtained in Ref. [11] for the
same material.

The chiral charges are calculated from the quantized
Berry-curvature flux through small surfaces enclosing the
individual Weyl nodes [10],

χlα =
1

2π

∮
S

dS n̂ ·Ωl(k) (B1a)

Ωl(k) = i〈∇kulk| × |∇kulk〉. (B1b)

Here n̂ is the unit surface normal pointing outwards, and
l is the lower of the two bands that cross. In practice the
Berry curvature Ωn(k) is evaluated on a dense grid of
k points by Wannier interpolation [41], and we choose
the closed surface S to be a parallelepiped with the α-th
Weyl node between bands l and l + 1 at the center [10].
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Appendix C: Diagrams describing the types of
degeneracies at TRIM on a rotation axis

We present here the complete set of (F, nm) diagrams
introduced in Sec. IV B to describe the degeneracies oc-
curring at TRIM on a rotation axis, assuming no other
symmetries are present. The allowed degeneracies are
Weyl points with chiral charges of magnitude |χ| = 1, 2
or 3, and band glueing extending over the entire BZ face
orthogonal to the symmetry axis. Figure 7 contains the
diagrams for spinless T (F = 0), and Fig. 8 contains the
diagrams for spinful T (F = 1).

The magnitude of the chiral charge has a simple in-
terpretation in terms of these diagrams: When F = 0
(F = 1), |χ| is equal to the smallest nonzero even (odd)
number of hops around the unit circle needed to travel
between spheres connected by a dashed line or loop with
a marker. It follows that |χ| must be even when F = 0,
and odd when F = 1. For n = 2, 3, 4, 6, the only possible
values are |χ| = 2 for F = 0 and |χ| = 1, 3 for F = 1,
with |χ| = 3 requiring n = 3 or 6, in agreement with
Tables II and III.

Appendix D: Valence and low-lying conductions
bands of trigonal Te

We saw in Sec. V A that the spinless band structure
of Te consists of 3-band complexes with topologically-
required contact points along the 3-fold axis ΓA. In ad-
dition to the double Weyl nodes pinned to Γ and A by
T symmetry, there was an additional Weyl crossing be-
tween Γ and A in the complex of Fig. 4. This degener-
acy is accidental, and can be eliminated by changing the
Hamiltonian without changing the symmetry [5]. This
is corroborated by Fig. 9(a), where two more band com-
plexes are shown. Both have double Weyl nodes at Γ and
A, but the topmost valence complex contains no acciden-
tal crossings in between. In this scenario with minimal
connectivity the double nodes at Γ and A must have op-
posite chiralities, as can be seen from Table II.

Figure 9(b) shows the spinful bands for the same three
band complexes. The ordering in energy of the single and
triple nodes at Γ and/or A is different in the three com-
plexes, but the rules of the (1, 31) diagram of Fig. 2(b)
for hooking up the states are such that one necessarily
ends up with the six bands forming a connected group in
the sense of Ref. [5].

One noteworthy difference with respect to the spinless
case of Fig. 9(a) is that it is not possible to eliminate all
the Weyl nodes between Γ and A. The minimum number
of such crossings per 6-band complex is two, and it re-
quires that at both TRIM the triple node lies in energy
between the two single nodes; the two unremovable un-
pinned crossings then occur between the red and green
branches. This scenario is almost realized in the upper
complex shown in Fig. 9(b), except for an additional acci-
dental crossing between the two lowest bands. Crossings
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FIG. 9. Three complexes (two valence and one conduction)
in the band structure of Te, plotted along the 3-fold axis
ΓA with energies measured from the valence-band maximum.
The bands in panels (a) and (b) were calculated without and
with spin-orbit coupling, respectively. The meaning of the
colors and markers is the same as in Figs. 4 and 5(a), which
focus on the valence complex shown here at the bottom.

that “can be moved but not removed” while preserving
the symmetry of the Hamiltonian were first discussed in
Refs. [42, 43].

