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Among the phases of SiO2 are α- and β-cristobalite, which have a long and somewhat controversial
history of proposed structural assignments and phase-transition mechanisms. Recently, Zhang and
Scott found new indications that the higher-temperature β phase has space group I 4̄2d and, by
assuming a group-subgroup relationship between phases, they argued that the lower-temperature α
phase should have lower symmetry than that of the widely-accepted P41212 space group. With this
motivation, we use first-principles calculations to investigate the energy, structure, and local stability
of P41212 and I 4̄2d structures. We also compute the frequencies of the zone-center phonon modes
in both structures, as well as certain zone-boundary modes in the I 4̄2d structure, and compare
with experiment. We then argue that the various P41212 and I 4̄2d enantiomorphs can be grouped
into three clusters, each of which is identified with a three-dimensional manifold of structures of
P212121 symmetry in which the P41212 and I 4̄2d appear as higher-symmetry special cases. We
find that there are relatively high energy barriers between manifolds, but low barriers within a
manifold. Exploring the energy landscape within one of these manifolds, we find a minimal-energy
path connecting P41212 and I 4̄2d structures with a surprisingly low barrier of ∼5meV per formula
unit. Possible implications for the phase-transition mechanism are discussed.

PACS numbers: 61.66.Fn, 63.20.dk, 64.60.Ej

I. INTRODUCTION

The fact that SiO2 can exist in numerous crystalline
and amorphous forms, and its status as one of the most
prevalent compounds on earth, has stimulated a long his-
tory of experimental and theoretical investigation. Here
we focus on the α (“low”) and β (“high”) cristobalite
phases, which are stable near the melting temperature
and are metastable at room temperature.

The structure of the higher-temperature β phase has
a history of controversy. Early indications of a cubic
structure with 180◦ bond angles (space group Fd3̄m)1

were challenged by others2,3 who hypothesized that the
true β-phase structure has lower symmetry and that
the apparent cubic structure arises from averaging over
spatial domains or dynamical fluctuations. In partic-
ular, Wright and Leadbetter3 argued for a tetragonal
structure belonging to space group I 4̄2d (D12

2d). While
some subsequent work has provided support for this
identification,4–6 other authors maintain that it is better
to describe the β phase as a dynamically disordered one
having overall Fd3̄m symmetry but with a large popula-
tion of rigid-unit-mode (RUM) fluctuations.7,8 To some
degree, the argument may be semantic; if the fluctua-
tions have strong short-range correlations in space and
time, it is difficult to distinguish this picture from one of
dynamic domains of a lower-symmetry structure.9 Thus,
for example, either picture may be able to explain the
fact that there are two more first-order lines in the Ra-
man and infrared spectra than would be expected from
Fd3̄m symmetry,6 and the question of which description
is “correct” might depend on the time and length scales
of the experimental probes in question.

In contrast, the assignment of the α-cristobalite phase
to the tetragonal P41212 (D4

4) space group10 has un-

til recently been noncontroversial. However, based on
a reexamination of Raman and infrared vibrational spec-
troscopy, Zhang and Scott6 have recently raised new
questions about the identity of the α phase. By using
Raman spectroscopy to study small single crystals of β-
cristobalite, these authors argued that the β structure
must be D2d, not cubic, and assuming a group-subgroup
relationship for the β-to-α transition, concluded that the
α phase should have some lower symmetry such as D2 in-
stead of D4. The apparent D4 symmetry of α-cristobalite
could result from spatial or dynamic averaging over D2

domains, in analogy to what had been proposed for the
β phase. To support their assumption that a group-
subgroup relationship should hold, Zhang and Scott also
pointed to the temperature dependence of the optical
phonon frequencies near the phase transition as being
inconsistent with a reconstructive phase transition11 and
as suggesting a nearly second-order behavior, although
arguing in the opposite direction are the facts that the
latent heat and volume change at the transition are quite
substantial.12

In their paper, Zhang and Scott6 reexamined ear-
lier Raman and infrared spectroscopic measurements not
only on the α- and β-cristobalite SiO2,

13 but also on α
and β AlPO4 (Ref. 14) and α BPO4 (Ref. 15) cristo-
balites. Note that the replacement of Si atoms by Al or
(B) and P atoms immediately reduces the symmetry ac-
cording to P41212 (D4

4) → C2221 (D5
2) for the α phase16

and I 4̄2d (D12
2d) → I 4̄ (S2

4) for the β phase. Also of pos-
sible relevance is the pressure-induced phase transition
from α-SiO2 to a high-pressure monoclinic cristobalite
phase.17 The relationship of these other cristobalites to
the α and β phases of SiO2 is an interesting avenue for fu-
ture exploration, but falls outside the scope of the present
work.

