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Anomalous enhancement of tetragonality in PbTiO3 induced by negative pressure
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Using a first-principles approach based on density-functional theory, we find that a large tetragonal
strain can be induced in PbTiO3 by application of a negative hydrostatic pressure. The structural
parameters and the dielectric and dynamical properties are found to change abruptly near a crossover
pressure, displaying a “kinky” behavior suggestive of proximity to a phase transition. Analogous
calculations for BaTiO3 show that the same effect is also present there, but at much higher negative
pressure. We investigate this unexpected behavior of PbTiO3 and discuss an interpretation involving
a phenomenological description in terms of a reduced set of relevant degrees of freedom.

PACS numbers: 61.50.Ks, 77.84.Dy, 81.05.Zx

I. INTRODUCTION

Recent work has shown that single-crystal solid-
solution ferroelectric perovskites can have dramati-
cally improved electromechanical properties compared
to conventional transducer materials.1,2,3 Representa-
tive materials include PbZn1/3Nb2/3O3–PbTiO3 and
PbMg1/3Nb2/3O3–PbTiO3, which have ultrahigh piezo-
electric coefficients and low dielectric loss. These ma-
terials have also been observed to exhibit electric-field
induced phase transformations to “ultrahigh” strain
states.1

PbTiO3 serves as the common parent compound for
this class of materials, and may be supposed to play
an important role in the observed behavior. Since the
discovery of ferroelectricity in perovskite oxides in the
1950’s, PbTiO3 has been the focus of extensive experi-
mental and theoretical study. It has a single phase tran-
sition at Tc = 766 K from a paraelectric cubic phase
to a ferroelectric tetragonal phase, and a c/a of 1.06
at low temperature. The structure and properties of
PbTiO3 have been widely studied using first-principles
calculations.4,5,6,7,8 Nevertheless, we report here a fea-
ture of the behavior of PbTiO3 that had not previously
been noticed. Our calculations show that an enormous
tetragonal strain can be induced in PbTiO3 by applica-
tion of a negative hydrostatic pressure. The structural
parameters, such as cell volume and atomic displace-
ments, are found to change abruptly near a crossover
pressure, displaying a “kinky” behavior suggestive of
proximity to a phase transition. Analogous calculations
for BaTiO3 show that the same effect is also present
there, but at much higher negative pressure.

In this paper, we investigate this unexpected behavior
of PbTiO3, and discuss its interpretation using a phe-
nomenological description in terms of a reduced set of
relevant degrees of freedom. We make the notion of prox-
imity to a phase transition more precise by demonstrat-
ing that small changes in the parameters in this descrip-
tion can take the system through a triple point, leading
to first-order transition behavior. Although the applica-
tion of negative pressure is not feasible experimentally,
our theoretical study provides useful insights into the

structural instabilities of PbTiO3, and may ultimately
help suggest other, more practical avenues leading to en-
hanced tetragonality in PbTiO3 and related compounds.

The paper is organized as follows. Section II provides
the technical details of our first-principles calculations.
Sec. III gives the results of our computations for the
tetragonal distortion, structural parameters, and lattice
dynamical properties as a function of applied negative
pressure. In Sec. IV we introduce a phenomenological
model that allows us to identify the relevant degrees of
freedom responsible for this behavior, and we conclude
with a brief discussion in Sec. V.

II. COMPUTATIONAL DETAILS

All ab initio calculations were performed in the frame-
work of the Hohenberg-Kohn-Sham density-functional
theory (DFT) within the local-density approxima-
tion (LDA). We use the ABINIT package,9 a plane-
wave pseudopotential code that, in addition to
ground-state total-energy and force calculations, al-
lows linear-response computations of phonon frequen-
cies and Born effective charges. Our calculations use
the Perdew-Wang10 parameterization of the Ceperley-
Alder11 exchange-correlation, and the extended norm-
conserving pseudopotentials of Teter.12 These pseudopo-
tentials include the O 2s and 2p, the Ti 3s, 3p, 3d and
4s, the Ba 5s, 5p and 6s, and the Pb 5d, 6s and 6p in
the valence states. We have used an energy cutoff of
60 Ha throughout. The integrals over the Brillouin zone
have been replaced by a sum over a 6×6×6 k-point mesh.
Convergence of the relaxations requires the Hellmann-
Feynman forces to be less than 0.003 eV/Å. We have
computed the eigenvalues and eigenvectors of zone-center
force-constant matrices by using both finite-difference
(frozen-phonon) and linear-response approaches (with
typical displacements of ±0.007 a.u. for the former), find-
ing excellent agreement between the two schemes.
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FIG. 1: Negative-pressure dependences of (a) volume (in
Bohr3); (b) tetragonal strain η3 and η1; (c) atomic displace-
ments in the z direction (in c units) for tetragonal PbTiO3.

