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The various approximations used in the construction of a first-principles effective Hamiltonian
for BaTiO3, and their effects on the calculated transition temperatures, are discussed. An effective
Hamiltonian for BaTiO3 is constructed not from first-principles calculations, but from the struc-
tural energetics of an atomistic shell model for BaTiO3 of Tinte et al. This allows the elimination of
certain uncontrolled approximations that arise in the comparison of first-principles effective Hamil-
tonian results with experimental values and the quantification of errors associated with the selection
of the effective Hamiltonian subspace and subsequent projection. The discrepancies in transition
temperatures computed in classical simulations for this effective Hamiltonian and for the atomistic
shell model are shown to be associated primarily with a poor description of the thermal expansion
in the former case. This leads to specific proposals for refinements to the first-principles effective
Hamiltonian method. Our results suggest that there are at least two significant sources of error
in the effective-Hamiltonian treatment of BaTiO3 in the literature, i.e., the improper treatment of
thermal expansion, and the errors inherent in the first-principles approach itself.

PACS numbers: 77.80.Bh, 77.84.Dy, 77.80.-e

I. INTRODUCTION

First-principles methods constitute a powerful tool for
the study of ferroelectric systems.1 Ground state struc-
tures, phonons, spontaneous polarization, and related
properties, including piezoelectric and dielectric tensors,
have been accurately calculated for a wide variety of per-
ovskite oxides as well as other ferroelectric compounds.

Despite advances in algorithms and computer hard-
ware, the direct calculation of finite temperature be-
havior, particularly phase transitions, is still far be-
yond reach, as such calculations involve thousands of
atoms. However, indirect methods have been developed
and applied to a large number of systems, including
BaTiO3,

2,3,4 PbTiO3,
5 and KNbO3,

6,7 and even solid so-
lutions like Pb(ZrxTi1−x)O3,

8,9 Pb(Sc0.5Nb0.5)O3,
10 and

K(NbxTa1−x)O3.
11 In Refs. 4, 6, and 11, interatomic

“shell-model” potentials were parametrized by fitting to
first-principles results, and finite-temperature behavior
studied by direct simulation of atomistic systems with
forces and energies obtained from these potentials. The
results in Refs. 2,3,5, and 7,8,9,10 were obtained by an
effective Hamiltonian construction in which the full sys-
tem is mapped by a subspace projection onto a statisti-
cal mechanical model, with parameters determined from
first-principles calculations of total energies for small dis-
tortions of an ideal crystal with the cubic perovskite
structure. The simple form of the resulting effective
Hamiltonian allows very-large-scale simulations and aids
in the conceptual interpretation of the results. The two
approaches have achieved comparable success in repro-
ducing many essential features of the phase transitions
of ferroelectrics. For example, for BaTiO3,

2,3,4 the ex-
perimentally observed cubic–tetragonal–orthorhombic–
rhombohedral phase sequence is correctly reproduced.
However, while the experimental values of the transition

temperatures are 403, 278, and 183 K, classical Monte-
Carlo simulations of the first-principles effective Hamil-
tonian give 300, 230, and 200 K, while the shell-model
results are 210, 135 and 100K, respectively. In both cases
a correction for the local-density approximation (LDA)
lattice constant underestimate was included in the model.

Understanding the origin of this discrepancy with ex-
periment may help in the development of improved the-
oretical methods for the calculation of finite tempera-
ture behavior. Here, we focus our attention on the first-
principles effective Hamiltonian approach. The discrep-
ancies in the transition temperatures could result from
separate errors introduced at various steps of the analy-
sis. We correspondingly classify the errors into five types.
Errors in the configuration energies obtained from first-
principles calculations will be designated Type I. These
generally can be systematically reduced, with the excep-
tion of the uncontrolled approximation in the exchange-
correlation functional required for the practical imple-
mentation of density functional theory (“LDA error”).
Type II errors result from the identification of the rele-
vant degrees of freedom and the projection and approx-
imate representation of the effective Hamiltonian in the
corresponding subspace, and will be the main focus of our
investigation. Errors in the statistical-mechanical simu-
lations (Type III) include finite-size effects and sampling
errors. In the effective Hamiltonian studies to date, it
has been feasible to make these errors relatively negligi-
ble. The importance of Type IV errors, resulting from
the classical treatment of the ions neglecting quantum
fluctuations, has been highlighted in a recent study of
BaTiO3 by Íñiguez and Vanderbilt.12 The results of this
study indicate that the classical approximation raises the
transition temperatures. Thus, this is not the origin of
the underestimate for BaTiO3. In fact, a correct, fully
quantum-mechanical treatment would increase, not de-
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crease, the transition-temperature discrepancy. Finally,
we note that the experimental samples, even in thermo-
dynamic equilibrium, contain defects and local nonstoi-
chiometry which lead to deviations of observed properties
from those of the assumed ideal crystals (Type V errors).
These crystal imperfections can have various effects on
the transition temperatures that are in general difficult
to model.