First-principles calculations of the structural and lat-
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tice dynamical properties of SiO2 have a long and produc-
tive history.5,18–31 While quite a few of these works specif-
ically address the α-cristobalite structure,18–20,24,25,27,31

questions about its stability and about possible pathways
from the α to the β phase have not been fully explored.

In the present work, we have carried out first-principles
calculations for candidate α and β cristobalite structures
in the framework of density-functional theory (DFT) in
order to check the stability of both phases and to ex-
plore the energy landscape connecting them. We have
also calculated phonon frequencies and infrared activities
for both α and β phases, and explored how the phonon
modes in the different phases are related to each other
and to those of the high-symmetry cubic phase. While
our calculations are effectively zero-temperature ones, we
hope that the information obtained from them can even-
tually be built into a realistic statistical-mechanical the-
ory that properly takes the RUM fluctuations into ac-
count in its description of the α and β phases at experi-
mentally relevant temperatures.

The manuscript is organized as follows. In Sec. II we
give a brief review of α and β cristobalite structures and
describe the methods used in the calculations. Then,
in Sec. III, we present the results of our calculations of
structural and lattice vibrational properties of the two
phases and of the energy landscape connecting them. We
discuss those results in Sec. IV. Finally, we summarize
the work in Section V.

II. PRELIMINARIES

A. Cristobalite structures

In order to describe the structures of the SiO2 α and
β cristobalite phases, it is easiest to start by considering
the “ideal cristobalite” structure, which is constructed
by placing Si atoms in a diamond structure with oxy-
gen atoms located midway between each pair of nearest-
neighbor Si atoms. This structure has the space group
Fd3̄m (O7

h) and has two formula units per primitive unit
cell. Each Si atom with its four surrounding O atoms
forms a tetrahedron, so the whole structure can be vi-
sualized as a network of tetrahedra connected at their
apices.

The generally accepted structure of α-cristobalite is
arrived at by starting from the ideal structure and mak-
ing nearly rigid rotations of the tetrahedra about [100]
and [010] axes (in the original diamond cubic frame),
leading to a tetragonal structure with its axis along ẑ.
This is illustrated in Fig. 1(a), but in the conventional
tetragonal frame, related to the original cubic frame by
a 45◦ rotation about ẑ. The tetrahedral rotations are
also accompanied by small strains and tetrahedral trans-
lations needed to keep the apices coincident, as would be
expected from enforcement of the rigid-unit constraints.
The space group of the structure is P41212 (D4

4), and
since the four rotations shown in Fig. 1(a) are all differ-

b

bb

b

(b)(a)

FIG. 1: (Color online) Projection on x-y plane of the (a)

α̃ and (b) β̃ structures, proposed as candidates for α and β
cristobalite phases respectively. Darker shading is used to
represent more distant tetrahedra so that the spiral structure
of the connected tetrahedrons becomes evident; double ver-
tical lines indicate that the adjoining tetrahedra are actually
disconnected because they are separated in the z-direction.

ent, the number of formula units per primitive unit cell
is now increased to four.

The structure of β-cristobalite proposed by Wright and
Leadbetter in Ref. [3] can also be constructed from the
ideal structure, but this time by rotating all the tetra-
hedra around the ẑ axis, yielding the structure shown in
1(b). The space group is I 4̄2d (D12

2d), and the number
of formula units per primitive unit cell remains two as
in the ideal structure (although it can alternatively be
described, as in Fig. 1(b), by a doubled conventional cell
containing four formula units). Again, the structure is
highly consistent with the rigid-unit constraints.

