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The modern theory of polarization allows for the determination of the macroscopic end charge of a
truncated one-dimensional insulator, modulo the charge quantum e, from a knowledge of bulk prop-
erties alone. A more subtle problem is the determination of the corner charge of a two-dimensional
insulator, modulo e, from a knowledge of bulk and edge properties alone. While previous works have
tended to focus on the quantization of corner charge in the presence of symmetries, here we focus
on the case that the only bulk symmetry is inversion, so that the corner charge can take arbitrary
values. We develop a Wannier-based formalism that allows the corner charge to be predicted, mod-
ulo e, only from calculations on ribbon geometries of two different orientations. We elucidate the
dependence of the interior quadrupole and edge dipole contributions upon the gauge used to con-
struct the Wannier functions, finding that while these are individually gauge-dependent, their sum
is gauge-independent. From this we conclude that the edge polarization is not by itself a physical
observable, and that any Wannier-based method for computing the corner charge requires the use
of a common gauge throughout the calculation. We satisfy this constraint using a projection-based
Wannier construction procedure, and validate our theory by demonstrating the correct prediction of
corner charge for several tight-binding models. We comment on the relations between our approach

and previous ones that have appeared in the literature.

I. INTRODUCTION

From elementary electrostatics it is well known that
the electric polarization in an insulator, corresponding
to the dipole density, gives rise to bound charges at the
surface. However, the definition of bulk dipole density
is not obvious in the context of a quantum treatment of
the electron system, since the electron charge cloud is
not naturally decomposable into localized entities. This
problem was solved by the modern theory of polarization,
which can be formulated in the single-particle context ei-
ther in terms of Berry phases of the Bloch functions, or in
terms of dipole moments of Wannier functions (WFs).!3

Adopting the latter point of view, the polarization is
defined in terms of the dipole moment of the unit cell,
taken to consist of point ionic charges and the continu-
ous but exponentially localized charge clouds of the WF's
attached to that cell. Crucially, although gauge transfor-
mations of the Bloch functions result in changes of both
the shapes and charge centers of the WF's, the vector sum
of the Wannier centers in one unit cell is gauge-invariant
up to a lattice vector. As a result, the polarization is
well defined modulo a quantum eR./V,y, where e is the
quantum of charge, R is a real-space lattice vector, and
Veen is the unit cell volume.

Recently, several groups have explored generalizations
of this theory to the quadrupole and higher moments of
the charge distributions in insulating crystalline solids.
Benalcazar, Bernevig and Hughes*® introduced the con-
cept of “topological quadrupole insulators,” in which the
corner charge is quantized by symmetries, as examples
of “higher-order topological insulators.”® This work at-
tracted considerable attention. Several authors adopted
a Wannier (or hybrid Wannier) representation as a means

to define the topological indices in such higher-order
topological insulators.” ! Attempts were put forward to
derive a formula for the corner charge, either when it is
quantized by symmetries,'?'3 or in the more general case
where it takes a nonquantized value.'® It was shown that
even obviously nontopological crystals such as NaCl may
display a fractional corner charge.'® Other works'6'7 at-
tempted to extend a quadrupole-moment expression to
the many-body case by making use of Resta’s position
operator formalism,'® but these approaches have proven
to be controversial.3:19

Most of these previous works have mainly been con-
cerned with systems whose symmetry quantizes the cor-
ner charges. In the absence of symmetry, however, it is
unclear whether a robust definition of a bulk quadrupole
density, analogous to that of the electric polarization
for the dipole density, is possible, even at the single-
particle level.13:16:17:19 The essential problem is that
unlike the total dipole of the Wannier charge distri-
bution associated with a unit cell, the corresponding
quadrupole is not gauge-invariant. In fact, the trace of
the Wannier quadrupole is essentially the spread func-
tional that is minimized when arriving at maximally lo-
calized WFs;2%2! the very fact that it can be minimized is
a reflection of its gauge dependence. It is not surprising,
then, that the off-diagonal elements of the quadrupole
tensor are also gauge-dependent, i.e., they vary accord-
ing to the exact locations and shapes of the WFs. For this
reason, the theory of quadrupoles and higher multipoles
is fundamentally different from the theory of dipoles that
underlies the modern theory of polarization.

Just as a bulk dipole density results in a bound surface
charge, so a bulk quadrupole density is expected to result
in bound surface polarizations and edge charges in 3D,



or edge polarizations and corner charges in 2D,%514:22

where it is understood that we refer to the polariza-
tion tangential to the surface or edge. Intuitively, a
quadrupole density Quy in a 2D sample results in bound
1D dipole densities P, = Q. at the +y-normal edge
and P, = Q,, at the +X-normal edge. It also results in
an overall bound charge Q. = @, at the corner where
these edges meet, but this Q. is not simply the sum of
the contributions expected from the edge polarizations.
Thus, such definitions become quite subtle, even for sim-
ple classical charge distributions.**14

In fact, there are serious reasons to question whether
the edge polarization is a physical observable at all. We
give two arguments that it is not. To do so, we focus on a
large rectangular flake cut from an insulating 2D crystal,
and frame the discussion in terms of spinless electrons.

First, recall that in the case of dipole densities, there
is a robust bulk-boundary correspondence in that the
macroscopic edge charge density is exactly given by the
bulk polarization projected onto the edge unit normal,
modulo a quantum of one electron per edge unit cell.?3
This means that no adiabatic periodicity-preserving per-
turbation at the edge, such as a displacement of a sub-
lattice of edge atoms, can have any effect whatsoever on
the edge charge density. It is natural, then, to regard
the macroscopic edge charge density as a manifestation
of a bulk property. The edge dipole density, on the other
hand, is obviously modified by such edge-atom displace-
ments, suggesting that it is not a manifestation of a bulk
property in the same sense.

Second, insofar as a 1D polarization P is well defined,
we would expect its time derivative dP/dt to correspond
to a physically observable edge current. However, this
is problematic in the case of edge polarizations and cur-
rents. For example, if the insulating flake in question has
been cut from a bulk that has some nonzero orbital mag-
netization Mo, (as a consequence of broken time-reversal
symmetry), then there will be a persistent counterclock-
wise current I = M,,1, on each edge, forcing the nonsen-
sical conclusion that P increases linearly in time. In fact,
even if the bulk material itself is time-reversal invariant,
so that its intrinsic orbital magnetization vanishes, Tri-
funovic, Ono, and Watanabe?* have shown that when
such a system is carried adiabatically around a paramet-
ric loop, this results in a net circulation of current around
the perimeter of the sample. This would imply that the
edge polarization can be changed by an arbitrary amount
by such an adiabatic cycle. These arguments suggest that
any attempt to define the change in edge polarization in
terms of an integrated current, as is done for the bulk
polarization, is bound to run into grave difficulties.

The arguments given above imply that there are se-
rious difficulties associated with attempts to define the
bulk quadrupole density and edge dipole density in a 2D
system. By contrast, the macroscopic corner charge is
unambiguously a physical observable. Thus, given details
of the geometric structure and the electronic Hamiltonian
of the 1D-periodic edges as well as of the 2D-periodic

bulk, a robust theory should be capable of correctly pre-
dicting the macroscopic corner charges modulo e.

In this work, we show how to construct such a theory
for the case of centrosymmetric 2D insulators, based on
a Wannier representation of the electronic system at the
single-particle level. In our formulation, we first iden-
tify a bulk unit cell, or “tile,” composed of a set of ionic
positive point charges and the charge distributions asso-
ciated with a set of bulk WFs. The quadrupole density
Qny associated with this unit cell is gauge-dependent,
i.e., dependent on the exact locations and shapes of WF's
in the unit cell. We also construct “edge tiles” consist-
ing of ions and WFs in a “skin” region close to the edge,
and associate surface polarizations P to these edges. In
our formulation the edge P’s are defined independently
of the bulk Q,,, as they must be since they depend upon
the detailed form of the Hamiltonian at the edge. While
the P’s are independent of a gauge change localized at
the edge, they are, like Q,,, dependent on the choice
of bulk WF gauge. Nevertheless, we find that all gauge
dependence cancels out when the various contributions
are summed, thus allowing for a robust prediction of the
corner charge.

Specifically, we work in the context of tight-binding
models of centrosymmetric 2D insulators whose bulk and
edge electronic structures are gapped. We solve for the
ground-state electronic structure in four configurations,
namely the infinite bulk with 2D periodic boundary con-
ditions, 1D-periodic ribbons of finite width in the = di-
rection, the same but finite in the y direction, and rect-
angular flakes with fully open boundary conditions. We
develop a formalism for computing the macroscopic cor-
ner charge (mod e) from the bulk and ribbon calculations
alone, and demonstrate its success by direct calculation
on the rectangular flake.

In the course of preparing this manuscript, we became
aware of related work of Trifunovic,'* in which similar
questions are addressed from a somewhat different point
of view. While that work considers more general unit
cell shapes and corner geometries than we do, it focuses
more narrowly on the case of single-occupied-band mod-
els, and issues of gauge consistency are not as thoroughly
explored. We occasionally comment on similarities and
differences below.

This paper is organized as follows. In Sec. II, we intro-
duce an expression for the macroscopic corner charge in
terms of contributions from bulk, edge, and corner charge
densities based on a tiling approach. We explain how
quadrupole, dipole, and monopole contributions from
bulk, edge, and corner tiles, respectively, add up to give
the observable macroscopic corner charge. In this formu-
lation, the electronic charge density associated with each
tile is that of the WFs attached to it, raising questions
about the dependence of the bulk and edge contributions
on the gauge used to construct these WFs. This issue
is addressed in Sec. III, where we show that the sum of
bulk and edge contributions is indeed gauge-invariant,
even though the individual contributions are not. In
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FIG. 1. Sketch of tiling scheme for a rectangular sample cut
from a 2D crystal. Small square tiles (black) correspond to
single interior (‘I’) unit cells. Rectangular edge tiles (red) and
larger corner tiles (blue), which may extend to a depth of two
or more cells, define the skin region. Edges are labeled as ‘T’
(top), ‘R’ (right), ‘B’ (bottom), and ‘L’ (left), and corners are
labeled by combinations such as ‘TR’ (top right).
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Sec. IV, we provide additional details about our method-
ology, specifically how we calculate the macroscopic cor-
ner charge directly from a finite flake (Sec. IVA) and
how to construct Wannier functions for ribbon mod-
els using either a maximally-localized hybrid-Wannier
(Sec. IVB1) or projection (Sec. IVB2) approach. We
implement our method for three centrosymmetric tight-
binding models at half filling in Sec. V, specifically a
two-band model,?? a related four-band model, and the
four-band model proposed in Refs. [4] and [5] to discuss
quantization of the corner charges. We summarize and
conclude in Sec. VI.