To separate and quantify the role of the various er-
rors in producing the observed discrepancies in transi-
tion temperatures, several different approaches could be
applied. The analysis of Type III and Type IV errors
has been discussed in the previous paragraph. One way
to investigate Type I errors would be completely to redo
the effective Hamiltonian study replacing the LDA with
a generalized-gradient approximation (GGA). However,
the latter has not been found to give systematic improve-
ment in the overall agreement of calculated properties
with experiment,13 and thus the value of such a labor-
intensive investigation is unclear. In principle, Type II
errors could be eliminated by comparing the effective-
Hamiltonian transition temperatures with those obtained
in a fully ab-initio molecular dynamics or Monte Carlo
calculation. However, as noted above, doing this type
of direct calculation for sufficiently large systems is so
computationally demanding that it is impossible in prac-
tice even for benchmarking purposes, and calculations for
small supercells and with reduced sampling would intro-
duce significant finite-size and statistical errors.

In this paper we develop and carry out an alternative
method of isolating and quantifying Type II errors, al-
lowing us to discuss possible refinements of the effective
Hamiltonian method to reduce or eliminate them. We
use the total energies computed with the BaTiO3 “shell
model” interatomic potential of Tinte et al.4 to con-
struct an effective Hamiltonian, and compare the com-
puted transition temperatures with those obtained in di-
rect classical simulations for the “shell model” system.
In this comparison, we completely eliminate errors of
Types I, IV and V, and can easily make errors of Type
III negligible. Thus, we can attribute any discrepancies
directly to errors of Type II. While such errors will not be
quantitatively identical to the corresponding errors made
in the construction of the effective Hamiltonian directly
from ab-initio results, the general accuracy and physical
faithfulness of the shell model interatomic potential to
BaTiO3 should render conclusions based on this analysis
quite meaningful.

The paper is organized as follows. Section II pro-
vides technical details of the BaTiO3 shell-model inter-
atomic potential of Tinte et al. that serves as our ref-
erence system. In Sec. III we describe the construc-
tion of the effective Hamiltonian and the parameters
obtained by fitting to the shell model, paying special
attention to the approximations and technicalities in-
volved. In Section IV we present the results obtained
from the effective-Hamiltonian and shell-model classi-
cal statistical-mechanical simulations. The discrepancies

are analyzed in Section V, and possible improvements
on the various effective-Hamiltonian approximations are
discussed. Section VI is devoted to the specific issue
of modeling the thermal expansion within the effective-
Hamiltonian approach. Finally, in Section VII we present
a discussion of the broader implications of our analysis;
in particular, we speculate on the relative importance
of errors of Types I, II, and IV in the first-principles
effective-Hamiltonian treatments currently in the litera-
ture.

II. SHELL-MODEL INTERATOMIC

POTENTIAL

Of the various types of interatomic potentials, shell
models are uniquely well suited to giving a good de-
scription of the lattice dynamics of perovskite oxides.
The form of the shell-model potential developed for
BaTiO3 in Ref. 4 incorporates earlier observations that
the oxygen shell-core interaction should be nonlinear and
anisotropic.14,15 Each ion (Ba, Ti or O) is modeled as a
massive core linked to a massless shell. The core-shell
interactions for Ba and Ti are harmonic and isotropic.
An anisotropic core-shell interaction is considered at the
O−2 ions, with a fourth-order core-shell interaction along
the O-Ti bond. In addition to the Coulomb interactions
between ion cores and shells, the model contains pair-
wise short-range inter-shell potentials of the Buckingham
type, i.e., V (r) = a exp(−r/ρ) − c/r6. The Born-Mayer
form (c = 0) is sufficient for the Ti-O and Ba-O short-
range potential, while for the O-O potential the value of
c is nonzero. The physically important nonlinearities of
the interatomic interactions are thus naturally incorpo-
rated into the form of the potential.