Appendix E: Effect of two-fold rotational symmetry
on the Zeeman splitting of triple Weyl nodes in Te

The point group of trigonal Te contains a pure 2-fold
rotation operation [24, 25] that leaves invariant the points
Γ and A where triple Weyl nodes occur (the invariant
lines are ΓK and AH). That 20 symmetry was not taken
into account when analyzing in Sec. V C the splitting of
a triple node by a Zeeman field. In this Appendix we
show that its presence pins the three single nodes that
split from the triple node to the ΓMLA planes in the BZ.

To proceed we need to find the constraints imposed by
the 20 symmetry on the unperturbed effective Hamilto-
nian of a triple node. The first step is to write down the
matrix C20

representing the 20 operation in the basis of
the two states forming the triple node. Since that op-
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eration sends Kz into −Kz and the function g(0, 0, qz)
multiplying σz in Heff(0, 0,Kz + qz) is odd [see Eq. (18)],
it follows that the basis states transform one into the
other with some phase factors,

C20 =

(
0 eiφ2

eiφ1 0

)
. (E1)

From (20)
2

= (−1)F we obtain for spinful electrons the
constrain ei(φ1+φ2) = −1, while φ1 − φ2 depends on the
arbitrary choice of phases for the two basis states. Since
we have not fixed those phases anywhere so far we are
free to choose φ1 = φ2 = −π/2, leading to

C20
= −iσx. (E2)

The 20 operation transforms the wavevector measured
relative to the nodal point Γ or A as q+ ↔ q− and
qz → −qz, and using Eq. (1) we find as the invari-
ance condition for the unperturbed effective Hamilto-
nian C20Heff(q+, q−, qz)C

−1
20

= Heff(q−, q+,−qz). Insert-
ing Eq. (3) for Heff in this relation and using Eq. (E2)
leads to the constraints

f(q−, q+,−qz) = f∗(q+, q−, qz) (E3a)

g(q−, q+,−qz) = −g(q+, q−, qz) (E3b)

which imply, for the expansion coefficients in Eq. (4),

An1n2n3
= (−1)n3A∗n1n2n3

(E4a)

Bm1m2m3
= (−1)m3+1Bm2m1m3

. (E4b)

It follows from the first condition that An1n2n3
is real

(purely imaginary) when n3 is even (odd), and from
the second combined with Eq. (5) that Bm1m2m3

is real
(purely imaginary) when m3 is odd (even).

When applied to the unperturbed effective Hamilto-
nian of a triple Weyl node in trigonal Te [Eq. (24) with
Mz = 0], the above constraints from 20 symmetry imply
that the parameters α = B001, a = A300 and b = A030

are real, while c = B300 and β = A001 are purely imag-
inary. As a result the previously complex quantities ã

and b̃ appearing in Eq. (27) have now become real, and
γ̃ has become purely imaginary. The latter follows from
the fact that 20 symmetry renders γ purely imaginary:

γ = 〈u|τz|v〉 = 〈C20u|C20τzC
−1
20
|C20v〉

= −〈v|τz|u〉 = −γ∗, (E5)

where C20 |v〉 = −i|u〉 and C20 |u〉 = −i|v〉 according to
Eq. (E2), and C20τzC

−1
20

= −τz according to the algebra

for spin- 1
2 rotations [21]. Under these circumstances the

real part of Eq. (27) reduces to (ã+ b̃) cos(3φ) = 0, which

for ã 6= −b̃ has six inequivalent roots

φ =
π

6
+ l

π

3
, l = 0, 1, . . . , 5, (E6)

and from the imaginary part of Eq. (27) we find, using
sin(3φ) = (−1)l,

q3
⊥ = (−1)l

MzIm[γ̃]

b̃− ã
. (E7)

Depending on the various parameters, the three physical
solutions with a positive q⊥ are the ones with either even
or odd values of l. These two possibilities realize the two
types of 3-fold symmetric patterns where the split Weyl
nodes lie on the ΓMLA planes.
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