II. PRELIMINARIES
A. General considerations from tiling

We consider a centrosymmetric 2D crystalline material
having a rectangular unit cell with lattice vectors a = ax
and b = by. A finite sample, or “flake,” has been cut
from this material, and its charge density is assumed to
be written as the sum of N, x N, contributions from the
individual unit cells. In the deep interior all these cells
are identical, but those near the edges and corners are
modified by the presence of the boundaries.

We identify a “skin region” on each edge, consisting
of M, cells at top and bottom and M, cells at left and
right, where M, and M, are chosen large enough that
the deeper tiles are bulk-like to some desired accuracy.
This is illustrated in Fig. 1, where M, = M, = 2. We
decompose the charge density of the flake as a whole into
contributions from the interior, the four skin regions, and
the four left-over corner regions. That is, we write

priake(r) = p'(r) + p5(r) + p°(r) (1)

where the superscripts denote “interior,” “skin,” and
“corner” contributions (black, red, and blue regions in
Fig. 1), respectively.

The first term in Eq. (1) is the superposition of the
identical interior tile charge densities, i.e.,

P =D D pliclr —tea—,b), (2)

lo€l, LyET,

where ¢, € I, means M, +1 < ¢, < N, — M,, and
similarly for ¢, € I,. The tile density pl, (r) represents
one unit cell, but does not have to be confined inside the
rectangular boundaries of the cell; it can leak into neigh-
boring cells, but the sum of these tile densities must ex-
actly reproduce the bulk periodic density. Note that ptIile
is net neutral, and since we assume inversion symmetry,
we also require it to have a vanishing dipole moment.

The second term in Eq. (1) is a sum of four skin con-
tributions, p° = pT + p® + pB + p& (top, right, bottom,
and left, respectively). Here, for example, the top skin
contribution is

pt(r) = Z Peite(r — £za — Nyb), (3)
Lp€ly

where the “tile” pl (r) is only one unit cell wide, but
comprises all of the M, vertically stacked cells in the top
skin region. The density pk (r) must have the property
that p'(r) 4+ pT(r) is identical to pgaxe(r) in the central
region of the top edge. Similarly, in

ph(r) = Z Priie(r — tyb — N;a) (4)
lyel,

the density ptfi{le(r) describes a region one cell high and
M, cells wide at the right skin region. Since we are only
interested in neutral edges, we will require all the tiles in
the skin regions to be neutral, but they are generally not
dipole-free.

The last term in Eq. (1) is a sum of contributions from
the four corner regions,

PO (r) = piite (r) + pie (v) + Pile(r) + pe(x) . (5)

where each of these tiles is a larger one covering an en-
tire corner region comprised of M, x M, unit cells. These
corner tile densities need to make up for whatever charge
density is missing after accounting for interior and skin
contributions. For example, the top-right tile charge den-
sity is

pile (r) = phiate(r) — p'(r) = pT(x) = p(x)  (6)

restricted to the vicinity of this corner.

We now focus on the top-right corner, and let Q. be the
macroscopic charge of this corner, defined as the integral
of a smoothened charge density over the corner region
(see also Sec. IV A). This is given by

1 1 1
Qo= —dyy + —dy + 74 + Q™ (7)



where
ity = [wuok . (8)
af = [apbewdr, (9)
& = [yplheo)dr. (10)
Q™ = [ ot . (11)

Working from right to left in Eq. (7), the contribution
of QTR is obvious. The contribution from the right-edge
tiles is that of a 1D chain of entities of dipole moment d;‘,
Eq. (10), with density 1/b; this has 1D polarization d}}/b,
and thus contributes a bound end charge of that magni-
tude to the top end of the chain. The same applies to the
1D chain of d dipoles of density 1/a at the top edge via
Eq. (9). Finally, the superposition with density 1/ab of
identical, neutral, dipole-free quadrupoles qiy, Eq. (11),
produces no macroscopic edge charge, but it does gen-
erate four macroscopic corner charges: +q_£y Jab at TR
and BL, and —gj, /ab at TL and BR. Combining all the
contributions at the TR corner coming from Eqgs. (8-11)
results in Eq. (7), which will serve as an important basis
for the remainder of this work.

For future reference, it is useful to introduce the inte-
rior quadrupole density

1
I _ I
and edge dipole densities
r_ 1 g

for the top edge and similarly for the other three edges.
In this language, the top-right corner charge is

Qe=QL, + Pl +Pr+Q™. (14)

All quantities in Eq. (14) have units of charge e.

We emphasize that other definitions of edge polar-
izations are possible. First, the definitions of the bulk
quadrupole density and surface dipole densities may dif-
fer from one formulation to another, and even within our
approach, where it can depend on the choice of tile. Sec-
ond, we would also be free to define

e | oerrenr o

Py =Py + 3%,y

or
Pr=Pr+ql,
Pl =P+ QL,

} Q- PT+PR_Ql  (16)

(written here for Q™ = 0) in the spirit of some previous
works. %14 Because we have concluded that the edge po-
larization is not a physical observable, we do not think

that any one of these definitions is “more correct” than
another.?> The reader is encouraged to beware of differ-
ent definitions of these quantities when comparing papers
from the literature.

B. System of quantized charges

We now assume that the charge density of the crys-
tal is composed of quantized charges in multiples of e.
This could be the fictitious world of integer point “ions”
and integer point “electrons,” but we will focus below
on the case that the electrons are represented by WFs,
each carrying charge —e and exponentially localized in
the vicinity of its WF center. The bulk tile pL (r) is
then constructed by choosing a set of representative ions
and WFs to include in the home cell.

The dipole moment of this interior tile is

& = [ ruskuo)r. (7)

Because we assumed inversion symmetry, the formal
polarization, expressed in reduced units p, = d./ae,
Dy = dé /be, must map to itself, modulo integers, under
inversion. There are four possible cases in which (p,,py)
is either (0,0), (0,3), (3,0), or (3, 3), modulo integers.
Only the first is fully nonpolar. The other three cases
are somewhat trickier to handle, and for these we adopt
a split-basis convention.2? That is, we split one or more
ions into several equal pieces, assigning these to unit cells
in such a way that the home cell is dipole-free. For exam-
ple, suppose there is one +e ion at (0,0) and one Wan-
nier center at (a/2,b/2), which would give p = (-3, —3).
In this case we could choose the home tile to consist of
the WF density plus point ions of charge +e/4 at (0,0),
(a,0), (0,b), and (a,b), making for a dipole-free home
cell. In this way, we will always arrange for pl,. to have
zero dipole moment as well as zero net charge.

We also want to restrict ourselves to neutral edges,
since otherwise the definition of a corner charge is prob-
lematic. For the (0,0) case the edges are naturally neu-
tral, and the edge tile, say at the top, just consists of
some overall-neutral left-over set of ions and WFs. When
fractional ionic charges are adopted for the bulk tile, the
edge tile may also contain fractional ionic charges, but it
must contain multiple ones, because by assumption the
edge tile is neutral and the WFs come only in integer
multiples.

We note in passing that a similar split-basis approach
was recently used to derive formulas for the quadrupole
moment and corner charge.'® The authors pointed out
the gauge dependence of the quadrupole moment, but ob-
served that it can be removed when the system has a C,
rotational symmetry (n = 3,4,6). Mapping to a picture
in which electrons are represented by point charges lo-
cated at Wannier centers, they construct a charge-neutral
and polarization-free basis by an appropriate assignment
of Wannier centers to Wyckoff positions, an approach



that is quite similar in spirit to our tiling decomposition.
The method was implemented for a variety of model ge-
ometries in subsequent work.'®> However, these papers
did not address the nonquantized corner charge that can
appear when the C,, symmetries are absent.

C. Wannier representation and choice of home cell

We now explicitly require that our 2D insulator must
have a vanishing Chern number, since otherwise the pres-
ence of gapless edge channels would give rise to metallic
boundaries, and there would be a topological obstruction
to the construction of bulk WFs spanning the occupied
bands.

Regarding the ionic charges, let the i’th ion in the home
cell R = 0 be located at 7; and carry charge Z;e. Each
ionic site 1; either sits on one of the four inversion centers
in the unit cell, or they appear in pairs symmetrically
arranged around an inversion center.

As for the electrons, we assume that a smooth and pe-
riodic bulk gauge has been chosen for the wave functions
[thnk) of the n = {1, ..., J} occupied bands, and that this
gauge also respects the inversion symmetry. The WFs
constructed from these bands have centers

rrn = (Rnr|Rn) =R+ 1, . (18)

Since the gauge respects inversion symmetry, the r,, are
also located on inversion centers or are symmetrically dis-
posed about them in pairs. When we consider our flake,
we assume that the WFs of the flake become identical
to these bulk WF's deep in the interior of the flake, so
that the home-cell charge distribution pf, is just built
from these ions and WFs. As discussed in the previous
section, this tile will always be dipole-free, even if it re-
quires splitting some ionic charges.

It may be useful to introduce a set of reference WF
center positions as follows. For each WF |0n) that sits
on one of the inversion centers, we define t,, to be the
location of that inversion center (i.e., equal to T, ); and for
every pair of WF centers symmetrically disposed about
one of the inversion centers, we again assign t,, for each
of them to be at that inversion center. Then the interior
tile charge density

Pl (r —622521'—7'1 —eZ| r|on)|? (19)

can be written as
Phie(r) = pisia(r) + phe(r) (20)

where
plon(r _62252 r—T —6252 (r—t,) (21
and

pile(s) = —e 1 [Jslon)? = —t)]. 2

The advantage of this formulation is that p/9% is a
purely classical point charge distribution that is gauge-
independent,?6 while all of the electronic gauge depen-

dence is carried by pg..