III. RESULTS

A. Structural response

The observed crystal structure of ferroelectric PbTiO3

has space group P4mm, with Pb in the (1a) Wyckoff
position (0, 0, ξ1), Ti in (1b)(1

2
, 1

2
, 1

2
+ ξ2), and O in

(1b)(1
2
, 1

2
, ξ3) and (2c) (1

2
, 0, 1

2
+ ξ4) (0, 1

2
, 1

2
+ ξ4). The

free structural parameters are the a lattice constant,
the c/a ratio and the atomic displacements along ẑ, ξi

(expressed in units of c). At zero pressure, our LDA
calculation yields a T=0 equilibrium lattice constant of
a = 7.301 a.u. and c/a = 1.037, which are ∼ −1% and ∼
−3% less than the experimental values of 7.373 a.u. and
1.065,13 respectively. The fully-relaxed internal coordi-
nates are ξPb = 0.0579, ξTi = 0.0268, ξO1,O2

= −0.0335
and ξO3

= −0.0177, where O1 and O2 are the “in-plane”
oxygens (2c) and O3 is the apical (along ẑ (1b)) oxygen of
the Ti-centered oxygen octahedron. We use the conven-
tion that

∑
k ξk = 0. Throughout this work the reference

state will be our theoretical minimum-energy ideal cubic
structure (a0 = 7.331 a.u.), in terms of which the strains
are defined as η1 = (a − a0)/a0 and η3 = (c − a0)/a0.

We perform full, unconstrained optimization of the
structural parameters of tetragonal PbTiO3 as a func-
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FIG. 2: Polarization (upper panel) and Born effective charges
(Z∗

k) (bottom panel) for PbTiO3 as a function of negative
pressure.

tion of external pressure ranging from 0 to −7 GPa. At
a given pressure, the set of parameters that minimizes the
total energy is determined. The negative-pressure depen-
dence of the optimized structural parameters is shown in
Fig. 1, where panels (a)-(c) display the unit-cell volume,
strains (η1 and η3), and internal atomic displacements in
the z direction, respectively. As can be seen from the
figure, all of the structural parameters display an abrupt
change around a crossover pressure pc ' −4.8 GPa in a
way that suggests proximity to a phase transition. The
rapid enlargement of the unit-cell volume results from
an abrupt increase of η3, while it should be noted that
the in-plane strain η1 decreases slightly in the same pres-
sure range. The net effect of the negative pressure is to
stretch the unit cell strongly along ẑ and slightly squeeze
it in the plane. For example, just above the transition
at p = −5.3 GPa, we find η1 = −0.02 and η3 = 0.186,
and the resulting c/a is 1.21. Next, considering the re-
laxed atomic positions, the most remarkable feature is
the change in character of the oxygen-displacement pat-
tern. At pressures below pc the apical oxygen is dis-
placed less than the in-plane oxygens, whereas at pres-
sures above pc it is displaced more. At pc both types of
oxygens are displaced by nearly the same amount, which
means that the oxygen cage forms a tetragonally strained
octahedron.