Because we do not want to presuppose an identifica-
tion of a particular experimentally observed phase with a
particular crystal structure, we henceforth adopt a nota-
tion in which the phases are identified by labels “α” and
“β” without tilde’s, whereas the putative crystal struc-
tures shown in 1(a) and (b) will be referred to as “α̃”

and “β̃” structures, respectively. Our working hypothe-
sis is that the α and β phases have microscopic crystal
structures of type α̃ and β̃ respectively, but we adhere
to a distinction in the notation in order to discriminate
clearly between the specified structures used in our calcu-
lations and the hypothetical identification of these with
experimental phases.

B. Computational methods

The calculations were carried out using the ABINIT
implementation32 of density-functional theory (DFT)
with Perdew-Burke-Ernzerhof33 version of the gener-
alized gradient approximation (GGA) for electron ex-
change and correlation. All calculations were performed
on the four-formula-unit computational cell shown in
Fig. 1, even though the primitive cell is smaller in the
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FIG. 2: Ground state energy per formula unit (eV) vs. vol-

ume per formula unit (Å3) for α̃, β̃, and cubic cristobalite
structures of SiO2.

β̃ structure, and the Brillouin zone was sampled by a
4 × 4 × 4 Monkhorst-Pack grid.34 Structural proper-
ties were computed using projector augmented-wave35

potentials converted from ultrasoft pseudopotentials36

with a plane-wave cutoff of 22Ha unless otherwise
specified, while phonon frequencies, eigenvectors, and
Born charges were computed37 using norm-conserving
Trouiller-Martins pseudopotentials38 at an energy cutoff
of 50Ha (after repeating the structural relaxation using
these potentials). The acoustic sum rule was imposed on
the force constants, and charge neutrality was imposed
on the Born charges. Throughout the paper, the sym-
metry analysis associated with crystal space groups has
been carried out using the Bilbao package.39,40

III. RESULTS

A. Structural properties of α̃ and β̃ structures

We started our calculations by considering the ideal
cubic structure and relaxing its volume, obtaining
ac=7.444 Å for the lattice constant of its eight-formula-
unit cubic cell. Then, working in the frame of the four-
formula-unit tetragonal cell, we found the phonon fre-
quencies at the Γ point of its Brillouin zone, correspond-
ing to phonons at the Γ point and one X point [namely
(2π/ac)(001) or equivalently (2π/ac)(110) in the cubic
frame] of the primitive two-formula-unit fcc cell. For the
“ideal structure” of space group Fd3̄m, the symmetry
decomposition of these phonons into irreducible repre-
sentations is

Γ (ideal) = 1A2u ⊕ 1Eu ⊕ 2T1u ⊕ 1T2u ⊕ 1T2g, (1)

X (ideal) = 3X1 ⊕ 1X2 ⊕ 2X3 ⊕ 3X4. (2)

(The translational T1u mode has been omitted.) The Eu

mode and all X modes are doubly degenerate; the T1u,

TABLE I: Lattice constants (in Å) and Wyckoff structural

parameters for α̃ (P41212) and β̃ (I 4̄2d) cristobalite SiO2.

Present Previous
theory theorya Expt.b

α̃-cristobalite
a 5.0730 5.1190 4.9570
c 7.0852 7.1683 6.8903
Si(u) 0.3001 0.2869 0.3047
O(x) 0.2384 0.2439 0.2381
O(y) 0.1081 0.0777 0.1109
O(z) 0.1819 0.1657 0.1826

β̃-cristobalite
a 7.1050 7.226 7.131c

c 7.4061 7.331 7.131c

O(x) 0.1051 0.0896 0.079

aRef. [24].
bRefs. [3] and [10].
cExperiment sees average cubic structure.

T2u and T2g modes are triply degenerate; and A2u is
non-degenerate.

We found that the triply-degenerate T2u mode at Γ is
unstable with an imaginary frequency of i83 cm−1. All
other optical phonons have real frequencies, the lowest
being at 250 cm−1. Furthermore, one of the doubly-
degenerate (X4) modes is unstable with a frequency of
i53 cm−1. We thus conclude that the ideal cristobalite
structure is unstable with respect to these distortions.