D. Wannier quadrupoles and dipoles

We are now ready to put it all together. The ingredi-
ents needed to compute the upper-right corner charge of
Eq. (7) are given as follows. The bulk quadrupole is

I

ez<0n|xy|0n>

n

I
I _ i T
qmy =e€ iTixTiy —

= q;f;“ +45, (23)

where the sums are over the contents of the interior (I)
tile, and qlon and q§ly are the quadrupoles of the distri-
butlons in Eqs. (21-22), i.e

1 I
q}oyn =e Z ZiTiaTiy — € Z tnatny » (24)

q:ry —ez { (On|zy|On) — t,, ny} . (25)

The z dipole of a top-edge tile is

T T
dl = ez ZiTiw — eZ<0n|x|0n> ) (26)
4 n

where this time the sum is over the contents of the top
edge tile, and |I,n) denotes a WF belonging to the [,
tile along the edge. Similarly,

R
R § :
dy =€ ZiTiy—
%

where the ket notation is |l,n). Finally,

R

ez<0n|y|0n> ) (27)

n

TR

Q™ :eZZi—eNTR (28)

where NTR is the number of WFs associated with the
top-right corner tile. Inserting Egs. (23-28) into Eq. (7)
yields the desired expression for the top-right corner
charge.

If we are only interested in the corner charge mod e,
then no electronic solution is needed for the TR region;
Q™ vanishes mod e if fractional ionic charges Z; are
absent, and are easily determined if they are present.
Thus, Q. can be determined mod e using only calcula-
tions on two infinite ribbons and a knowledge of the ionic
arrangement at the corner. If we want to know Q. fully,
not just mod e, then we also need enough information
about the electronic structure of the flake to decide the
number N TR of occupied WFs in the corner tile.
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FIG. 2. Sketch of top edge of sample, showing mixing of Wan-
nier functions under the infinitesimal gauge transformation of
Eq. (30). Gray cell is an interior cell whose dipole moment
is unchanged due to cancellation of the e contribution from
above and the —e* one from below; pink cell is a top skin
cell whose dipole does shift as a result of the unbalanced —¢*
contribution from below.

III. GAUGE DEPENDENCE OF INTERIOR
QUADRUPOLES AND EDGE DIPOLES

In Secs. I1 C and IID we assumed some definite choice
of WFs providing a representation of the occupied elec-
tronic states of the flake. Specifically, the set of all bulk,
skin, and corner WFs must be orthonormal and must
exactly span the occupied band subspace of the flake.
We refer to any particular choice of WFs as a “choice of
gauge.” This choice is not unique, so it is important to
discuss the gauge dependence of quantities such as q:‘j?b
and d} of Egs. (25-26).

A general gauge transformation corresponds to a uni-
tary mixing of the WF's according to

|R1n1>new = Z UR2n27R1n1 |R2n2> ) (29)

Rona

where U is unitary. For our purposes, it is sufficient to
consider the transformation properties under infinites-
imal unitary transformations, since finite gauge trans-
formations can always be built up by using these as
generators.?” The general form of an infinitesimal uni-
tary operator is U = e? = 1 + A for infinitesimal anti-
hermitian A. In the bulk part of the flake, we want the
WF's to retain the property of being periodic images of
each other, so we require that A be lattice-periodic, i.e.,
ARyny,Rons = ARy +R/ n1,Ro+R/,ny- We further specialize
to the case that A specifies a mixing of amplitude € be-
tween WFE n; = m in cell Ry = R and WF ny = n in cell
R, = R + R/, since more general gauge transformations
can again be built up from elementary ones such as this.

The first-order changes in the WFs in tile R are then

given by

SRm) = e R+ R/, n),
JRn) = —e' R —R',m), (30)

with other WFs in the cell being unaffected. The mixing
pattern is illustrated in Fig. 2. For an arbitrary single-
particle operator O, the change of its trace over the WF's
in cell R is given by

5(O)ile = (Rm|O|Rm) 4+ §(Rn|O|Rn)
= 2Re[e(Rm|O|R + R’, n)
— (R — R/, m|O|Rn)]
= 2Re[e(Rm|[O, Tr/]|Rn)] (31)

where Tg is the operator that translates by lattice vec-
tor R. For a lattice-periodic operator such as the bulk
Hamiltonian, the commutator in Eq. (31) vanishes, and
the density of O per unit cell is gauge-invariant.

However, we are interested in dipoles and quadrupoles,
and for these cases we have that [z,Tr] = R.Tr,
ly,Tr] = RyTw, and [zy, Tr| = (yRz + Ry + R, R,)TR.
Using the orthogonality of the WFs, (Rm|R + R/, n) =
0oR’Omn, it follows that

() tile = 0(Y)tite = 0, (32)
§(zy)iite = 2R, ReleV, R + 2R! Re[eXR ], (33)

where

X = (Om|z|Rn),
Yo = (Omly[Rn) . (34)

Equation (32) confirms that the dipole moment of the
Wannier charge distribution in a bulk tile is gauge-
invariant, as expected since it corresponds to the elec-
tric polarization. Another way to see this is to compute
the shifts of the Wannier centers Zr,, = (Rm|z|Rm) =
R + Z,,,; using the same methods, we obtain

8%y = —0%, = 2Re[eXR ], (35)

and similarly for §y. The two WF centers thus shift by
equal distances but in opposite directions, preserving the
overall cell dipole.

However, the gauge invariance of the dipole does not
extend to the quadrupole. From Eq. (12), (23), and (33)
we obtain

5QL, = —% (R;Re[eyﬁg] + R;Re[ex;};]) . (36)
This shows that the bulk quadrupole moment of an inte-
rior tile is not a gauge-invariant quantity. In particular,
this suggests that it is not a physical observable.

Now let us concentrate our attention on the skin re-
gion, specifically at the top edge of the flake. The
quadrupoles in this region are of no interest, since the
area of the skin region becomes negligible in the limit



of a large flake. A gauge change that is restricted only
to the skin region cannot change the dipole moment of
an edge tile, by an argument similar to that leading to
Eq. (32).

Surprisingly, though, the dipole of an edge tile can
be modified by an interior gauge transformation. To
see this, we return to Fig. 2 and discuss it in the con-
text of Eq. (35). Note that Fig. 2 is drawn for the case
that R’ = ¢,a + ¢,b with ¢, = ¢, = 1, and for sim-
plicity we assume that the skin tile is only one unit cell
thick. In this case, each skin tile “donates” a contribution
—2eRe[eXR | to one of the top-most interior tiles below
it, as illustrated by the blue arrow marked €* pointing
from |[R+ R/, n) in the pink skin cell to |Rm) in the gray
interior cell in Fig. 2. As a result, the shift of rryr/ n
adds to the dipole of the pink edge tile by 2eRe[eXR’ ],
and the shift of rgr,, in the gray tile makes an equal and
opposite contribution to the gray-tile dipole. However,
there is no net change of the gray-tile dipole, since it re-
ceives a compensating donation marked by the —e* arrow
from the deeper tile below it. By contrast, no such can-
cellation occurs for the pink tile, so there is a net change
of its dipole, and a resulting change by (2¢/a)Re[eX], ]
of the edge polarization P

This result depends crucially on the choice of ¢, = 1,
as in Fig. 2, for the relative lattice vector R’ involved
in the unitary mixing. If ¢, = 2, then there are two
uncompensated contributions to the edge tile instead of
one, and if ¢, = —1, then the transfer of dipole mo-
ment goes in the reverse direction. Overall, then, we find
that dd} = 2ef,Re[eXR ], and using Egs. (13) and (26)
together with ¢, = R /b, and applying similar consid-
erations to the right edge, we find that the bulk-gauge-
induced changes to the edge dipole densities are

2e /

T R
57)3: = %R;RG[Ean} y (37)

2e /

R R
577y = —abR;Re[ern]. (38)

Finally, as for the top-right corner tile, neither its
quadrupole nor its dipole can contribute to the macro-
scopic corner charge. Moreover, its net charge density,
given by Eq. (28), is obviously gauge-invariant, so that
SQ™R = 0.

Combining these contributions to Eq. (14), we find
that the contributions from Egs. (37) and (38) exactly
cancel the one from Eq. (36), so that

6Qc =69y, + 6P, + 6P =0. (39)

In other words, the bulk quadrupole density and edge
dipole densities are individually gauge-dependent, but
their sum is gauge-invariant and describes a physical ob-
servable, the corner charge. This is a major result of our
work.

A crucial consequence of this result is that the corner
charge Q. can be obtained modulo e from independent

calculations of Q:IW7 PL, and 775{, but only if all three

contributions are computed using the same bulk gauge.
For example, by studying ribbons that are finite in y and
infinite along x, we can compute Qiy from the charge

density of a deep interior tile, and Pl from that of an
edge tile, and we can get 73;{ in a similar way from a rib-
bon that is finite in x instead. However, unless we insist
that the bulk gauge is the same, we cannot use Eq. (14)
to compute the corner charge by summing these ingredi-
ents. For example, if one obtains P, from a y-finite rib-
bon Wannierized along y and PyR from an z-finite ribbon
Wannierized along %X as described in Sec. IVB1 below,
then in general the gauges are not consistent, and the
sum P.f + PyR is not meaningful. (An exception to this
rule will be discussed in Sec. V A.)