For each of the optimized structures, we have also
carried out spontaneous polarization calculations (up-
per panel of Fig. 2) as a function of negative pressure
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FIG. 3: Negative-pressure dependence of volume (in Bohr3)
for tetragonal BaTiO3 and PbTiO3.

using the Berry-phase theory of polarization.14 It can
be seen that the polarization shows the same kinky be-
havior at pc. To get some insight into the polarization,
we compute the Born effective charges (Z∗

k). The bot-
tom panel of Fig. 2 shows Z∗

k,33 in the relaxed tetrago-
nal structure at different pressures, as obtained by us-
ing density-functional perturbation theory. The results
at zero pressure for k = Pb, Ti, O1 and O3 are 3.84,
6.77, −2.55, −5.50, similar to previously calculated val-
ues of 3.92, 6.71, −2.56, −5.51,15 respectively. However,
a direct comparison is not possible because the latter val-
ues were computed at the experimental tetragonal lattice
constants. The most important features are the anoma-
lously large effective charges of Ti and O3 (oxygen along
the bond) compared with their nominal charges (+4 and
−2 respectively) and the anisotropy of the oxygen charge.
These features persist throughout the negative-pressure
range of interest, although all of the effective charges ap-
proach somewhat closer to the nominal values above pc.
Most notably, Z∗

Ti and Z∗

O3
change by ∼ 25% while pass-

ing through pc, suggesting a weakening of the Ti–O bond,
whereas Z∗

Pb and Z∗

O1
decrease less noticeably. This

follows the same trend observed in other perovskites,16

where the Z∗’s decrease as the ions are displaced away
from their high-symmetry cubic sites. The large changes
in Z∗

Ti and Z∗

O3
reflect the change of the Ti environment

along the Ti–O chains; the shortened Ti–O3 bonds re-
main almost constant in length while passing through pc,
while the elongated bonds lengthen abruptly there. Note
that even though the Z∗’s decrease, the enhancement of
the ionic displacements is so strong that the overall effect
is a marked enhancement of the spontaneous polarization
with negative pressure.

We have also investigated BaTiO3 under negative pres-
sure. In order to facilitate comparison with the re-
sults for PbTiO3, we have imposed tetragonal symmetry,
even though the ground state of BaTiO3 is rhombohe-
dral. Interestingly, we find the same anomalous effect

as in PbTiO3, but it occurs at much higher pressure in
BaTiO3. The computed optimized volume of BaTiO3 in
the tetragonal phase is plotted as a function of negative
pressure in Figure 3, together with the corresponding re-
sults for PbTiO3 for comparison. As seen, in BaTiO3 the
jump of the volume occurs at pc ' −10.6 GPa, a pressure
that is approximately twice as large as for PbTiO3. Fur-
thermore, the abrupt volume enhancement is even larger;
in a pressure interval of width 1 GPa around pc, the vol-
ume jump is ∼ 15% in BaTiO3, to be compared with
∼ 5% in PbTiO3.

B. Lattice instabilities

As a first step towards understanding the unexpected
behavior of PbTiO3 at negative pressures, we investigate
the zone-center lattice instabilities in a structure having
the lattice constants of the optimized tetragonal struc-
ture at the corresponding pressure, but without internal
distortions (i.e., all atoms at centrosymmetric positions).
For each structure, we compute the force-constant matrix
at the Γ point using the frozen-phonon method.

The tetragonal ferroelectric phase of PbTiO3 belongs
to the C1

4v (P4mm) space group. At the Γ point,
the vibrational representation is spanned by two one-
dimensional irreducible representations A1 and B1 and
one two-dimensional representation E, of which there
are 4, 1, and 5 copies, respectively, so that the force-
constant matrix is block diagonal. As we are interested
in the modes producing polarization along ẑ, we only
have to diagonalize the 4×4 block of the A1 subspace.
The pure translational mode is discarded, and the eigen-
values (κ) of the three remaining A1 modes are plotted
versus pressure in Fig. 4. Negative values correspond to
unstable modes. As expected, the ferroelectric soft mode
is already unstable at zero pressure, and it becomes even
more so as the crossover negative pressure region around
pc = −4.8 GPa is crossed because of the cell-volume en-
hancement that takes place there. However, we also find
that a second mode becomes soft and that its frequency
crosses through zero at a pressure that is close to the
same pc. At first sight, this concurrence might be taken
as a hint of some connection between the second mode
crossing and the anomalous “kinky” behaviors. However,
as will be explained in Sec. IV, we think that if there is
such a connection, it is more likely that the rapid ex-
pansion of the c lattice constant causes the second mode
crossing, and not vice versa.