Next we imposed distortions corresponding to these
unstable modes and did a full relaxation of the struc-
ture subject to the symmetry constraints of the resulting
space group. The unstable (i53 cm−1) mode at X leads to
the space group P41212 (or P43212) which corresponds
to α̃-cristobalite, while the (i83 cm−1) mode at Γ takes

us to the space group I 4̄2d of β̃-cristobalite. The en-
ergy of the relaxed ground state as a function of volume
per formula unit is shown for both cases in Fig. 2, with
the energy of the cubic phase also shown for reference.
The corresponding structural parameters at the energy
minimum are given in Table I.

From Fig. 2 it is clear that the α̃ and β̃ structures in-
deed have lower energy than the ideal cristobalite when
the volume becomes smaller than some critical volume
V0 ∼ 55 Å3. (Above this volume, the imposed distortions
disappear during relaxation and the structure returns to
the ideal one.) We find that both the α̃ and β̃ structures
have a quite similar dependence of energy on volume. Ac-
cording to our calculation, the relaxed β̃ structure has a
slightly lower energy than that of the α̃ structure (12 meV
per formula unit). This appears to be in conflict with
the experimental situation, since the α phase is exper-
imentally more stable at lower temperatures. However,
when we repeated our calculations using a local-density
approximation (LDA) exchange-correlation functional,41

the β̃ structure was found to be lower by 1 meV per
formula unit. We thus conclude that the small energy
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TABLE II: Infrared-active phonon modes at Γ in α̃-
cristobalite (P41212). (E modes are also Raman-active.) For
A2 modes, ωLO refers to a phonon with q̂ = ẑ, while for E
modes ωLO refers to q̂ lying in x-y plane.

Irrep ωTO (cm−1) Z̃λ ωLO (cm−1)
E 127 0.05 128
E 259 0.04 260
A2 285 0.20 293
E 357 0.18 360
E 440 0.74 507
A2 462 0.67 515
E 584 0.23 591
A2 751 0.52 764
E 752 0.02 752
A2 1050 1.52 1201
E 1170 0.17 1165
E 1048 1.55 1208

difference between the two nearly-degenerate structures
is a quantity that is too delicate to be reliably obtained
by our DFT calculations. A similar discrepancy between
the results from LDA and GGA functionals was found in
Ref. [24].

We also analyzed what happens to the bond lengths
and angles in the α̃ and β̃ structures as a function of vol-
ume. The details of this analysis are deferred to App. A.
Briefly, for V < V0, the O–Si–O bond angles and Si–O
bond lengths inside the tetrahedra are found to remain
almost constant, while the Si–O–Si bond angles change
by ∼35◦. The details are shown to be very close to the
predictions of a picture of tilting of perfectly rigid tetra-
hedra. The fact that the three phases are indistinguish-
able for V > V0 is also easily explained, since the tilts
of rigid tetrahedra can only decrease the volume of the
ideal structure. Thus, for V > V0 the tetrahedra cannot
remain rigid and the Si–O bond length must increase,
and only when V becomes smaller then some volume V0

will one of the RUMs condense in the structure in order
to maintain the preferred Si–O bond lengths.

B. Phonons

1. Phonons at Γ in α̃ cristobalite

We next repeated the calculation of the phonon fre-
quencies for the fully relaxed α̃ and β̃ cristobalite struc-
tures. We did this in order to compare with experimental
measurements, but also to check the stability of the struc-
tures and to investigate, at least at harmonic order, the
nature of the energy landscape around these structures.
An analysis extending beyond the harmonic approxima-
tion will be presented in Sec. III C 2.

TABLE III: Raman-only phonon modes at Γ in α̃-cristobalite
(P41212).

Irrep ω (cm−1) Irrep ω (cm−1) Irrep ω (cm−1)
B1 29 B1 358 A1 1046
B1 103 A1 378 B1 1049
A1 197 B2 410 B2 1109
B2 275 B1 745
A1 350 B2 750

The decomposition of the optical Γ phonons into irre-
ducible representations for the α̃ structure in space group
P41212 is

Γ (α̃) = 4A1 ⊕ 4A2 ⊕ 5B1 ⊕ 4B2 ⊕ 8E. (3)

(The translational A2 and E zero modes have been omit-
ted.) Only the E modes are doubly degenerate; all others
are non-degenerate.