IV. METHODS

In this work, we use simple tight-binding models for the
purpose of implementing our formalism and testing its
predictions. These will be introduced in detail in Sec. V.
Each model is specified by providing the location of each
basis orbital |¢g;) in the rectangular a x b home unit cell,
implying periodic images |¢r;) = Tr|poi) in other cells.
The on-site energy of each basis orbital, and the hoppings
connecting near-neighbor orbitals, are also specified. The
position operator is assumed to be diagonal in the tight-
binding basis, (¢ri|rler/;) = (R + 7)0r,r 05, with 7
denoting the location of the ith basis function in the
home cell. We treat the charge density of each basis or-
bital as a Dirac delta function, |(r|¢r;)|* = 62(r—R—7;),
so that the basis functions themselves have zero spread.
Positive ionic charges are assigned to all of the tight-
binding sites to neutralize the unit cell. The electronic
Hamiltonian for bulk, ribbon, and flake geometries is con-
structed and solved using the PYTHTB code package.?®

A. Corner charge and macroscopic averaging

To calculate the corner charge directly, we construct
a rectangular flake consisting of N, x IV, unit cells, and
obtain the total charge gr; (ionic plus electronic) on ev-
ery site. Since we associate the electronic charge to delta
functions on the sites, the total charge density takes the
form

p(r) = Z qri0*(r —R — ). (40)
Ri

The macroscopic corner charge is determined by first
applying a smoothening procedure, since simple sums of
individual charges are not convergent. For this purpose
we adopt the sliding window average approach,®?° in
which a broadened charge density p(r) is obtained by
convoluting p(r) with a “window function”

1/ab if |z| < a/2, <b/2
w(x’y):{/ 2] < a/2, [yl < b/

: (41)
0 otherwise ,
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FIG. 3. Sketch of sliding-window approach for obtaining
macroscopic corner charges. The macroscopically averaged
charge density p(ro) is defined as the average of p(r) over a
rectangular cell centered at ro = (zo,y0). For this model of
+e point charges, p vanishes except in the blue and pink rect-
angles, where it takes values +e/ab and —e/ab respectively.
Integration of the charge in one of these colored rectangles
yields the corresponding macroscopic corner charge.

p(ro) = /p(ro —1r)w(r)d*r . (42)

The advantage of this procedure is that p(r) is guaran-
teed to vanish in the bulk-like regions of the sample as
a result of the charge neutrality of the bulk unit cell.
After applying it to the tight-binding charge density of
Eq. (40), edge and corner charges are then obtained by
integrating p(r) over the edge or corner region of interest.

The application of the above macroscopic averaging
procedure to a simple checkerboard arrangement of +e
point charges is illustrated in Fig. 3. The range of the
window function centered on position ro = (zg,yo) is
shown by the gray rectangle. As one slides this window
around on the sample, the charge contained in it vanishes
except when ry falls in the rectangular a/2 x b/2 regions,
where £5 = e/ab in the blue and red rectangles respec-
tively. Thus, the macroscopic edge charges are zero for
this model crystal, and the macroscopic corner charges
are +e/4, with the positive charges at top right and bot-
tom left.

Other coarse-graining approaches will lead to the same
result. For example, Gaussian broadening can also be
used, but then a careful treatment of the two limits
max(a,b) < o < min(Lya,Lyb) has to be enforced,
where ¢ is the Gaussian width. The sliding window ap-
proach avoids such complications. Note, however, that
a simple summation of the charges in a quadrant of the
flake, as shown by the heavy black lines, does not yield
the correct corner charge. For the quadrant shown, it
yields zero; if the quadrant contained 5 x 5 instead of
4 x 4 cells, it would yield +e. Neither value is correct.

The technical implementation of the sliding window

averaging procedure is as follows. We can write
Q.= [ #ra) o) (43)

where A(r) = 1 in an upper-right-hand region = > ¢
and y > yo and zero otherwise for appropriately chosen
o and yo. In the language of function spaces this is the
inner product A o p, while p is the convolution p = p x w;
noting that w(r) = w(—r), this is equivalent to Q. =
W o p with W = A % w. Thus, in practice we compute
the macroscopic corner charge as

Qe = / d2r W (r) p(r). (44)

with W(z,y) = fo(z — x0) f5(y — yo) given by the prod-
uct of two “ramp functions” defined as fy(u) = 0 for
u < —d/2, 1 for u > d/2, and 1/2 4+ u/d in the interval
[—d/2,d/2]. Note that Eq. (44) is not the same as the
bare Q. obtained by integrating p(r) over a quadrant, i.e,

QU = / 22 A(r) p(r) (45)

for g and yp at the sample center. This definition of Q.
was used in Refs. [5, 8, 16, and 17], and the difference
with respect to the macroscopic Q. of Egs. (43-44) will
be discussed in Sec. V C.

B. Wannier construction for ribbon models

Our goal is to use our formalism to predict corner
charges from edge polarizations and interior quadrupoles
computed for z- and y-finite ribbon models. For example,
we cut from the infinite 2D bulk a ribbon that is finite
and N, cells thick in the y direction, but still infinite and
periodic in the x direction. In this case the wavevector
k. is a good quantum number, and we obtain the Bloch
states according to the eigenvalue equation

We are interested only in the occupied wavefunctions,
so for consistency with the bulk which has J occupied
bands, we let n run over N,J occupied ribbon bands
at each k. We then need to construct a specific gauge
for the WFs spanning the occupied states, and in the
following we present two different strategies for doing so.

The strategy described in Sec. IVB1 is the one that
was used in Ref. [22] to evaluate edge polarizations, and
is included here for the purpose of comparing with that
work. We clarify that in general it does not produce the
same gauge for the interior WF's of z- and y-finite rib-
bons, and hence it cannot safely be used to predict the
corner charge. (Centrosymmetric models with a single
occupied band and time-reversal symmetry provide an
exception, as will be discussed in Sec. VA.) The ap-
proach presented in Sec. IV B2 does produce the same
gauge for the two ribbons, providing a viable route to pre-
dict the corner charge in arbitrary models of centrosym-
metric insulators.



1. Maximally localized hybrid Wannier gauge

We begin by considering a y-finite ribbon. Because
the y direction is not extensive, matrix elements of the
position operator g are well defined. As a result, it is
straightforward to obtain the matrix

Ykz,mn = <¢k1m|y|wk1n> 5 (47)

where m and n run over the NyJ occupied bands of the
ribbon at a given k,, and to diagonalize it,

Z Ykm,mngkza,n = gk:magkma,m P (48)

where o« = {1,..., N, J} now labels the eigenvalues and
eigenvectors of Yy, . Then the maximally localized states
along y, which we refer to as hybrid Wannier (HW) func-
tions, are constructed according to

‘hkza> = Zﬁkma,n|¢kw> . (49)

As we shall see, the spatial locations of the HW cen-
ters ¥r,o cluster in groups of J per unit cell along y,
corresponding roughly to the locations along y of the
true 2D WFs assigned to a unit cell. Thus, we relabel
Ukpa = Ukotyn a0d i, a) = [hi,0,n), Where £, is a layer
index specifying the unit cell along y and n = {1, ..., J}
labels the Wannier bands within a layer.

We now define the skin region at the top edge of the
sample to consist of one or more of the top-most of these
layers. At this point, we have two options for evaluat-
ing the skin dipole density P.f, which is invariant un-
der gauge transformations restricted to the skin region.
First, we can work entirely in k space, first constructing
the cell-periodic HW functions

eatyn) = € i, ,n) (50)

and computing the Berry phases

¥ = / dky (P00, [Py eyn) - (51)

These are computed on a discretized k mesh using stan-
dard methods. An advantage of this approach is that
there is no need to construct a smooth gauge a priori. In
this context Eq. (26) becomes

T T
e .
dIT = ez ZiTix - % Z’Y[Eyzw (52)
% Lyn

where the sums are restricted to the cells associated with
the top-edge tiles. The number M, of cells comprising
the top tiles (see discussion of Fig. 1) is enlarged until
convergence is obtained.

Alternatively, we can construct the fully localized WF's
corresponding to these Berry phases and use these to
compute P.Y. To do so, we choose a twisted parallel

transport gauge, i.e., one that makes the integrand of
Eq. (51) constant, and then carry out the Fourier trans-
form

W) = g [ dbse M ) (53)
™

to obtain the nth WF in cell (¢;,¢,). Then, as an al-
ternative to Eq. (52), Eq. (26) can be evaluated directly,
where |0n) in Eq. (26) corresponds, in the present no-
tation, to |wg,e,,) with £, = 0 and ¢, in the skin re-
gion. Again using a discretized approach,® we find that
that in practice P,' computed this way converges faster
with respect to k-mesh density than does the Berry-phase
approach. We therefore adopt the WF-based approach
in Sec. V. The same operations allow us to obtain the
Wannier quadrupole (On|zy|0n) needed to compute the
interior quadrupole qiy of Eq. (23) as (we, ¢, n|zylwe,e,n),
with £, = 0 and £, chosen from the deep interior of the
ribbon.

Either of the procedures described above is easily re-
peated for a ribbon that is finite along x and extended
along y. We emphasize, however, that this generally does
not lead to the same gauge. That is, the deep interior
WF's and their quadrupoles are typically not the same
for the two ribbons, and the top edge polarization P
obtained for the y-finite ribbon cannot be assumed to
represent the edge polarization that would be obtained
using the gauge of the z-finite ribbon.

2. Projection gauge

An alternative approach to the construction of a gauge,
and one that automatically produces the same gauge
for both ribbons, is to use the trial function projection
method.?%2! In this approach, one invents .J trial func-
tions |g;) in the home bulk unit cell that are intended as
a rough approximation to the desired WFs, and defines
Geae,i(r) = g;(r — £ya — £,b) as its translational images.
Working again with a y-finite ribbon, ¢, runs over the
Ny layers in the ribbon, while [, runs over all integers.
The goal then is to choose a set of WF's |wy,_¢, ;) that look
“as similar as possible” to these |ge, ¢, ), while still being
built only from occupied Bloch states.

This is most easily done by going to reciprocal space.
Temporarily introducing the composite index o = (4,,5),
we define trial Bloch functions

‘gkxa> = N;1/2 Zeikwewa‘géma> (54)
Lo

and construct the overlap matrix

By, .08 = (Vk,aldr, s) - (55)

If our choice of trial functions had been ideal in the sense
that the |gk,«) had spanned the occupied subspace at ks,
By, would be a unitary matrix. More generally, we find
the unitary part B of the B matrix by subjecting it to



the singular value decomposition B = VEWT (V and W
are unitary and X is positive real diagonal), and choosing
B = VWT. We also monitor the singular values (diagonal
elements of X); if any of them becomes much less than
unity, this signals the need to choose a different set of trial
functions. Then we construct mixtures of Bloch functions
such that the resulting ones are maximally aligned to the
|Gk, ) according to

hkpa) = Y Br, paltr,s) - (56)
8

Restoring o = (£7), these |hg ¢, ;) can be interpreted
as HW functions, but this time constructed according to
trial projection instead of maximal localization along y.
Then P,f can be obtained from the top-edge Berry phases
as in Egs. (50-51). Alternatively, the |hy,¢, ;) can be
Fourier transformed as in Eq. (53) to obtain fully local-
ized WFs |wg,¢,;). Then Pl can be computed from the
dipoles of the skin WFs, and qiy from the quadrupoles of
deep interior WF's, as before. Again, this is the approach
used in Sec. V.