The corresponding eigenvectors are also very sensitive
to pressure changes. Table I summarizes the eigenval-
ues κ and the eigenvectors of the original ferroelectric
soft mode and the second soft mode at three different
external pressures: zero, pc, and a pressure higher than
pc. As can be seen, the original soft mode shows the
displacement pattern that is typical of ferroelectric per-
ovskites, with the cations moving in opposition to the
oxygen octahedra. As the negative pressure increases,
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FIG. 4: Eigenvalues κ of the force-constant matrix in the
centrosymmetric tetragonal structure with lattice constants
of the optimized tetragonal structure at the specified pressure.

the character of the mode evolves to one dominated by
the long-short alternation of the bonds in the Ti-O bonds
along ẑ. On the other hand, the pattern of the second soft
mode consists mainly of the Pb–O3 plane moving against
the Ti–O1 plane. At zero pressure the opposing cation
displacements are dominant; negative pressure leads to
an increase in the O1,2 displacements and a decrease in
the Ti displacement.

C. Applied biaxial stress

As mentioned in Sec. III A, the effect of negative
isotropic pressure on the cell shape is to stretch the unit
cell along ẑ and slightly squeeze it in-plane. Here we con-
sider what happens if instead we apply an in-plane stress
only (σxx=σyy and σzz=0). This is effectively what hap-
pens in the case of epitaxial growth on a substrate of
slightly different lattice constant.17 In the calculation, we
constrain the a lattice parameter and allow c and all the
ionic positions in the [001] direction to relax while pre-
serving the tetragonal space-group symmetry; the biaxial

TABLE I: Comparison of eigenvalues (κ) and eigenvectors
of the original and second soft modes for different pressures.
Eigenvectors (Pb, Ti, O1=O2, O3) are normalized to unity.

p (GPa) κ (a.u.) Eigenvector
Original

0 −0.187 0.520 0.573 −0.388 −0.317
−4.56 −0.308 0.217 0.752 −0.211 −0.546
−6.48 −0.383 0.093 0.755 −0.108 −0.631

Second
0 0.190 0.713 −0.682 −0.076 0.121

−4.56 0.056 0.824 −0.321 −0.317 0.130
−6.48 −0.116 0.814 −0.128 −0.394 0.102
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FIG. 5: Comparison of lattice parameters c and a, in a.u.,
as a function of absolute value of stress obtained for tetrag-
onal PbTiO3 by applying negative biaxial stress or positive
isotropic stress (negative pressure).

stress needed to support this structure is then computed
directly within ABINIT.

The results are shown in Fig. 5, where the lattice pa-
rameters are plotted for expansive (positive) isotropic
stress (negative pressure) and for compressive (negative)
in-plane stress. This is the appropriate comparison since
both have the effect of enlarging the c lattice constant and
thus potentially triggering the abrupt structural change.
Indeed, we find that the biaxial stress does generate the
same kind of anomalous c-axis behavior. The enlarge-
ment in c occurs at a somewhat larger magnitudes of
the stress, and produces a somewhat more modest c-axis
expansion, than for the isotropic-pressure case.

It should be emphasized, however, that the abrupt
variation only appears when c and a are plotted vs. ap-
plied biaxial stress; simply plotting c vs. in-plane strain

(i.e., vs. a) does not reveal anomalous behavior. More-
over, in order to obtain the same large c values that result
near the kink in the negative-pressure case (indicated by
pc in the figure), we find that the in-plane lattice param-
eters would have to be compressed by ∼ −3.2%, which
is much larger than the typical compression that can be
attained by growth of PbTiO3 on typical substrates such
as SrTiO3 (∼ −1.4%)18 or NdGaO3 (∼ −1%).19 Thus,
it does not appear that the predicted behavior can be
observed in epitaxially strained films. Perhaps it may be
possible to find some other way to generate a sufficiently
large biaxial compressive stress so that this effect can be
observed.