The material-specific parameters in the interatomic
potential were determined by adjusting them to fit se-
lected first-principles results computed using the lin-
earized augmented planewave (LAPW) method. It
should be noted, however, that the equilibrium lattice
constant of the cubic phase is fitted to the experimental
cubic-phase lattice constant extrapolated to 0 K (3.995
Å), not the LAPW lattice constant. The double wells
for polar distortions along (001), (011), and (111) are
satisfactorily reproduced, as are the phonon dispersion
curves for the cubic structure at the experimental lat-
tice constant. The bulk modulus of the cubic phase and
the anomalous Born effective charges are also in good
agreement with the first-principles results. Reference 4
contains further details about the construction of the in-
teratomic potential and values of the parameters.

Finite-temperature properties of the system de-
scribed by this interatomic potential are investigated by
constant-pressure molecular dynamics (MD) simulations
using the DL-POLY package,16 where the adiabatic dy-
namics of the electronic shells are approximated by as-
signing small masses to them. A Hoover constant-(σ̄,T)
algorithm with external stress set to zero is employed; all
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cell lengths and cell angles are allowed to fluctuate. The
time step is 0.4 fs and the total time of each simulation,
after 2 ps of thermalization, is 20 ps. Results for a 7×7×7
periodic supercell (1715 ions plus 1715 shells which are
additional degrees of freedom) were reported in Ref. 4.
It was shown that the cubic–tetragonal–orthorhombic–
rhombohedral phase sequence is correctly reproduced.
Good agreement with experimental data was obtained for
the structural parameters in the various phases as well as
the volume thermal expansion coefficient, showing that
the most important nonlinearities have been included in
the model. However, the transition temperatures are
rather low compared to experiment (190, 120, and 90 K).
This discrepancy does not affect the present analysis of
Type II errors. In the present work, we have expanded
the supercell to 10×10×10 primitive cells (10000 degrees
of freedom). This yields essentially the same results, ex-
cept that the calculated transition temperatures increase
slightly (210, 135, and 100 K). Additional MD simula-
tions were performed at constant volume, using a modi-
fied Hoover constant-(σ̄,T) algorithm that allows for fluc-
tuations in the cell shape.

III. CONSTRUCTION OF THE EFFECTIVE

HAMILTONIAN

In this Section we describe the effective Hamilto-
nian that we have constructed using the shell model for
BaTiO3 of Tinte et al.4 as our target system. The form
of the effective Hamiltonian is identical to that proposed
by Zhong et al.,3 except that the inhomogeneous strain
variables found to be unimportant in that study are not
included here.

An effective Hamiltonian is a Taylor expansion of the
energy surface of the system around a high-symmetry
phase in terms of a set of relevant degrees of freedom. For
ferroelectric perovskites, the most convenient reference
structure is the cubic paraelectric phase. The relevant de-
grees of freedom can be identified by studying the energy
changes induced by small (harmonic) perturbations of
the reference structure. The low-energy, typically unsta-
ble, distortions are the relevant ones, and are expressed
in the form of local modes or lattice Wannier functions.17

The relevant local modes are those that add up to pro-
duce the distorted ferroelectric ground-state structure.
Also, we take the homogeneous strains as relevant and
include them in the Hamiltonian.

There are two possible ways of performing the har-
monic analysis that leads to the identification and cal-
culation of the relevant lattice Wannier functions. One
can study either the force-constant matrix (the matrix of
second derivatives of the energy with respect to atomic
displacements) or the corresponding dynamical matrix.
While the former choice leads to a better description of
the lowest-energy states of the system, the latter pro-
vides a kinetic decoupling between the relevant and ir-

relevant (i.e., not considered in the Hamiltonian) degrees

TABLE I: Expansion parameters of the effective Hamiltonian
fitted to the shell-model BaTiO3 target system. The notation
is taken from Ref. 3. All the parameters are in atomic units.

On-site κ2 0.0562 α 0.805 γ −0.849
j1 −0.01424 j2 −0.01506

Intersite j3 0.00422 j4 −0.00240 j5 0.01956
j6 0.00100 j7 0.00050

Elastic B11 5.42 B12 2.06 B44 2.07
Coupling B1xx −4.16 B1yy −1.19 B4yz −0.44
Dipole Z∗ 8.153 ε∞ 5.24

of freedom. Here we have worked with the force-constant
matrix, which is more appropriate for the study of equi-
librium properties. In any case, we find numerically that
the force-constant and dynamical matrix descriptions are
essentially identical.

Once a relevant set of phonon branches18 has been
identified, the calculation of the corresponding lattice
Wannier functions can be done at different levels of ap-
proximation. At the crudest level, they can be con-
structed from phonons at a single k point,3 more sophisti-
cated schemes allowing for better descriptions of the rel-
evant phonons throughout the Brillouin zone.17,19 Here,
we calculate the local modes from the unstable phonons
at Γ (these generate the ferroelectric structure) choosing
the local modes to be centered on the Ti atom. The re-
sulting local modes reproduce the unstable phonons at
zone-boundary points M and R with an accuracy above
97%. We thus do not expect a better local-mode defini-
tion to constitute a significant improvement of our effec-
tive Hamiltonian of shell-model BaTiO3.