We emphasize that in this case, if we start from the
same set of trial functions, the gauges in the interior re-
gion are the same by construction for y-finite and x-finite
ribbons. Thus, we should expect to find the same Q;y
for both ribbons; we confirm this below. Moreover, with
the results of both ribbon calculations in hand, we are
assured that the set of quantities P.l, Pf, and Q;y have
been computed in a common gauge, and can confidently
be combined as in Eq. (14) to predict the corner charge.

8. Quantum distance between Wannier gauges

Once specific gauges have been chosen for the two rib-
bons of a given model, it is useful to check Whether those
gauges are consistent. By “consistent gauges” we mean
that the sets {|wmt]>} and {|wmw>} containing the J
WFs in one interior cell of the z- and y-terminated rib-
bons span the same Hilbert space. If that is the case,
then the two sets of WF's are related by a J x J unitary
transformation

mt j Z UlJ ‘wl(;ft)l (57)

that only mixes WFs within the same interior cell. On
the other hand, Eqs. (36-38) show that Q] , P,', and P,/
only change under gauge transformations that mix WFs
belonging to different cells (R’ # 0). This means that we
are allowed to evaluated the corner charge as the sum of
those three quantities provided that they are evaluated
using gauges for the two ribbons that are consistent in
the above sense.

The degree of “gauge inconsistency” can be quantified
by measuring the “quantum distance” between the two
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FIG. 4. (a) Visualization of the two-band model. Atoms in
the home cell are shown as black dots, the intracell hopping
t1 as a solid line, and intercell hoppings t2 to t5 as dashed
lines. (b) Bulk band structure for the parameters given in
the main text. The Fermi level (dashed line) has been placed
at midgap. The inset shows the 2D Brillouin zone and the
high-symmetry points I' (0,0), X (%,0), X" (0,3), and M

)2
(3:3)-

sets of interior WFs. Here the square of the quantum
distance D is defined as3°

Z:JfTﬂR@R%}

=J- Z ’ Wing z|w1nt_7 ‘ ’ (58)

i,j=1

where Pmt and Pgt) are the projection operators onto
each set. A vanishing D indicates that the two sets are
related by a unitary transformation. Allowing for numer-
ical error, we take the gauges to be consistent whenever

D <107°

V. RESULTS

We study three tight-binding models of increasing com-
plexity. All models are centrosymmetric and spinless,
and we consider them at half filling. The first is a two-
band model (one occupied band), and the other two are
four-band models (two occupied bands). In the first two
models the symmetry is sufficiently low that the corner
charge is not quantized, while the third model has a high-
symmetry phase where the corner charge is quantized to
either zero or /2, depending on the choice of parameters.

A. Two-band model

The first model we consider was introduced in Ref. [22],
and is illustrated in Fig. 4(a). The rectangular unit cell
(gray square) has an aspect ratio of b/a = 0.8, and con-
tains two atoms along its diagonal, with reduced coor-
dinates (—g,—¢) and (+,+¢) relative to the center of
inversion in the middle of the cell. Since we treat the
model as spinless and at half filling, we assign a positive

charge of +e/2 to each atom to neutralize the unit cell.
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FIG. 5. (a) Wannier bands (i.e, hybrid Wannier centers) g,.e,
(in units of b) for a ribbon with a width of ten unit cells along
y. The red Wannier band deep inside the ribbon is selected
to construct the fully localized interior Wannier function that
is used to evaluate Qj,. (b) Layer-resolved dipole density
Pre, = dze, /a, computed from the dipole moments of the
fully localized Wannier functions in each layer.

Our choice of bulk tile corresponds to the contents
of the unit cell in Fig. 4(a), with the reference posi-
tion t, chosen at the origin, which is also the location
of the WF center. As a result, the ionic part of the
interior quadrupole q;y of Egs. (23-24) is immediately
given as q;oy“
q;’L in Eq. (25) is determined by the shape asymmetry
of the WF charge distribution around its center, and re-
mains to be calculated, as do the dipoles of the edge tiles.
From these, Q;y, P, and PyR are trivially obtained from
Eqgs. (12-14).

To evaluate these quantities we construct two ribbons,
spanning 10 unit cells along x and y respectively, and
then fix the gauge on each ribbon by applying one the
methods described in Sec. IVB (the same for both rib-
bons). We begin with the HW method of Sec. IVB1,
where the maximal localization procedure is first car-
ried out along the finite direction of the ribbon, and
in a second step it is carried out along the extended
direction. This procedure is illustrated in Fig. 5 for
the y-finite ribbon. Panel (a) shows the HW centers
Ukpt, = (Pioe,|ylhi,e,) obtained in the first step, and
panel (b) shows the layer-resolved dipole moment den-
sity along x; as expected, it vanishes in the interior region
and assumes equal and opposite values at the two edges.
In the second step, an optimally-smooth gauge along x is
enforced within each “Wannier band,” resulting in fully
localized WFs.

The values of Pl 7)5{, and Q;y calculated from those
WF's are indicated in the left column of Table I. We find
that Q;y has the same value in the two ribbons, suggest-

ing that their gauges are consistent. Decomposing Qiy

into ionic and electronic parts, we find Q3" = ¢, /ab =

e/36 ~ 0.027778¢ and Q;Z = qg‘i;/ab = —0.027808e. We
also find that the corner charge predicted from Eq. (14)
is in excellent agreement with that obtained from a di-
rect calculation on a 10 x 10 flake using Eq. (44), again
suggesting that the gauges are consistent (as well as val-

idating our formalism). The last row of Table I lists

= (e/36)ab. The electronic contribution
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TABLE I. The values of PJ, PyR, and Q;y, calculated for
ribbons of the two-band model using the hybrid Wannier and
projection methods. In the bottom half of the table, the cor-
ner charge Q. predicted from Eq. (14) is compared with the
value obtained from a direct calculation on a finite flake us-
ing Eq. (44), and with the “bare” corner charge obtained from
Eq. (45).

Hybrid Wannier Projection
(1073 ¢) (1073 ¢)

pr —0.531575 —0.531574
Pyt —1.164427 —1.164427
.y —0.030068 —0.030068
Q. (predicted) —1.726070 —1.726069
Q. (direct) —1.726068 —1.726068
Qbare —0.071873 —0.071873

the value of the bare corner charge, obtained by simply
adding up the charges inside the 5 x 5 tiles forming the
top-right quadrant of the flake, according to Eq. (45);
as expected, the bare corner charge differs significantly
from the macroscopic corner charge listed in the two rows
above it.

To confirm that the gauges are consistent between the
two ribbons, we calculate the quantum distance D ac-
cording to Eq. (58), and find that it is zero to numerical
accuracy. Since there is a single WF per cell, gauge con-
sistency means that the WF's deep inside the two ribbons
are the same up to an overall phase factor. The site am-
plitudes of one such interior WF are listed in Table II.

Recall that the HW method is not guaranteed to yield
consistent gauges for two differently oriented ribbons of a
generic model. The reason why it does so for this partic-
ular model is the following. In addition to spatial inver-
sion, the model has time-reversal symmetry, and in the
presence of both symmetries the k-space Berry curvature
of each band vanishes identically. Since the curvature is
the curl of the connection, it follows that both the x
and y components of the Berry connection can be chosen
to be constant. Moreover, these constant values are a
measure of the electric polarization, which vanishes here.
Thus, in this case of a single occupied band with inversion
and time-reversal symmetry, there is a unique “natural”

TABLE II. The bulk-like Wannier function |wint) in the home
unit cell of the two-band model. |¢gr;) is the basis orbital at
site R 4+ 75, given in reduced coordinates. The 12 largest
coefficients are listed; only half of them are shown, as the
other half can be obtained by an inversion operation.

R+ (PR, [Wint ) R+ (R |Wint)
(=5 —38) 0.70565 ) 0.02662
(—5—¢) —0.02634 (-1,8) 0.01777
(—%: %) —0.01752 (LD 0.00328
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FIG. 6. (a) Visualization of the four-band model. Atoms are
labeled from 1 to 4 as shown at upper right. The intracell
hoppings t1, t2, t3 and t4 are shown as solid lines, while the
intercell hoppings t5 and t¢ are shown as dashed lines. Sites
denoted by open and filled circles have on-site energies +4
respectively. (b) Band structure of the model. The Fermi
energy (dashed line) has been placed at midgap.

gauge with vanishing Berry connection. This same gauge
is arrived at regardless of whether maximal localization is
applied first in « and then in y, first in y then in x, jointly
as in conventional 2D maximal localization, or using the
projection technique discussed next.3!

We now repeat the calculations using the projection
method of Sec. IV B2 to fix the gauge. We choose as the
trial function the eigenstate of an isolated tile, without
any inter-cell hoppings. The trial function in the home
unit cell is then %\gbﬁ + %kﬁg), where |¢1) and |¢2)

are the basis orbitals located at (— ¢, —%) and (%, 1), re-
spectively. After confirming that the resulting gauges for
the two ribbons are consistent (D = 0 to numerical accu-
racy), we have recalculated Pl 73;{, and Qaljy, obtaining
the values in the right column of Table I. They are iden-
tical to the ones in the left column, confirming that the
HW and projection methods yield consistent gauges for
this model. To further verify this, we measure the quan-
tum distance between the interior WFs obtained with the
two methods, again obtaining D = 0.

We conclude by commenting on the results obtained in
Ref. [22] for the same model. In that work, P/ and Pt
were calculated for y- and z-finite ribbons using the HW
method, and P.f + P?;R was found to be in good agree-
ment with a direct calculation of Q. for a flake. Our
analysis reveals an oversight in that work, also pointed
out in Ref. [14], namely the omission of the Q}  term
in Eq. (14). For the choice of parameters in Ref. [22],
|Q;,| is much smaller than both [P| and [P}, helping
to explain why that omission was not revealed by the
numerical tests carried out there. Reference [22] also ne-
glected to discuss the gauge-consistency issue that arises
in more general cases, although as discussed above, it
is not a problem for single-occupied-band models with
time-reversal symmetry. It does become an issue for
multiband cases, as we shall see in our next example.
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FIG. 7. (a) Wannier bands ¥x,e,» (in units of b) for a y-finite
ribbon with a width of 20 layers, and two bands per layer.
(b) Dipole moment density of the layers near the top edge of
the ribbon.