In any case, we think it is interesting that the applica-
tion of compressive biaxial stress can generate the same
kind of anomalous structural behavior as the application
of negative isotropic pressure, at least for PbTiO3. This
result tends to support the speculation that some other
kinds of variation (e.g., chemical substitution) might also
be capable of driving a similar anomalous behavior.
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D. Applied electric field

Another means of producing an effective tensile stress
along ẑ is the application of an electric field in the
same direction. The induced polarization should cou-
ple strongly to the tetragonal strain. Therefore, we
made a preliminary investigation of whether a strong ap-
plied electric field might be capable of inducing a similar
anomalous enhancement of tetragonality. The structural
parameters in applied electric fields can be estimated us-
ing an approximate scheme in which the ab-initio force on
each atom (computed in zero electric field) is augmented
by the product of the dynamical effective charge tensor
for that atom and the applied electric field vector.8,20

Based on our preliminary results, but more specifically
on the results plotted in Fig. 8 of Ref. 8, it appears
that η3 and η1 do not show any abrupt change up to
6 × 103 kV/cm. Thus, it seems unlikely that the ap-
plication of an electric field can cause the same kind of
anomalous behavior as the application of negative pres-
sure. A more careful study would be desirable, checking
whether the above approximations might be oversimpli-
fying the treatment of some nonlinearities, but this is left
for a future investigation.

IV. PHENOMENOLOGICAL MODEL

DESCRIPTION

In order to explore the origins of the anomalous behav-
ior that has emerged from our calculations in the vicinity
of the crossover negative pressure pc, we turn now to an
attempt to model this behavior phenomenologically in
terms of a reduced set of relevant degrees of freedom.
We consider models similar to those that underlie the
effective-Hamiltonian scheme,6,21 in which the total en-
ergy is Taylor-expanded, in soft-mode and strain vari-
ables, about a reference cubic phase. The effect of the
external hydrostatic pressure p is included by minimizing
an enthalpy that includes a pV term in addition to the
energy.

The first step in the construction of the model is to
determine an appropriate set of degrees of freedom to
be included. For practical reasons, this set should be
as small as possible, and the definition of the degrees
of freedom should not depend explicitly on pressure.
Starting from a reference cubic structure, the fully
relaxed structure at a given pressure can be separated
into two parts: a homogeneous strain (leaving the atoms
undistorted from their high-symmetry positions) and an
“internal strain” (i.e., internal atomic displacements).
To describe the first part, we make the simplest possible
choice. As the unit-cell volume V increases monotoni-
cally with negative pressure, it specifies the strain state
uniquely. This choice has the added convenience that
it is V that directly couples to the pressure (it should
be noted that the cell at given V will in general be
tetragonal and its value of c and a are thus functions

-6-4-20

Pressure (GPa)

0

0.05

0.1

0.15

0.2

Pr
oj

ec
tio

n 
of

 a
to

m
ic

 d
is

pl
.

〈 ξ ϕ
v

〉

〈 ξ ϕ
u

〉

〈 ξ ϕ
w

〉

FIG. 6: Projection of the relaxed atomic displacements along
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modes of the zero-pressure cubic structure (|ϕu〉, |ϕv〉 and
|ϕw〉), given in units of c.

of V ). Next, we need to find an appropriate basis able
to capture the important internal strains at all relevant
pressures. We first consider the entire set of zone-center
modes of the cubic structure at zero pressure, and
then attempt to determine which of these are most
relevant for spanning the observed configurations in the
pressure range of interest. Since the structure remains
tetragonal, the three non-trivial A1 modes form the
starting point for this investigation. Let u, w and v
denote the amplitudes of the softest, intermediate, and
hardest mode of the force-constant matrix, with eigen-
vectors |ϕu〉 = |0.66, 0.39,−0.43,−0.43,−0.21〉,
|ϕw〉 = |0.60,−0.79, 0.10, 0.10,−0.01〉 and
|ϕv〉 = |0.06, 0.15, 0.33, 0.33,−0.87〉, respectively.
Then for each pressure, the optimized displacements
shown in Fig. 1(c) are projected onto these three modes
to obtain the amplitudes plotted in Fig. 6. As can
be seen from the figure, the largest contribution at all
pressures is clearly given by the soft mode u, while
the other two appear less important. The contribution
of the second mode is almost independent of pressure
and can therefore be neglected. On the contrary, the
highest-mode contribution is quite sensitive to pressure,
increasing notably at pc. The need to include at least
one additional mode in the model subspace is clear
from Figure 1(c), as a single mode cannot capture the
change in character above pc. The figure suggests that
the highest-mode contribution v is next in importance
after the soft mode u; the fact that including the v
mode yields a qualitatively correct description of the
distortions at all relevant pressures will be confirmed
below.