Let uiα denote the local mode amplitude in unit cell
i along Cartesian direction α. Let ηl denote the strains,
where l is a Voigt index. Our effective Hamiltonian can
then be written as

Heff = Eself [u2
iα; u2

iαu2
iβ] + Edpl[uiαujβ ] +

Eshort[uiαujβ ] + Eelas[ηlηm] + Eint[ηluiαuiβ ].(1)

Following Ref. 3, we have written the effective Hamilto-
nian as the sum of four terms: the on-site self-energy
of the local modes Eself , the long-range dipole-dipole
interactions between local modes Edpl, the short-range
interactions between local modes Eshort, the elastic en-
ergy Eelas, and the interaction between local modes and
strains Eint. The dependence of each term on the model
variables is indicated in Eq. (1). It should be noted that
the form of the Hamiltonian is greatly simplified by the
cubic symmetry of the reference structure. For example,
there are no odd terms in uiα.

The relevant phonon branches are described by the
harmonic terms in Eself , Edpl, and Eshort. Anharmonic
terms for the local modes, required to stabilize the low-
symmetry phases, are included only in Eself (the “local-
anharmonicity approximation”). In both Eelas and Eint

only the lowest-order terms in the expansion are consid-
ered. This constitutes the minimal microscopic model for
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FIG. 1: Behavior of three Cartesian components of the mean
(super-cell averaged) polarization of BaTiO3 as obtained from
(a) MC simulations using the effective Hamiltonian, and (b)
MD simulations directly from the shell model.

the description of ferroelectricity in BaTiO3. Including
higher-order terms in the Hamiltonian would constitute
a systematic improvement of the model.

As already mentioned, the Hamiltonian we have just
described is essentially that of Ref. 3, except the param-
eters were fitted to a series of shell-model calculations
of total energies and forces, instead of ab-initio results,
for a set of distorted structures. Following the notation
of Ref. 3, we list in Table I the parameters defining our
effective Hamiltonian for shell-model BaTiO3.

Monte Carlo (MC) simulations were performed to cal-
culate the finite-temperature properties of the Hamilto-
nian. We simulated a 10×10×10 supercell with periodic
boundary conditions, and typically did 30,000 MC sweeps
to equilibrate the system and 50,000 sweeps more to ob-
tain averages of local-mode variables with a statistical er-
ror below 10%. The temperature was increased in small
steps of 5 K. We monitored the behavior of the homo-
geneous strain and the vector order parameter to iden-
tify the transitions. The average local-mode vector is
proportional to the polarization. Note that, unless it is
indicated, the MC simulations for the present effective
Hamiltonian are performed at zero external pressure.

IV. FINITE-TEMPERATURE RESULTS

Figure 1a shows the three components of the mean po-
larization as a function of temperature as obtained from
the MC simulations of the effective Hamiltonian, while
Fig. 1b shows the corresponding results obtained directly
from the shell-model MD simulations. It is apparent that
the effective Hamiltonian correctly reproduces the se-

TABLE II: BaTiO3 transition temperatures, in K, between
cubic (C), tetragonal (T), orthorhombic (O), and rhombohe-
dral (R) phases, as obtained from the shell model and from
the effective Hamiltonian. The last three rows correspond to
effective Hamiltonians modified as indicated in the text. In
the first column, percentage error relative to the shell model
is given in parentheses.

C–T T–O O–R
Shell model 210 135 100
Effective Hamiltonian 150 (−28%) 110 85

Heff different α and γ 150 (−28%) 120 100
Heff + peff ‘by hand’ 185 (−12%) 125 95
Heff + computed peff 165 (−21%) 120 90

quence of transitions (cubic to tetragonal to orthorhom-
bic to rhombohedral with decreasing T ). However, the
agreement is far from perfect for the Tc values, listed
in Table II. Clearly the effective Hamiltonian underesti-
mates the Tc’s, especially for the C–T transition where
the transition temperature is too low by ∼30%.

This shows that for an effective Hamiltonian of this
form, Type II errors are quite significant, and in fact are
comparable to the discrepancies found when comparing
BaTiO3 ab-initio effective-Hamiltonian results against
experimental measurements on real BaTiO3 samples.
This strongly suggests that errors in first-principles cal-
culations account for at most only part of the latter dis-
crepancy. In the following, we will investigate the Type II
errors in more detail and identify approaches to system-
atic reduction of these errors, returning to the discussion
of first-principles effective Hamiltonians in Sec. VII.