Tables II and III present the phonon frequencies at the
Γ point for the fully relaxed α̃-cristobalite structure. All
phonon frequencies are positive, although some appear to
be rather low in frequency. For the infrared (IR) active
modes shown in Table II, the transverse mode frequen-
cies were computed initially, and their mode dynamical
charges were also computed using

Z̃
∗

λ,α =
∑

iβ

1√
Mi

ξi,λβZ∗
i,αβ (4)

where ξi,λβ is an eigenvector of the dynamical matrix,
Z∗

i,αβ is the Born atomic charge tensor, and Mi is the
mass of the i-th atom in amu. The norms of the mode-
charge vectors Z̃

∗

λ = [
∑

α(Z̃∗
λ,α)2]1/2 are also given in

the Table. The longitudinal dynamical matrix was then
constructed and diagonalized using standard methods,37

and the resulting LO mode frequencies are presented in
the last column of Table II. It can be seen that there
are wide variations in the mode dynamical charges, and
consequently, large variations in the LO–TO splittings.

2. Phonons at Γ and M in β̃-cristobalite

Similar calculations of phonon frequencies were also
carried out for the β̃ structure proposed by Wright and
Leadbetter3 for β-cristobalite. Since the primitive cell of
the β̃ structure contains only two formula units while the
α̃ structure contains four, it should be kept in mind that
the Γ point of the α̃ structure maps not only into the Γ
point of the β̃ structure, but also into a second point that
would be denoted as X = (2π/ac)(110) in the original fcc

frame, or (2π/a)(100) (where a ≃ ac/
√

2) in the rotated
frame of Fig. 1; we shall refer to this as the M point
in accordance with the conventional labeling of the bct
primitive cell in the latter frame. The decompositions of
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TABLE IV: Γ phonons in β̃-cristobalite (I 4̄2d). In italics we

show for each phonon in β̃-cristobalite a closest phonon in
α̃-cristobalite (P41212).

Phonon in β̃ structure Closest in α̃ structure

Irrep ω (cm−1) Z̃λ Irrep ω (cm−1)
Infrared and Raman
E 126 0.06 E 127

B2 425 0.79 A2 462

E 444 0.72 E 440

E 748 0.51 E 752

B2 1038 1.56 A2 1050

E 1047 1.52 E 1048

Raman only
A1 289 B1 29

B1 406 A1 350

B1 737 B1 745

Inactive
A2 357 B2 410

A2 1097 B2 1109

the Γ and M phonons into irreducible representations for
the β̃ structure in space group I 4̄2d are

Γ
(

β̃
)

= 1A1 ⊕ 2A2 ⊕ 2B1 ⊕ 2B2 ⊕ 4E, (5)

M
(

β̃
)

= 2M1M2 ⊕ 3M3M4 ⊕ 4M5. (6)

(Translational B2 and E zero modes have been omitted.)
All M-point modes and Γ-point E modes are doubly de-
generate, while other modes are non-degenerate.

In Tables IV and V we present the our results for
the Γ-point and M-point phonon modes, respectively, of
β̃-cristobalite. The frequencies given for the IR-active
modes at Γ are the transverse ones only. The tables
also show the correspondences between the Γ modes in
the α̃-cristobalite structure and the Γ and M modes in
the β̃-cristobalite structure, as determined by comparing
phonon eigenvectors.

TABLE V: M phonons in β̃-cristobalite (I 4̄2d). In italics we

show for each phonon in β̃-cristobalite a closest phonon in
α̃-cristobalite (P41212).

Phonon in β̃ structure Closest in α̃ structure
Irrep ω (cm−1) Irrep ω (cm−1) Irrep ω (cm−1)

M3M4 35 B1 103 A1 197

M5 281 E 259 E 357

M1M2 316 B2 275 A2 285

M3M4 336 B1 358 A1 378

M5 372 E 259 E 357

M5 586 E 584

M1M2 780 B2 750 A2 751

M3M4 1045 A1 1046 B1 1049

M5 1162 E 1170

TABLE VI: Relations between unstable phonons in “ideal
structure” and phonons in α̃ and β̃ structures.