To develop the model, we consider the configuration
subspace defined by three independent variables: the
unit-cell volume V , the soft-mode amplitude u, and
the hardest-mode amplitude v. At each volume V , we
start by considering only the mode u (setting v=0), and
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TABLE II: Parameters of the model total-energy expansion.
All parameters are in atomic units.

V A0 4.4668 A1 −0.0124 A2 −5.69×10−5

A3 2.37×10−7 A4 −2.17×10−10

u C2u 0.9264 C′

2u −0.0042 C′′

2u 4.65×10−6

C4u 0.7095 C′

4u −0.0030 C′′

4u 3.18×10−6

v B1v 0.6700 B′

1v −1.64×10−3

B2v −0.0851 B′

2v 5.16×10−4

Taylor-expand in u as

E(V, u) = E0 + c0(V ) + c2u (V )u2 + c4u (V )u4 , (1)

where E0 is the total energy at V = V0 and u = v = 0,
so that c0(V0) = 0, and terms of order u6 and higher are
dropped. The coefficients c0, c2u and c4u are obtained
by fitting to ab-initio total energies computed for con-
figurations corresponding to various values of u, and the
equilibrium value for v = 0 and fixed V is obtained by
minimizing Eq. (1), leading to

u2
eq (V ) = −

1

2

c2u (V )

c4u (V )
(2)

and

E(V, ueq(V )) = E0 + c0 (V ) −
1

4

c2
2u (V )

c4u (V )
. (3)

Then, starting at the configuration corresponding to
(u, v) = (ueq(V ), 0), we compute ab-initio total energies
for configurations corresponding to various values of v,
holding V and u = ueq(V ) fixed, and fit the result to
quadratic order in v as

E(V, ueq(V ), v) = E(V, ueq(V )) + b1v (V ) v + b2v (V ) v2 .
(4)

Minimizing the total energy with respect to v (at fixed
V and u = ueq), the equilibrium amplitude of this mode
is obtained as

veq (V ) = −
1

2

b1v (V )

b2v (V )
(5)

and the total energy is

E = E0 + c0 (V ) −
1

4

c2
2u (V )

c4u (V )
−

1

4

b2
1v (V )

b2v (V )
. (6)

To facilitate the modeling of the dependence of these
results on volume V , we fit the functions c0, c2u, c4u, b1v,
and b2v as polynomials in V :

c0 (V ) = A0 + A1V + A2V
2 + A3V

3 + A4V
4 , (7)

c2u (V ) = C2u + C′

2uV + C′′

2uV 2 , (8)

c4u (V ) = C4u + C′

4uV + C′′

4uV 2 , (9)
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FIG. 7: Pressure computed at different volumes by using the
phenomenological model (full line) compared with the first-
principles results (circles).

b1v (V ) = B1v + B′

1vV , (10)

b2v (V ) = B2v + B′

2vV . (11)

The expansion parameters were determined by fitting to
the results of total-energy calculations in the interval of
volumes from 400 to 480 a.u.3, near V0 = 393.99 a.u.3.
The resulting parameters of the model are reported in
Table II.

We then explored the behavior of this model by deter-
mining the equilibrium structural parameters as a func-
tion of pressure p, minimizing the enthalpy H = E +pV .
The result is shown by the solid line in Fig. 7. We
find that there is a pressure interval from about −4.6
to −6 GPa in which two local minima compete, with
a first-order isostructural transition between minima at
pc ' −5.4 GPa. The locations of the secondary min-
imum and the saddle point are indicated by the dotted
line in Fig. 7, obtained by evaluating the thermodynamic
relation p = −∂E(V )/∂V as a function of V .