B. Four-band model

Our second test case is the model depicted in Fig. 6(a).
The unit cell is rectangular with b/a = 0.8 as before,
but it now contains four atoms instead of two, with re-
duced coordinates (—§,—¢), (§,—¢), (3, 5) and (=5, ¢)
relative to the center of inversion in the middle of the
cell. The hopping amplitudes are t; = —2.0, t5 = —1.5,
ts = —0.8, and t4 = —0.6 eV (intracell hoppings), and
ts = —0.5 and tg = —0.4 eV (intercell hoppings). The
sites depicted as open and filled circles have onsite en-
ergy +4, where 6 = 0.8. The band structure is shown
in Fig. 6(b); at half filling the two lowest bands are oc-
cupied, and we assign a charge of +e/2 to each atom to
render the cell neutral. The bulk tile again corresponds
to the unit cell, and the reference positions of Egs. (21-
22) are again t; = to = 0; now q;‘;}“ = 0 and only ‘I;L will
contribute to qiy.

As in our previous example, the model has both spatial
inversion and time-reversal symmetry. However, since
we now have two occupied bands, the HW method is no
longer expected to produce consistent gauges for the two
ribbons. In the following, we present numerical results
for ribbons with 20 unit cells across their finite directions.

The application of the HW method to the y-finite rib-
bon is illustrated in Fig. 7. Panel (a) shows the Wan-
nier bands obtained in the first step, with the two bands
in each vertical cell being closer to one another than to
their neighbors in adjacent cells. In the second step, the
maximal localization procedure is applied along x, treat-
ing the two HW functions within a cell as a composite
group, resulting in two fully localized WFs per 2D cell.
The same two-step localization procedure is carried out
for the z-finite ribbon, but in the opposite order: first
along z, and then along y.

The center column of Table IIT lists the calculated val-
ues of Pl (for the y-finite ribbon), P, (for the z-finite
ribbon), and Q;, (for both). Even though Q;, has al-
most identical values in both ribbons, the predicted cor-
ner charge (). differs by about 0.14% from that obtained



TABLE III. The values of P, PyR, Q;w calculated for rib-
bons of the four-band model using the hybrid Wannier and
projection methods. The first and second values of Qiy in
the center column correspond to the y- and z-finite ribbons
respectively. In the last two rows, the corner charge Q. pre-
dicted from Eq. (14) is compared with the value obtained from

a direct calculation on a finite flake.
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TABLE IV. One of the two bulk-like Wannier functions in the

home unit cell of the four-band model, constructed in three

different ways. |wi(f;‘t)’1) and |wi(ti)71> are obtained by applying

the HW method to y- and z-finite ribbons, respectively, while
|wi(lft>’1> is obtained by applying the projection method to ei-
ther ribbon, starting from the trial function |g1) described in
the main text. |¢r;) is the basis orbital at site R + 75, given

in reduced coordinates.

Hybrid Wannier Projection

(1072 ¢) (1072 ¢) R+7  (drilwily) (drjlwid)) (frslw®),) (érslor)
Pr 0.300250 0.254669 (—%,—%) -—0.86557 —0.86563  —0.86481 —0.87128
P 0.476420 0.446029 (-1, §) —0.42664 —0.42656 —0.42851 —0.45897
vy —3.756011, —3.756010 —3.684265 ( 3,-1) —017659  —0.17654  —0.17732 —0.15379

Q. (predicted) —2.979341, —2.979339 —2.983567 (=5,—2) —0.11485  —0.11527  —0.10720 0

Q. (direct) —2.983567 —2.983567 (—g.—g) —0.07271  -0.07294  —0.07163 0
(% 3 0.07108 0.07108 0.07185  0.08101

(& 2) 0.06598 0.06548 0.06286 0

via a direct calculation on a 20 x 20 flake, indicating (2 9 0.04861 0.04798 0.04626 0

some degree of gauge inconsistency. The gauges of the
two ribbons are indeed slightly different, as can be seen
by inspecting the second and third columns of Table IV,
where we list the site amplitudes of one of the two in-
terior WFs per cell (the other is related to it by spatial
inversion) in each ribbon. To check that this difference
cannot be accounted for by a 2 x 2 intracell gauge trans-
formation described by Eq. (57), we calculate the quan-
tum distance of Eq. (58) to be D = 0.0138. This nonzero
value confirms that the interior gauges produced by the
HW method are inconsistent between the two ribbons.

To arrive at a common gauge for the two ribbons we
use the projection method, choosing as trial functions
lg1) = %Wﬁ + %Wz) and [g2) = %Wﬁ - %Wz%
where [t¢1) and |i)2) are the two lowest-energy eigenstates
of an isolated tile, i.e., with intercell hoppings set to zero.
These two eigenstates are of even and odd parity respec-
tively, so that |g1) and |ga) are each off-centered with
respect to the origin, and map into one another under
inversion.

Applying the projection method to ribbon models cut
from the bulk as described in Sec. IV B 2, we find as ex-
pected that the pair of WFs taken from the deep interior
of the z-finite ribbon match those extracted from the y-
finite ribbon within numerical precision. We denote as
|wi(:t) 1) and |wi(:t)2> the WF's projected from |g1) and |g2)
respéctively. Like the trial functions, these lie off-center

and map into one another under inversion. In the last two

columns of Table IV we list the site amplitudes of |wl(ft)1)

and |g1). It is evident that the projected WFs are sim-
ilar, but not identical, to the ones obtained by the HW
approach; we find a quantum distance D = 0.03844 and
0.03857 respectively from the projected pair to the pairs
generated via the HW method from z-finite and y-finite
ribbons respectively.

Having verified that the projection method leads to two
ribbons described by the same bulk gauge, we proceeded
to calculate P.L for the y-finite ribbon and P.v}:{ for the z-
finite ribbon; their values are listed in the right column of

Table III, followed by the common value of Q;y in both
ribbons. In contrast to the center column, the sum of the
three now matches perfectly the value of Q. in the finite
flake.

This example confirms our expectation that the cor-
ner charge can reliably be predicted from ribbon calcu-
lations alone, provided that consistent gauges are used
for both ribbons, even in the case of multiple occupied
bands. It also illustrates the fact that this gauge consis-
tency is achieved only via the projection method,3? while
the HW method fails in this case.

C. Benalcazar-Bernevig-Hughes (BBH) model

Our final test case is a model introduced by Benal-
cazar, Bernevig, and Hughes as an example of a topo-
logical phase with quantized corner charges.*® The BBH
model is pictured in Fig. 8(a). It has four sites per cell
as in our previous example, but now placed on a square
lattice. We again choose the atoms to have reduced coor-
dinates (=%, —%), (3,—%), (3, ¢) and (—3, §) relative to
the origin at the center of a small square.®® Figure 8(a)
shows four unit cells (gray squares) centered in the same
way, but as we shall see later, our choice of bulk tile may
or may not coincide with this unit cell. Each site also
carries an ionic charge of +e/2, so that the system is
neutral at half filling.

When viewed along z or y, the model consists of paral-
lel chains with dimerized bonds. The hopping amplitudes
along z alternate between + (intracell) and A (intercell).
The same bond alternation occurs along y, except that
the hopping amplitudes change sign from one chain to
the next, as though 7 fluxes have been threaded through
the plaquettes. Following BBH, we also include an op-
tional parameter § which, if present, assigns an on-site
energy +6 to the sites depicted as open and filled circles
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FIG. 8. (a) Visualization of the Benalcazar-Bernevig-Hughes
model. Atoms are labeled from 1 to 4 inside the unit cell, as
shown at upper right. Intracell hoppings of amplitude £+~ are
shown as solid or dashed red (short) lines, and intercell hop-
pings of amplitude £ as solid or dashed blue (long) lines. In
the calculations reported in the main text, sites denoted by
open and filled circles have small on-site energies +§ respec-
tively. (b) Band structure of the model for A = 1.0, § = 0,
and two different values of . The solid bands were calcu-
lated at v = 1.5 (trivial phase, Q. = 0), and the dashed ones
at v = 0.5 (topological phase, Q. = ¢/2). In both cases, the
bands are doubly degenerate. The Fermi energy (dashed line)
has been placed at midgap.

respectively in Fig. 8(a).

The model always has inversion and time-reversal sym-
metry, and in the absence of ¢ it also has M, and M,
mirror and Cy rotational symmetries. (Strictly speaking,
the spatial symmetry operators only return the system
to itself after a sign-flip gauge change, but this does not
affect the symmetry arguments.) The BBH model was
introduced largely for the purpose of investigating the
consequences of symmetry for the bare model (§ = 0).
The BBH and subsequent papers have shown that the
presence of M, and M, symmetries, or C)y symmetry,
constrains the corner charge of a rectangular flake to
be a multiple of e/4 quite generally, or of ¢/2 in some
cases,5812:13.34 gtimulating interest in the theory of
higher-order topological phases.® We can understand this
in the context of our Eq. (14) by noting that P} = =Pt
and 9., = 0 in a Cy-respecting gauge, leaving only the
Q™ contribution of Eq. (28). For a general rectangular-
lattice system, this must be either zero or a multiple of
e/4 (mod e), depending on whether any fractional ionic
charges were left over in the corner tile after the bulk
and edge tiling. (In the context of the BBH model, Cy
symmetry implies Q. = 0 or e/2.)

Here, instead, we are more interested in the case that
spatial symmetries other than inversion are not present,
so that the corner charge is not quantized. Returning
to the BBH model, at § = 0 the model has two gapped
phases, a trivial phase with Q. = 0 for |y/A| > 1 and a
topological phase with Q. = *e/2 for |y/A| < 1. The
bulk energy gap closes at the M point in the BZ at the
critical |y/A] = 1. In what follows a small ¢ is applied
to break the mirror and Cj symmetries. Note that we

FIG. 9. Visualization of the isolated tiles whose low-energy
eigenstates serve as trial functions for constructing Wan-
nier functions in ribbons of the Benalcazar-Bernevig-Hughes
model. The figures represent y-finite ribbons three unit cells
high, while those used in the actual calculations are 40 unit
cells high. (a) Tiles used for the trivial phase (red squares).
(b) Tiles used for the topological phase. The blue squares are
interior tiles. At the edges and corners, there are “left-over”
dimers and isolated atoms, respectively.

continue to refer to the resulting systems as being in the
“trivial” or “topological” phase, even though such a clas-
sification is no longer strictly well defined.