Ideal α̃-cristobalite β̃-cristobalite
cm−1 cm−1 Irrep cm−1 Irrep

Γ i83 29 B1 289 A1

Γ i83 127 E 126 E
Γ i83 127 E 126 E
X i53 197 A1 35 M3M4

X i53 103 B1 35 M3M4

3. Relation to unstable phonons in the cubic phase

The triply degenerate Γ-point mode of the cubic struc-
ture having imaginary frequency i83 cm−1, which con-
densed to form the β̃ structure, now has positive frequen-
cies of 289 cm−1 for the non-degenerate A1 mode and
126 cm−1 for the E doublet in the β̃ structure. This same
triplet corresponds, in the α̃ structure, to the lowest-
frequency phonon of frequency 29 cm−1, which has sym-
metry B1, and to an E doublet at 127 cm−1 having al-
most the same frequency as in the β̃ structure. The
doubly-degenerate unstable model of the cubic structure
at i53 cm−1, which condensed to form the α̃ structure,
now appears in the α̃ structure at frequencies 197 cm−1

and 103 cm−1 with symmetries A1 and B1, respectively.
In the β̃ structure, on the other hand, the same doublet
appears as the lowest-frequency phonon in that structure,
namely the doublet at 35 cm−1 with symmetry M3M4.
These relations between the unstable phonons in the
“ideal structure” and the phonons in α̃ and β̃ structures
are shown in Table VI.

4. Comparison with experiment for α-cristobalite

In view of the recent questions that have been posed
about the identity of the α-cristobalite phase,6 we have
carried out a more detailed analysis of the phonons in
the α̃ structure. In particular, we have calculated the LO
frequencies of the Γ-point phonons in α̃-cristobalite as a
function of the angle at which the limit q̂ → 0 is taken.
It turns out that the labels A2 and E are not well-defined
at arbitrary q̂ because of mixing between modes of these
symmetries. Moreover, it can happen that if one starts
with an E mode at q̂ ‖ ẑ and follows the branch as q̂ is
rotated, one arrives at an A2 mode when q̂ lies in the x-
y plane, or vice versa. Experiments have typically been
done on powder samples, so that one should in principle
average the phonon spectrum over all possible directions
for q → 0. Moreover, some phonon modes with E sym-
metry have a very small LO-TO splitting, so they would
most likely appear in experiment as a single line.

For all these reasons, a direct comparison of experi-
mental data with our results as presented in Tables II and
III is problematic. Nevertheless, we attempt such a com-
parison in Table VII. Despite the difficulties, the agree-
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TABLE VII: Left: Computed mode frequencies and irreps for α-cristobalite, with direction of dynamical polarization in
parentheses for IR-active modes. The modes that are adiabatically connected as q̂ is rotated from x̂ to ẑ appear on the same
line. All modes other than A2 modes are Raman-active. Right: Tentative assignments to measured mode frequencies in powder
samples.

Present theory Experimental data

q̂ ‖ x̂ q̂ ‖ ẑ IRg Ramanh

cm−1 Irrep cm−1 Irrep Notes cm−1 cm−1 Irrepi Notes
1208 E (x) 1201 A2(z) a,e 1144 A2 c