V. ANALYSIS OF SOURCES OF THE

DISCREPANCIES

In this Section, we analyze three sources of error in
the construction of the effective Hamiltonian that could
possibly lead to the calculated underestimates of the Tc

values. First, we focus on the specification of the ferro-
electric mode unit vector, which determines the precise
set of degrees of freedom described by the effective Hamil-
tonian. Second, we consider the effect of the truncation
of the Taylor expansion in the specified degrees of free-
dom, with particular attention to the neglect of certain
higher-order couplings within the effective Hamiltonian
subspace. Third, we consider the consequences of omit-
ting the higher-frequency phonon branches from the ef-
fective Hamiltonian.

A. Specification of ferroelectric local mode vector

One of the first choices that was made in the construc-
tion of the effective Hamiltonian was the detailed spec-
ification of the ferroelectric local mode vector. As ex-
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plained in Sec. III, we chose a Ti-centered displacement
pattern selected in such a way that a uniform superpo-
sition of these local mode displacements gives a periodic
displacement pattern corresponding to the unstable (fer-
roelectric) mode eigenvector of the force-constant matrix
in the cubic structure. This is only one of many possible
approaches, and questions may arise as to whether this
is the best choice and how much difference it would make
if we had made a different choice.

One way of addressing these questions is to test how
completely the chosen local mode vectors span the space
of distortions that are actually encountered in the full
atomistic finite-temperature shell-model simulation. We
projected the shell-model MD trajectories at a given tem-
perature onto the 12 optical zone-center normal modes
(i.e., force-constant eigenvectors) of the cubic phase (four
sets of three-fold degenerate modes). As expected, we
found that the mode branches included in our effective
Hamiltonian subspace account for almost all (∼90%) of
the observed atomic displacements. This suggests that
the approximation of keeping only these modes in the
effective Hamiltonian is a good one.

A second approach is to try a different procedure for
defining the identity of the local mode vector. In par-
ticular, one could think of a construction designed to
optimize the description in the neighborhood of the fer-
roelectric ground state. For instance, the local mode vec-
tor could be fitted to the ground state of the system that
is obtained when the atomic positions are fully relaxed.
Such a procedure would effectively incorporate the ef-
fect of the anharmonic couplings between included and
excluded modes while not increasing the number of vari-
ables considered in the model. In order to quantify the
effect of this change, we assume that this alternative local
mode definition mainly affects the anharmonic parame-
ters in

Eself = κ2u
2
i + αu4

i + γ(u2
ixu2

iy + u2
iyu2

iz + u2
ixu2

iz). (2)

We thus recalculated α and γ exactly to reproduce the
energy of the fully relaxed tetragonal energy minimum,
and to get the best compromise for the energies of the
orthorhombic and rhombohedral minima. By “fully re-
laxed” we mean that the atomic positions were allowed to
relax with the cell constrained to be the equilibrium cubic
cell; this is consistent with the fact that we did not re-
calculate any mode-strain coupling parameter. The new
α and γ are 0.811 and −0.916 a.u. respectively, which
are very similar to the values in Table I. The smallness
of the correction reflects the fact that the fully relaxed
energy minima are very close to those described by the
original effective Hamiltonian, the differences being of
the order of 0.01 mHa. Keeping all other parameters un-
changed, we repeated the MC simulations at finite tem-
perature and found that the transition temperatures of
the T–O and O–R transitions (see Table II) are sensi-
tive to these small changes in parameter values, giving
a 10% improvement compared with our original effective
Hamiltonian. However, the large discrepancy in the C–T

transition temperature is unchanged.
We therefore conclude that a change in the defini-

tion of the local-mode displacement pattern is unlikely
to be sufficient to eliminate the discrepancy between the
effective-Hamiltonian and shell-model results. It is nec-
essary, therefore, to look elsewhere. Nevertheless, the re-
sults do show that the details of the fitting procedure can
have a significant effect on the transition temperatures.

B. Neglect of higher-order terms in the Taylor

expansion

We now return to our initial choice of relevant degrees
of freedom, and ask whether the corresponding energy
landscape is sufficiently well described by the truncated
Taylor expansion that defines the effective Hamiltonian.
The quadratic elastic energy Eelas is easily checked to be
accurate. The dipole-dipole interactions in Edpl will be
harmonic as long as the local polarization is linear in the
atomic displacements, and this approximation is valid for
BaTiO3. The terms that require further consideration
are Eself , Eshort, and Eint.