Comparing the behavior of the model with the first-
principles results, shown as solid circles in Fig. 7, we see
that the model correctly reproduces the existence of an
abrupt variation of structural parameters with negative
pressure. In fact, the model even goes too far, exhibiting
a true first-order transition where there is none in the
first-principles results. The model also slightly overesti-
mates, by about 10-15%, the magnitude of the negative
pressure at which the abrupt change occurs, and under-
estimates the pressure dependence of the volume at the
highest negative pressures.

Even with these minor discrepancies, the model is very
useful in generating a clearer picture of the observed be-
havior. In particular, the fact that a first-order transition
occurs in the model supports the idea that the anomalous
enhancement of tetragonality in the first-principles calcu-
lations results from proximity to a phase transition. To
make this idea more precise, we consider small variations



7

-12-10-8-6-4-20

p
c 
(GPa)

3.1865

3.189

3.1915

3.194

C
" 4u

 × 
10

6

p
c
(1) p

c
(2) pc*

(1) (2)
(3)

(4)

-12-10-8-6-4-20
Pressure (GPa)

400

420

440

460

480

V
ol

um
e 

(B
oh

r3 )

(4)

(3)

(2)

(1)

 critical point

FIG. 8: Calculated P − V phase diagram for different C′′

4u

parameters (upper panel). The original model is marked as
case (1). C′′

4u parameter–critical pressure (pc) diagram (bot-
tom panel). For values bigger than C′′

4u at the critical point
there is no phase transition.

of one of the model parameters, C′′

4u, keeping all other
parameters fixed, and study the transition behavior as
a function of pressure. The upper panel of Fig. 8 shows
the P–V diagram for four different values of C′′

4u, starting
from the original model marked as case (1) and increas-
ing C′′

4u incrementally to case (4). As can be seen, for the
smaller values of C′′

4u there is a first-order phase transi-
tion from a low-c/a to a high-c/a phase at a transition
pressure pc (cases (1) and (2)). The volume discontinu-
ity decreases with increasing C′′

4u and vanishes at a triple
point (case (3)). In other words, a critical value of the
C′′

4u parameter exists above which there is no distinction
between two phases (see, e.g., case (4)). The relation be-
tween C′′

4u and the transition pressure is presented in the
bottom panel of Figure 8; the phase boundary defined
in this way terminates at the triple point identified by
pressure p∗c .

Thus, Fig. 8 demonstrates that with increasing nega-
tive pressure, PbTiO3 passes very close to a triple point.
In fact, it passes so close that the errors introduced by the
truncations and simplifications of our model, described
earlier in this section, are sufficient to cause the model
system to exhibit a true first-order phase transition. In-
deed, to shift the model system into the transition-free
region of parameter space, it suffices to change C′′

4u by
only ∼ 0.15%. A more accurate model containing ad-
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FIG. 9: Configurational space described by ueq (upper panel)
and by ueq and veq (bottom panel) compared with the
minimum-energy structures (dotted lines).

ditional fitting parameters (e.g., an independent treat-
ment of lattice constants c and a, inclusion of mode w,
and/or a more careful treatment of cross terms between
modes u and v) would presumably be sufficient to repro-
duce the observed “kinky” behavior without the spurious
first-order transition.

We now turn to an examination of the role of the addi-
tional mode v in the anomalous negative-pressure behav-
ior of PbTiO3. The effects of holding v=0 can be easily
obtained by minimizing the enthalpy E+pV with E from
Eq. (3). The V vs. p curve still exhibits the anomalous
negative-pressure behavior, although the transition re-
gion is considerably shifted (to around −12 GPa) and
there is no first-order transition in this case (similar to
the first-principles result). Thus, inclusion of the ad-
ditional mode v is not absolutely necessary to produce
the anomalous negative-pressure behavior. On the other
hand, neglecting this mode leads to a substantial quan-
titative error in the transition pressure. Moreover, as we
have already seen in Fig. 1(c) and Fig. 6, the inclusion
of the mode v is needed to correctly capture the vari-
ation of the atomic displacements with pressure. This
point is emphasized in Fig. 9. In the upper panel, the
ratios of the displacements are fixed with an overall am-
plitude proportional to u (shown with symbols), so that
it is impossible to reproduce the crossing in the oxygen
displacement pattern around pc. In the lower panel, the
inclusion of the v mode yields a qualitative improvement,
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with a crossing close to pc. The discrepancy between the
model and the first-principles results (shown with dotted
lines) grows much more noticeable above pc. This most
likely reflects the contribution of the neglected modes
and couplings to the strong pressure dependence above
pc, which is underestimated by the model.