1170 E (y) 1170 E (y) d 1196 1193 E d

1165 E (x) 1170 E (x) d

1109 B2 1109 B2 d 1188 B2 d

1050 A2(z) 1048 E (x) e

1048 E (y) 1048 E (y) 1100 − E c

1049 B1 1049 B1 d 1086 A1 or B1 d

1046 A1 1046 A1 d 1076 A1 or B1

751 A2(z) 764 A2(z) d 798
752 E (y) 752 E (y) b

752 E (x) 752 E (x) b

750 B2 750 B2 d 796 d

745 B1 745 B1 785 B1

591 E (x) 584 E (x) d

584 E (y) 584 E (y) d 625 − E d

507 E (x) 515 A2(z) a,e

462 A2(z) 440 E (x) e 495 A2 c

440 E (y) 440 E (y) 480 485? E c

410 B2 410 B2 d 426 A1 or B2 d

378 A1 378 A1 d

360 E (x) 357 E (x) d

357 E (y) 357 E (y) d 380 380 E d

358 B1 358 B1 d

350 A1 350 A1 368 A1 or B1

285 A2(z) 293 A2(z) d 300 A2 d

275 B2 275 B2 d 286 B2 d

260 E (x) 259 E (x) d

259 E (y) 259 E (y) d 276 275 E d

197 A1 197 A1 d,f 233 A1 d

128 E (x) 127 E (x) f

127 E (y) 127 E (y) f 147 − E
103 B1 103 B1 d,f 121 B1 d

29 B1 29 B1 f 50 B1

a Not pure LO at all q̂. b LO-TO splitting is negligible. c Part of structured peak. d Inactive in β phase. e In β̃ struc-
ture the A2 component also becomes Raman active. f Corresponds to RUM mode in ideal cristobalite. g Observation
from [13]. h Observation of 50 cm−1 mode is from [42], all others from [43]. i Empirical assigments from [13].

ment with experimental data is rather good, with a few
exceptions that will be discussed shortly. We generally
underestimate the experimental frequencies by ∼20 cm−1

for lower frequency phonons and by ∼35 cm−1 for higher
frequencies, but otherwise our results reproduce the ex-
perimental pattern of frequencies, and the irrep assign-
ments are also consistent with those obtained from em-
pirical models.13 Furthermore, the identification of the
modes that are not expected to be active in the β phase
(fourth and eighth columns of Table VII) because they
correspond to zone boundary modes in the β phase (see
Table V) or because they are inactive Γ-point modes
(see Table IV) agrees well with the results reported in
Ref. [13].

The first anomaly is related to the experimentally ob-

served IR mode with a frequency of 798 cm−1 in the α
phase that does not disappear upon transition to the β
phase. Finnie et al. [44] explained this by suggesting that
a two-phonon process in the β phase replaces the fun-
damental mode of the α phase. Our calculations iden-
tify two almost-degenerate IR modes that are close to
this frequency, an A2 mode at 751 cm−1 and an E mode
752 cm−1. In the α̃ structure both of these modes are
IR active, but the Born charge of the E mode is only
0.02 while that of A2 is 0.52, which means that the E
mode in the α̃ structure is almost invisible. In the β̃
structure, the A2 mode disappears since it is no longer
at Γ. On the other hand, the E mode remains at the
Γ point and its Born charge is increased to 0.51. These
results suggest a possible explanation for the “anomaly,”
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namely that there are two IR modes in the α phase; one
of them is much weaker than the other, but upon the
transition to the β phase, the stronger one disappears by
symmetry while the weaker one greatly increases its IR
activity. The reason why the 752 cm−1 E phonon in the α̃
structure acquires a larger Born charge upon converting
to the β̃ structure is that it gets some admixture of the
440 cm−1 E mode, which has a much larger Born charge
(0.74) than that of the 752 cm−1 mode (0.02).

The second anomaly is related to the 1076 cm−1 mode
that is still present upon the transition to the β phase in
the form of a fairly broad feature (see Fig. 1 in Ref. [43]),
whereas it would be expected to vanish by symmetry.
Swainson et al. [13] attributed this mode to a possible
higher-order process. We think that it could also be re-
lated to the fact that the 1050 cm−1 A2 mode that is
Raman inactive in the α̃-phase becomes Raman active in
β̃-phase.

We also predict several phonon modes that are not seen
experimentally, such as the Raman-active modes at 127,
358, 378, 584, 752 and 1048 cm−1. Since we have not
computed Raman matrix elements, it is possible that the
Raman intensities are small for these modes. We also
find one weak IR-active mode at 752 cm−1 that is not
seen in the experiments.

A very low-frequency phonon at 50 cm−1 has been re-
ported in α cristobalite.42,45,46 We believe this most likely
corresponds to the B1 phonon that we have calculated to
appear at 29 cm−1, corresponding closely to the RUM
mode that takes the ideal cubic cristobalite structure
into the β̃ structure. The same conclusion regarding
the lowest-frequency B1 phonon was reached in Ref. [13].
The minimal-energy path between α and β phases that
is related to this low-frequency phonon is discussed in
Sec. III C 2.