Higher-order terms in Eself should aim at a better de-
scription of the double-well potentials associated with the
ferroelectric instabilities. We checked, however, that in-
cluding sixth- and eighth-order terms does not improve
the fit significantly. In particular, the well depths, which
are the effective-Hamiltonian feature most directly re-
lated to the value of the transition temperatures, are very
well reproduced by the quartic Eself . A more accurate de-
scription would yield energy wells around 1% shallower,
which would probably lead to a very tiny decrease in the
C–T transition temperature.

Higher-order terms in Eshort represent anharmonic
couplings between neighboring local modes and would
provide a correction to the local-anharmonicity approxi-
mation. One can fit such terms by looking at the double-
well potentials associated with the antiferroelectric insta-
bilities of shell-model BaTiO3 at zone-boundary points X
and M. The fourth-order terms associated with such wells
will be a combination of the parameters α and γ in Eq. 2
and the new quartic parameters in Eshort. However, we
find that these new quartic parameters are very small
and can be safely neglected. More precisely, they consti-
tute 0.05% and 5% of the total fourth-order term for the
X and M instabilities, respectively, and result in slightly-
deeper zone-boundary energy wells. Their probable ef-
fect is a minor decrease in the transition temperatures,
because of an enhanced competition between zone-center
and zone-boundary instabilities.

One could think of improving on Eshort by including
couplings between further neighbors (following Ref. 3, we
included couplings up to third neighbors in our Hamilto-
nian). This would allow us to improve the description of
the dispersion branches of the relevant modes through-
out the Brillouin zone. However, we checked that if our
Hamiltonian is fitted including couplings only up to sec-



6

ond neighbors the transition temperatures change by less
than 10 K. Hence, we can assume our Hamiltonian is well
converged in this respect.

Finally, the description of the interaction between
strain and local modes can be improved by including
more terms in Eint. In particular, we have found that
the η1u

4
ix term is not negligible and would modify the ef-

fective Hamiltonian so as to yield higher transition tem-
peratures. Specifically, we find that the coefficient of the
η1u

4
ix term is negative and would thus favor a state in

which the system polarizes and expands along a Carte-
sian direction. However, in the next section we will see
that the main Type II error has a different origin, and
so we leave explicit consideration of this correction for
future work.

C. Effect of excluded modes: thermal expansion

Finally, we consider the original decision to reduce the
number of degrees of freedom in the effective Hamilto-
nian to one vector degree of freedom per cell to repre-
sent ferroelectric distortions. Even if an optimal set of
local-mode variables is chosen (Sec. VA) and all neces-
sary terms in the Taylor expansion are kept (Sec. VB),
there still may be errors associated with this fundamen-
tal approximation. For example, anharmonic couplings
between included and excluded modes are neglected, as
are anharmonic couplings between excluded modes and
of excluded modes to strain.

The effects of neglecting these anharmonic couplings
are clearly seen in the thermal expansion. In fact, in
raising the temperature from 0 to 300K in our simula-
tions, we find that the volume of the shell-model system
increases by 0.4%, while that of the effective-Hamiltonian
system decreases by 0.6%. This indicates that the effec-
tive Hamiltonian treatment of the thermal expansion is
qualitatively incorrect. Moreover, given the well-known
sensitivities of the transition temperatures to volume,
this effect could be substantial. Moreover, it correctly
predicts that we would underestimate transition tem-
peratures, since they are reduced at smaller lattice con-
stants.

To check whether the thermal expansion effect is re-
sponsible for the dominant errors in Tc, we made the
following test. We completely eliminated the volume ef-
fect by carrying out both simulations at a fixed volume

of (4.012 Å)3. Using the shell model, we have found Tc

values of 190, 130, and 95K, while the corresponding
effective-Hamiltonian values are 180, 125, and 100K, re-
spectively. The error in the C–T transition temperature,
which was around 60K in the zero-pressure simulations,
is reduced to ∼10K.

D. Summary

We thus arrive at the important conclusion that the

poor description of thermal expansion effects is the dom-

inant source of error in the effective-Hamiltonian descrip-
tion. These shortcomings in the description of thermal
expansion, and some preliminary attempts to correct for
them, will be described in the following Section. Smaller
errors (probably amounting to no more than 5-10% of the
Tc values) are associated with the other approximations
discussed in Subsecs. VA-B.