1. Trivial and topological phases

In our calculations we set A = 1.0, and choose v = 1.5
and v = 0.5 to put the system in the trivial and topo-
logical phases, respectively. The resulting energy dis-
persions, plotted in Fig. 8(b), consist of two doubly-
degenerate bands separated by finite gaps. To fix the
sign of the corner charge in the topological phase, BBH
weakly broke the quantizing symmetries M, M, and Cy
while preserving inversion symmetry by adding a nonzero
§ term to the Hamiltonian.*® When § is small, Q. de-
viates slightly from the quantized value. The results
reported below are obtained using § = 0.001 for both
phases. Since the model has two occupied bands, we
know from our previous example that the HW method
cannot be trusted to produce consistent gauges for the
two ribbons, so we focus here on the projection approach
from the outset.

In view of the qualitative difference between the triv-
ial and topological phases, we adopt a different choice of
bulk tile for each case. For the trivial phase we choose
the bulk tile to correspond to the unit cell centered on
the small red square in Fig. 9(a), with reference loca-
tions t; = ty = 0. The ionic interior quadrupole in

Eq. (24) is thus glo" = 0, with g2} in Eq. (25) left to



TABLE V. Bulk-like Wannier functions in the home unit cell
of the BBH model in the trivial phase. The Wannier func-
tions are constructed using the projection method, choosing
as trial orbitals |g1) and |g2) the lowest-energy eigenstates of
the isolated red-square tile in Fig. 9(a). |¢r;) is the basis
orbital located at site R + 7, given in reduced coordinates.

R+7  (frilwil)) (drslor) (dmrslwil)y)  (fmslge)
(& % 0.67899 0.70694 0 0
(-3, -3%) 0 0 0.67899 0.70694
(-%, &) —0.48037 —0.50012 0.48037 0.50012
( +,-%) —048037 —0.50012 —0.48037 —0.50012
(2, 1) -0.12012 0 —0.03317 0
(% %) -0.12012 0 0.03317 0
(-2,-4 0.03317 0 —0.12012 0
(-3,-%) 0.03317 0 0.12012 0
( 2,-9) 0.10844 0 0.06157 0
(—%, %) —0.10844 0 0.06157 0
CTE 0.06157 0 —0.10844 0
( &-2) 0.06157 0 0.10844 0
(%, %) —0.05019 0 —0.00333 0
(I, %) —0.05019 0 0.00333 0
(-3,-D 0.00333 0 —0.05019 0
(-Z,-%) —0.00333 0 —0.05019 0

be determined by the anisotropy of the Wannier charge
distribution. Since we assume the sample has been cut
as shown in Fig. 8(a), there will be no left-over charges
in the top-right corner tile, i.e., Q™% = 0.

By contrast, for the topological phase, the WFs are
chosen to be associated with a large blue square in
Fig. 9(b), e.g., the one centered at (1/2,1/2). A choice
of tile involving these WF's together with ions centered
around (0,0) would generate a bulk dipole, which our ap-
proach requires us to avoid. Instead, we choose the bulk
tile as the unit cell centered on the large blue square in
Fig. 9(b), with reference positions t; = to = (1/2,1/2) at
the center of this square.?® Again the symmetry is such
that ¢lo" = 0 in Eq. (24), and ¢g}, in Eq. (25) is left to be
determined. Note that there are now two left-over ionic
charges that need to be assigned to each top tile as shown
in Fig. 9(b), and similarly for the right edge tiles. Each
corner tile acquires one ionic charge of +¢/2, so QTR of
the corner tile will be —e/2 if there is an occupied WF
in that tile and +e/2 otherwise. From a minimal knowl-
edge of the model, we can anticipate that a WF will be
present in the top-right tile if and only if 6 < 0.

To obtain gauge-consistent values for P, 735”, and
Q;y via projection, we begin by considering a y-finite
ribbon 40 unit cells high, with simple periodic boundary
conditions along x. The trial functions are chosen as the
low-energy eigenstates of the isolated tiles obtained by
removing the weaker of the two hoppings. For the trivial
phase, we take as trial functions the two lowest-energy
eigenstates of the isolated small red square in Fig. 9,

15

TABLE VI. Same as Table V, but for the topological phase
of the BBH model. The trial orbitals |g1) and |g2) are now
chosen as the lowest-energy eigenstates of the isolated blue-
square tile in Fig. 9(b).

R+ (¢rilwd)) (mjlgr) (dmslwd),)  (prjlge)
(& @) 0.69081 0.70686 0 0
(2, 2 0 0 0.69081 0.70686
(5, &) —0.48885 —0.50018 0.48885 0.50018
(& 35) —048885 —0.50018 —0.48885 —0.50018
(-3, &) —0.09152 0 —0.02753 0
( 1,-%) —0.09152 0 0.02753 0
(% % 0.02753 0 —0.09152 0
(3 0 0.02753 0 0.09152 0
( 2,—-%) —0.08424 0 0.04535 0
(-1, %) 0.08424 0 0.04535 0
(& D 0.04535 0 0.08424 0
(I, % 0.04535 0 —0.08424 0
(=5, &) —0.04049 0 0.00160 0
( 3, —2) —0.04049 0 —0.00160 0
( 4, 2) —0.00160 0 —0.04049 0
(2, 0.00160 0 —0.04049 0

replicated 40 times to cover the entire ribbon. For the
topological phase the WF' centers shift to the large blue
squares,”?10 so we take their isolated eigenstates as our
projection functions, replicated 39 times. We also we
include two edge tiles, one at the top and one at the bot-
tom of the ribbon, each consisting of a single dimer with
its single low-energy eigenstate. Taken together, these
states comprise our trial functions for the ribbon in the
topological phase. We do the same for z-finite ribbons,
and we confirm that within each phase, the deep interior
WFs are identical for xz- and y-finite ribbons. The site
amplitudes of the resulting WFs are given in Table V
for the trivial phase, and in Table VI for the topological
phase, together with the trial functions for comparison.

From the consistent sets of WFs obtained for the
two ribbons, we calculate edge polarizations and interior
quadrupoles in the usual manner. To accommodate the
left-over dimer WF's in the outermost layers in the topo-
logical phase, the edge polarizations are evaluated from
edge tiles containing an odd number of WFs, while in
the trivial phase that number is even. The values of P.L,
PyR, and Qiy are listed in Table VII. These are all very
small, of order 107° ¢ and 10~* ¢ in the trivial and topo-
logical phases respectively, as a consequence of the small
5. The fourth contribution QT® vanishes in the triv-
ial phase and is /2 in the topological phase. Summing
all four contributions, we find excellent agreement with
the directly calculated macroscopic corner charge in both
phases. Thus, in both cases, the small deviation from the
quantized Q. value caused by the staggered on-site po-
tential is precisely reproduced by the ribbon calculations.



TABLE VII. Individual contributions and total predicted
macroscopic corner charge Q. in Eq. (14), compared with
a direct calculation, for the trivial and topological phases of
the BBH model as depicted in Fig. 8(b). In both cases, the
symmetries that quantize the corner charge are weakly broken
by a staggered on-site potential (see main text). The values
of PT, ’ng‘ , and Qiy are obtained from ribbon calculations,
while Q™" is inferred mod e from the tiling procedure. The
last line reports the bare corner charge computed by summing
over the top-right quadrant.

Trivial Topological

P 0.854 x 107° —44.077 x 107°
Py 0.854 x 10~° —44.077 x 107°
Qr, 4.517 x 107° 18.412 x 107°
Q™ 0 0.5

Q. (predicted) 6.225 x 107° 0.5 —69.743 x 107°
Q. (direct) 6.225 x 107° 0.5 —69.743 x 107°
Qbare 1.602 x 107° 0.5 —84.817 x 1073

2. Corner charge pumping cycle

In this section, we carry out calculations of the inte-
rior quadrupole and edge polarizations, and compare the
predicted corner charge with the directly calculated one,
for the same adiabatic cycle

O<t<m

59
T<t<2w (59)

_J (cos(t),sin(t),0)
(0, A,7) {(cos(t% 0, [sin(¢)|)

considered previously by BBH.*® This cycle is somewhat
artificial, in that one or the other of the hoppings v or A
is always zero. However, to make contact with previous
literature, we apply our method to the same system here.

At t = 0 the system starts in a state in which the sites
are completely decoupled, with only black sites in Fig. 9
occupied as a result of the positive . In the interval
0 <t <, aset of positive A hoppings are first turned on
and then turned off on the edges of the large blue squares
in Fig. 9. In this interval, the system takes the form of a
molecular crystal with “molecules” centered on the large
blue squares. At ¢t = w/2 where § vanishes, the symmetry
suffices to define the topological index, and the system is
in the nontrivial phase. Once ¢ passes 7/2 the sign of J is
reversed, so that at ¢ = m we again reach a state of com-
pletely decoupled sites, but now with only the open-circle
sites occupied. The second half of the loop is similar, ex-
cept that now the v hoppings are progressively turned on
and off, so that the system is molecular once more, but
centered on the small red squares. The topology is again
defined at ¢ = 37/2, now being trivial, and the system
returns to its starting point at t = 2.

We use two different sets of trial functions for the Wan-
nier projection during the first and second halves of the
cycle. For t € [0,7] we adopt the trial functions of the
topological state, while for ¢ € [r, 27] we choose those of
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FIG. 10. Evolution of the corner charge Q. (in units of e)
during the adiabatic pumping cycle described by Eq. (59).
The ribbon calculations only predict ¢ modulo e, so three
branches are plotted vs. t as the blue dots. The evolution of
the actual corner charge of a finite flake is indicated by the
red circles.

the trivial state, as described in the previous subsection
and detailed in Tables VI and V respectively. We thus
have a gauge discontinuity at ¢t = 7 and again at t = 2.
For a mesh of ¢ values, we compute Q;y, P and PyR,
and compare the prediction of Eq. (14) with the directly
computed macroscopic corner charge of a large but fi-
nite flake. The results are presented in Fig. 10. Since
the corner charge is predicted only mod e, we plot sev-
eral branches corresponding to the periodicity of e along
the vertical axis as blue dots, and the directly calculated
corner charges are the red circles.