Finally, we analyze the relation between the modes of
the centrosymmetric tetragonal structure (dependent on
pressure) and the modes u, v and w, used in the construc-
tion of our model. In our discussion of Fig. 4 in Sec. III B,
we noted that the tetragonal mode of intermediate hard-
ness crosses from positive to negative κ (i.e., from stable
to unstable behavior) at a pressure very close to that at
which the anomalous structural response occurs. Pro-
jecting the pressure-dependent tetragonal modes on the
cubic modes, we find that the tetragonal soft mode is
mainly described by the mode u at all pressures, with a
significant contribution of the mode w above pc, whereas
the tetragonal mode of intermediate hardness is mainly
described at lower pressures by the mode w, and then
above pc by the mode v. Since the kinky behavior oc-
curs even when both cubic-structure modes v and w are
frozen to zero amplitude, we think that it is unlikely that
the zero crossing of the second tetragonal-structure mode
has a causal role in the anomalous structural behavior.
Instead, it seems more likely that it simply results from
the abrupt expansion of the c-axis lattice parameter.

Thus, we believe that the model developed in this sec-
tion, based on an expansion of the total energy with
respect to the volume and two zone-center mode am-
plitudes, is a reasonable compromise between simplicity
and accuracy. It gives a good qualitative and even semi-
quantitative description of the abrupt variation of the
structural parameters near pc. The fact that it predicts
a true first-order transition at pc, instead of a smooth
but “kinky” cross-over, should be taken more as a sign
of the proximity of the real system to a phase transi-
tion than as a failure of the model. We are hopeful that
this model will be useful for investigating and describing
similar behavior in other perovskite systems.

V. DISCUSSION AND SUMMARY

We have shown that the application of negative pres-
sure induces a large enhancement of tetragonal strain in
tetragonal PbTiO3. Specifically, in a window of pres-
sure centered around a particular value pc, c/a abruptly

increases, and all structural parameters exhibit a cor-
responding “jump” that suggests proximity to a phase
transition.

To describe this unexpected behavior in PbTiO3,
we have generated a phenomenological model from our
ab initio results, based on an expansion of the total en-
ergy with respect to a carefully selected subset of the
structural degrees of freedom. This has led to the identi-
fication of a phase boundary, analogous to the liquid-gas
phase boundary, in the model parameter space. With the
parameters obtained from fitting to first-principles total
energies of PbTiO3, the model predicts not just a “kinky”
behavior, but a true first-order transition at a critical
pressure pc close to the pressure at which the anomaly
occurs in the first-principles calculations. We found that
a tiny variation of one parameter is sufficient to drive the
model through a triple point and bring it to a transition-
free portion of parameter space where the “kinky” be-
havior is qualitatively well-reproduced. It might become
possible to realize such variations of effective model pa-
rameters by some combination of “external fields” such
as chemical substitution, temperature, epitaxial stress,
or homogeneous electric field. If so, one might develop
experimental techniques for turning the transition off or
on, tuning the associated transition properties, and per-
haps even exploring the region of the triple point itself.

Finally, we speculate that this “anomalous” behavior
of the structural parameters of tetragonal PbTiO3 could
be a more general feature in perovskite oxides. For ex-
ample, we have found that the same anomalous behav-
ior is also present in BaTiO3 with imposed tetragonal
symmetry (though at much higher negative pressure), so
that a similar phase boundary could be explored in this
portion of perovskite parameter space. The possibility of
analogous transitions in other ABO3 perovskites is under
investigation. This could present tantalizing opportuni-
ties for designing perovskite-based materials with large
and controllable strain variations.
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