VI. IMPROVED TREATMENT OF THERMAL

EXPANSION

Given the conclusion of Sec. V.D, we are strongly moti-
vated to improve the effective-Hamiltonian treatment of
thermal expansion. First, we investigate the thermal ex-
pansion in more detail. Figure 2 shows the pseudocubic
lattice parameter a = V 1/3 as a function of tempera-
ture as predicted by the shell model (full circles) and by
the effective Hamiltonian (full triangles). Both models
exhibit volume anomalies (“kinks”) at the ferroelectric
phase transition temperatures, indicative of their first-
order character. However, the overall trends in volume
vs. temperature are quite different.

The thermal expansion displayed by the shell model,
after a proper rescaling of temperature and cell parame-
ter, closely resembles that of real BaTiO3.

20 This virtue
of the model is related to the fact that it includes all
the degrees of freedom of the system and a sufficiently
accurate description of their relevant anharmonicities.
The effective Hamiltonian, on the other hand, does not
properly account for the thermal expansion of the sys-
tem, and actually leads to a contraction with increasing
temperature in the range of the polar phases. The rea-
son for such a contraction is that the volume is strongly
coupled to the magnitude of the local dipoles and, as
these tend to decrease with increasing temperature as
the paraelectric phase is approached, the volume tends
to decrease as well. Equivalently, the thermal contrac-
tion can be attributed to negative Grüneisen parameters
associated with portions of the relevant branches; these
are overwhelmed by positive contributions from higher
modes in the shell-model system, but not in the effective-
Hamiltonian system where the higher modes are absent.

We next ask what happens if the effective-Hamiltonian
simulations are carried out with a cell volume that is
constrained ‘by hand’ to have the correct dependence
on temperature as given by the shell-model system. A
simple way of doing this in practice is to apply a (neg-
ative) external pressure peff to the effective-Hamiltonian
system; this fictitious pressure can be thought of as aris-
ing from the thermal expansion effects of the excluded
modes. We implement this approximately by taking
peff to be linear in temperature in such a way that the
effective-Hamiltonian equilibrium volume coincides with
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FIG. 2: Pseudocubic lattice parameter a = V 1/3 (V = cell
volume) for BaTiO3 as a function of the temperature as pre-
dicted by the effective Hamiltonian (full triangles) and by the
shell model (full circles). Open triangles and squares corre-
spond to effective Hamiltonian results under an external pres-
sure adjusted ‘by hand’ and ab-initio respectively (see text for
details).

the shell-model one at two temperatures, taken to be
10 and 300K, bracketing the relevant range. We then
find that peff is required to be −1.8GPa at 300K while
almost vanishing at 10K. The results of MC simulations
under this external pressure are presented in Fig. 2 (open
squares); the values of the transition temperatures are
listed in Table II. The improvement in the agreement
with the shell-model calculations, in particular in the case
of the C–T transition temperature, is remarkable.

However, such an ad-hoc approach is not consistent
with the spirit of first-principles based approaches; one
would prefer a way to calculate the effective pressure peff

ab-initio. We have attempted to do so by employing the
so-called quasiharmonic approximation (see Chapter 25
of Ref. 21). Within this approximation, the pressure that
develops in a harmonic crystal with volume-dependent
phonon frequencies is (see Eq. (25.5) of Ref. 21)

p = −

∂

∂V

(

U eq +
∑

ks

1

2
h̄ws(k)

)

+
∑

ks

(

−

∂(h̄ws(k))

∂V

)

1

eβh̄ws(k)
− 1

, (3)

where U eq is the equilibrium energy of the system, ωs(k)
is the phonon frequency of branch s at point k of the
Brillouin zone (BZ), and the summations run over all
branches and k points. Now the pressure exerted by the
excluded modes is obtained from Eq. (3) by removing
U eq and restricting the sums to the excluded modes s′.
Taking the classical limit h̄ → 0 in order to compare with

the classical shell model, peff takes the form

peff = kBT
∂

∂V





∑

ks′

lnωs′ (k)



 (4)

which is linear in temperature and proportional to the
volume derivative of the phonon frequencies.

We must be cautious about the approximations in-
volved in the use of Eq. (4) or its quantum-mechanical
version. The quasiharmonic approach is not really well
suited to deal with phase transitions, which are strongly
anharmonic phenomena. Using it in the present con-
text relies on the assumption that the excluded modes
(more precisely, the volume derivatives of their frequen-
cies) are not significantly affected by the strong fluctua-
tions and phase transitions associated with the relevant
local modes.