We confirm that Q. = e/2 and zero (mod e) at 7/2 and
37 /2 respectively, where the topology is sharply defined.
However, we find that most of the pumping of the corner
charge occurs in the first half of the cycle. That is, Q.
grows from e/18 to 17e/18 in this interval, for an increase
of 8¢/9, while the growth in the second half of the cycle
is only by the remaining amount e/9.

Note that the gauge discontinuities at t = 7 and 27
introduce no discontinuities in the predicted value of Q..
However, there are discontinuities in the individual values
of Qiy, P and Pf. In the first half of the cycle, Q;y
comes from the larger blue-square tile and changes from
2¢/9 to —2e/9, while in the second half Q] comes from
the twice-smaller red-square tile and grows from —e/18
to ¢/18. In the first half-cycle, P} = 775{ each increase
from —e/3 to e/3, while in the second half P, and P}t are
identically zero. Finally, our tiling is such that Q T} =
e/2 (mod e) in the first half-cycle, and zero (mod e) in the
second half. Adding the various contributions according
to Eq. (14), we find that the total Q. evolves as described
in the previous paragraph.

Without a knowledge of the population of WFs in the



corner tile, we can only make predictions “mod e” as
done above. In particular, we cannot predict precisely
when the corner charge will make the discontinuous jump
needed to allow it to return to its initial state at the
end of the pumping cycle. However, by inspecting the
Hamiltonian, we can anticipate that a WF will be present
in the top-right tile in the interval /2 < ¢ < m, when
the open circle at top right in Fig. 9(b) has negative
energy, but not otherwise. Making use of this additional
information about Q™®, we expect the discontinuity in
the macroscopic corner charge to occur at t = 7/2. We
then correctly predict not only the value mod e, but also
the correct branch choice, of Q). over the entire cycle.

A comparison of our Fig. 10 with Fig. 37 of Ref. [5],
which also compares predictions from ribbons with a
computed corner charge, shows important differences. In
their case, all the change in the corner charge occurs in
the first half-cycle, when it evolves from 0 to e, and there
is no change in the second half-cycle. While the com-
puted corner charges agree with the predictions in their
theory, as they do in ours, it is important to keep in
mind that the two approaches differ in crucial ways. (i)
In Ref. [5], BBH do not compute the macroscopic cor-
ner charge defined by Eq. (43); instead, they compute
the total charge of the upper-right quadrant, that is, the
bare corner charge of Eq. (45). In fact, since they did not
specify the positions of the orbitals, the macroscopic cor-
ner charge is ill-determined in their case. For the trivial
and topological cases discussed in Sec. VC1, we obtain
the values of Q%*™ presented in the last row of Table VII,
which are clearly very different from the macroscopic cor-
ner charges. (ii) Their edge polarizations p°I&® are not
defined in the same way as ours. For the specified cy-
cle, their p®d8¢ is defined in such a way that dp°d&®/dt
corresponds to the flow of current into a quadrant, while
our dP/dt corresponds to the polarization current as-
sociated with the changing dipole moments of the edge
tiles in the skin region. (iii) In our theory, in order to
correctly predict the macroscopic corner charge, we also
insist that bulk quadrupole and surface dipole contribu-
tions are computed in a common Wannier gauge. As a
result of these differences, each theory obtains internally
consistent results, although we argue than ours is more
physical in that it predicts a macroscopically observable
corner charge.

VI. SUMMARY AND CONCLUSIONS

In summary, we have considered the case of a 2D cen-
trosymmetric insulator in which the corner charges are
not quantized by additional symmetries. Decomposing
the large but finite flake into bulk, skin, and corner re-
gions, and introducing a tiling in this context, we have
shown that the corner charge can be written as a sum
of a quadrupole contribution associated with the bulk
tiles, and two dipole contributions associated with the
two edges that meet at the corner. Having introduced
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a Wannier representation to attach electron charges to
these tiles, we demonstrated that the bulk quadrupole
and two edge dipole contributions are not individually
gauge-invariant, although their sum is. As a consequence,
we argue that it is crucially important to adopt a com-
mon gauge for the computation of all of these quantities
in the two ribbon geometries.

To verify the correctness of our approach, we have
tested it via calculations on three different tight-binding
models. We adopted a projected trial-function approach
to establish the common gauge needed for the calculation.
We emphasize that the macroscopically observable cor-
ner charge has to be computed by an appropriate coarse-
graining procedure, and not simply by counting charges
in a quadrant of the sample. Having taken all these con-
straints into account, we have demonstrated that the cor-
ner charge can indeed be computed modulo e, to numeri-
cal accuracy, from calculations on two ribbon geometries
alone.

Several generalizations of our work remain to be devel-
oped. Our current formulation is trivially extended to the
case of broken time-reversal symmetry, and the presence
of spinor electrons entails no special difficulty. The case
of nonrectangular crystals and corner angles other than
90° can be treated following the methods of Ref. [14]. By
contrast, generalizations to topological systems, such as
2D Chern insulators or Z3-odd quantum spin Hall insula-
tors, do not look straightforward. In these cases, metallic
edge states are topologically protected, interfering with
any natural definition of edge polarization. Finally, while
we have focused here on the case of low-symmetry sys-
tems such that the corner charge is not quantized, further
exploration of the connections to the theory of higher-
order topological insulators in higher-symmetry systems
is desirable.

Generalizations to higher dimensions are easily antici-
pated. The line of intersection of two surface facets of a
3D crystal, generally known as a “hinge,” carries a linear
charge density that can be computed via an elementary
extension of the present methods, either by Wannierizing
in all three dimensions, or by Wannierizing in 2D at each
ky (wavevector along the hinge) and averaging over kj.
The prediction of the corner charge in 3D, while perhaps
more difficult in practice, should follow the same princi-
ples outlined here. That is, one would need to compute
the octupoles of interior bulk tiles far from any surfaces,
the quadrupoles of surface tiles far from any hinges, and
the dipoles of hinge tiles. While these will not be indi-
vidually gauge-invariant, their sum will be, allowing for
a prediction of the corner charge mod e. So, for exam-
ple, a calculation of three rectangular rod geometries, one
each extending along X, y, and z, should provide all the
needed information.

It is unfortunate that our work has uncovered seri-
ous difficulties in the HW approach. To review, this en-
tails computing the maximally localized Wannier centers
along y as a function of k, for y-finite ribbons, and vice
versa for xz-finite ribbons. These are trivial constructions,



as only simple matrix diagonalizations of the position op-
erator in the ribbon-normal direction are needed. How-
ever, we showed that except in the special case of sin-
gle occupied bands in systems with inversion and time-
reversal symmetry, this leads to inconsistent gauges be-
tween the two ribbon calculations. Given its simplicity,
it would be desirable to find a HW-based approach that
could avoid this gauge-inconsistency problem, thus obvi-
ating the need for trial-function projection. One possi-
bility would be to develop a way of computing ex-post-
facto corrections based on the differences between the
bulk Wannier functions in the two gauges. Equations (36-
38) essentially provide the needed corrections, but only
for the case that the two gauges differ infinitesimally. A
generalization to a finite gauge difference would thus be
very desirable. Another possibility may be to work with
an z-finite and a y-finite ribbon both of which are Wan-
nierized first in the same direction, say along x. For the
z-finite ribbon this is the usual HW construction, while
for the y-finite ribbon a multiband 1D maximal localiza-
tion procedure needs to be carried out in k. -space. Such
a construction has been used in some previous work,*?
but it is not immediately obvious how to make use of it
in the present context.

We end with a discussion of connections to the the-
ory of orbital magnetization, which we already briefly in-
voked to argue that surface polarization is not a physical
observable. We argued that if it were, its time deriva-
tive ought to correspond to a physical flow of current at
the edge of the 2D sample. However, for a time-reversal
broken system with a nonzero orbital magnetization, a
steady current circulates around the edges of the sample,
which is inconsistent with a uniquely defined edge polar-
ization. By contrast, it is clear that the edge current is
a physical observable; it can be evaluated as an expecta-
tion value of a Hermitian operator in the usual way, and
is fully gauge-invariant.

There is a strong formal similarity between the the-
ory presented here and that developed by Thonhauser et
al.3% to derive the modern-theory expression for orbital
magnetization using the Wannier representation. In fact,
that work made use of an identical decomposition of the
Wannier functions of a large but finite flake into those
associated with interior and skin regions, and identified
two contributions to the orbital magnetization. One, de-
noted as the “local circulation,” was identified with the
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internal circulation of charge in a deep-interior WF. The
second, labeled “itinerant circulation,” arises from edge
currents defined as the expectation value of the current
operator traced over WFs in the skin region. The cur-
rent of this type on the right-hand edge, labeled as I, in
Ref. [36] and denoted as I}* henceforth, is just the time

derivative of the edge polarization PyR defined here. In-

deed the expression for I)¥ in Eq. (9) of Ref. [36] takes the
form of a sum of contributions from hoppings that cross
the boundary between the interior and skin regions, just
as our expression in Eq. (38) for the change in 735 under
a gauge change depends on lattice vectors R’ crossing
that same boundary.

This is no accident. Since we are in the ground
state, the unitary time-evolution operator e~ “#*/" does
not change the occupied subspace, but it does modify
the gauge by multiplying each energy eigenstate by a
phase factor e~*#*/"_ An infinitesimal time step t cor-
responds to an infinitesimal unitary transformation in
which the € for the bond connecting |[Rn) to |R —R’,m)
in Fig. 2 is just —i(dt/h)(R+ R/, m|H|Rn), correspond-
ing to Eq. (11) in Ref. [36]. In other words, time evolution
within the occupied subspace generates a gauge evolu-
tion, and the changing gauge drives a displacement of
WF centers in the skin region that corresponds precisely
to the itinerant edge current IyR. The (counterclockwise)
itinerant-circulation contribution to the orbital magneti-
zation is given by the average of I;‘ on the right edge
and —IF on the top edge, while instead the difference
between I;¥ and —I.1 (that is, I;¥ + I.T) corresponds to
a skin contribution to the time rate of change of the top-
right corner charge. The latter is in fact independent of
time, so this must be exactly canceled by a contribution
from the time dependence of the interior-tile Wannier
quadrupole, which is more closely related to the local
circulation in the orbital magnetization theory.

These relationships indicate a deep formal connection
between the theory of orbital magnetization and that of
edge polarizations and corner charges presented here.
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