In order to assess the utility of the quasiharmonic ap-
proach here, we have focused on the cubic-to-tetragonal
transition and calculated peff using the volume depen-
dences of the excluded-mode frequencies in the cubic
paraelectric phase.22 We find that the BZ sum in Eq. (4)
can be evaluated with good accuracy using information
from the high-symmetry k-points only, and that the sum
of logarithms of the hard-mode frequencies depends lin-
early with volume in the relevant volume range, thus al-
lowing us to take peff as independent of volume. The
peff calculated in this way shows improved agreement
with the exact shell-model results as regards both the
transition temperatures (denoted by “computed peff” in
Table II) and the thermal expansion (open triangles in
Fig. 2). However, the results are still far from satisfac-
tory, with a substantial error remaining for the C–T tran-
sition temperature. These discrepancies are probably
connected with the shortcomings of the quasiharmonic
approximation discussed above. Further investigations
along these lines are clearly needed, but fall beyond the
scope of the present paper.

In summary, the proposed correction based on the
quasiharmonic approximation of Eq. (4) accounts cor-
rectly for only a fraction (perhaps a third) of the thermal-
expansion error. Unfortunately, then, we are not yet in
a position to propose a fully ab initio approach to the
thermal expansion problem in the context of effective-
Hamiltonian methods.

VII. CONCLUSIONS

The main weakness of our effective-Hamiltonian de-
scription of shell-model BaTiO3 is the poor description of
the thermal expansion. Focusing on the cubic to tetrago-
nal transition temperature (TCT ), we have found that the
effective Hamiltonian produces a 28% error, while we can
estimate from our constant-volume calculations that this
error should be reduced to 5% if the thermal expansion
were properly modeled. We have also seen that including
the thermal expansion ‘by hand’ allows us to reduce the
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error to about 12%; in other words, this correction seems
to account for 70% of the total error associated with the
thermal expansion.

It is tempting to apply these same percentages in order
to estimate the sources of error arising in the compari-
son of the first-principles effective Hamiltonian transi-
tion temperatures with real experiment. However, this
should be done cautiously. For example, anharmonicities
or thermal-expansion effects might either be exaggerated
or underestimated by the shell model. With this in mind,
we consider the effective-Hamiltonian study of BaTiO3

by Zhong et al. which led to TCT = 300 K, 25% be-
low the experimental value of 400K. This was a classical
calculation; should quantum effects be considered, the
calculated TCT would be smaller by about 30K,12 and
thus the error would go up to ∼30%.

We performed classical MC simulations with the effec-
tive Hamiltonian of Zhong et al. including the thermal
expansion of the system ‘by hand’ under the condition
that the computed volume should coincide with the ex-
perimental one at T = 473 K. This resulted in an error
of 18% in TCT , which would become ∼25% if we include
the estimated quantum effects. Hence, it seems that the
improvement in this case is not as large as it was for the
effective Hamiltonian fitted to shell-model BaTiO3. If
we follow what we have learned from the case of shell-
model BaTiO3 and assume that including the thermal
expansion ‘by hand’ corrects 70% of the total thermal-
expansion error, we can estimate that a quantum first-
principles effective-Hamiltonian calculation with perfect
thermal expansion would still result in a 20% underesti-
mate of TCT . It seems reasonable to assume that Type II
errors other than the thermal expansion, as well as de-
tails of the fitting procedure, are responsible for a further
5% error in TCT . This suggests that a calculation free of
Type II and Type IV errors would yield a TCT that would
still be about 15% below experiment. While this line of

reasoning is tenuous, we nevertheless believe it gives the
best current estimate for the magnitude of the error that
should be attributed to the first-principles methods used
to construct the effective Hamiltonian (in particular, the
LDA).

In summary, in this work we have analyzed the errors
associated with the first-principles effective Hamiltonian
method that has been developed for the treatment of
the thermodynamics of perovskite ferroelectrics. More
specifically, by considering the effective-Hamiltonian de-
scription of the shell-model for BaTiO3 of Tinte et al.,
we have been able to isolate and study in detail the er-
rors intrinsic to the effective-Hamiltonian approximation
(Type II errors). We have found that the main Type II
error is associated with a poor description of the thermal
expansion of the system. We have discussed an easily-
implemented first-principles correction that takes into
account some contributions of excluded modes. Unfor-
tunately, this scheme seems to account for only about a
third of the total thermal-expansion error. More elab-
orate schemes (involving a more thorough treatment of
the couplings of the phonon modes to each other and to
strain and polarization) might substantially reduce the
error, but it remains for the future to explore and imple-
ment such schemes. Finally, we have argued that in the
case of the comparison of the first-principles effective-
Hamiltonian calculations on BaTiO3 with real experi-
ment, Type II errors do not seem to be responsible for the
entire discrepancy. Our results suggest that the Type I
errors associated with the use of the LDA and other first-
principles technicalities may be of the same magnitude as
the thermal-expansion error.
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