C. SiO2 cristobalite stability analysis

As shown in Sec. III B, all calculated optical phonons
in α̃ and β̃ cristobalite have ω2 > 0, indicating that the
relaxed structure is stable with respect to those modes.
In view of the suggestion in Ref. [6] that the α phase
might locally have D2 rather than D4 point-group sym-
metry, we checked carefully for instabilities leading from
the α̃ structure to D2 structures, but found none. The
possible subgroups of P41212 (D4

4) having D2 symme-
try (without reduced translational symmetry) are C2221

(D5
2) and P212121 (D4

2), and the phonon distortions lead-
ing to these symmetry-lowered structures are the ones of
B2 and B1 symmetry respectively. The lowest-frequency
mode of B2 symmetry is at 275 cm−1, so there is certainly
no sign of an instability there. On the other hand, the
lowest-frequency B1 phonon is nearly soft at 29 cm−1,
suggesting that the α̃ structure is nearly unstable to a
spontaneous transformation into the P212121 structure.
To check this possibility more carefully, we started from
the relaxed α̃ structure and followed the distortion cor-

responding to the 29 cm−1 B1 phonon, and confirmed
that the energy increases monotonically (no double-well
structure). Moreover, starting from one of these struc-
tures having a small amount of the 29 cm−1 mode frozen
in, a subsequent relaxation inside the resulting space
group P212121 lead to a recovery of the starting space
group P41212. We thus conclude, at least within our
zero-temperature first-principles calculations, that the α̃
structure is locally stable, i.e., does not spontaneously
lower its symmetry to D2.

Nevertheless, the presence of several modes of quite
low frequency in the α̃-cristobalite structure may be sug-
gestive of low-energy pathways leading from the α̃ to the
β̃ structure or between domains of the α̃ structure. For
example, we have shown above that the lowest-frequency
29 cm−1 mode in the α̃-cristobalite structure corresponds
to a phonon of the “ideal structure” that leads to the β̃
structure, and vice versa. This might suggest that there
is a relatively low energy barrier in the configuration
space that connects one structure to the other. Other
phonons from the unstable triplet and doublet in the
“ideal structure” have frequencies that are higher, but
still low enough to suggest that there is a low energy bar-
rier for creation of the domains. In order to clarify these
issues, we shall explore the energy landscape around the
α̃ and β̃ structures in more detail in Sec. III C 2. First,
however, we begin with a general discussion of RUMs in
the cristobalite phases in the next subsection.

1. Rigid unit mode analysis

Here we analyze the RUMs present in the high-
symmetry cubic structure,47 but constrained to maintain
the periodicity of the four-formula-unit (Z=4) cell of the
α̃-cristobalite structure (i.e., containing two unit cells of

the β̃-cristobalite structure). When these constraints are
imposed, we find that there are five linearly independent
RUM distortions as shown in Fig. 3. The first three of
these distortions, which we denote as β̃1, β̃2, and β̃3, con-
sist of tetrahedral rotations of alternating signs about a
single Cartesian axis, and carry the system into the I 4̄2d
symmetry of the β̃ phase. The last two, which we denote
as α̃1 and α̃′

1, consist of a pattern of rotations around
the [110] and [11̄0] axes in the frame of Fig. 1, together
with small translations of the tetrahedra needed to keep
them connected at their apices, and carry the system into
the P41212 (or, for α̃′

1, into the enantiomorphic P43212)
symmetry of the α̃-cristobalite structure. Not shown in
Fig. 1 are RUM rotations α̃2 and α̃′

2 associated with a
second X point, and α̃3 and α̃′

3 associated with a third
X point.

Within the context of an ideal rigid-unit geometry (in
which no additional relaxations are allowed), one can
make the following mathematical analysis. The freezing
in of the ideal β̃1 RUM leads to a β̃ structure oriented
as in Sec. III A, whereas the freezing in of the ideal α̃1

RUM leads to an α̃ structure as in that section. In the
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FIG. 3: (Color online) Five linearized RUMs in ideal cristobalite Z=4 structure.

ideal β̃ structure, all five of the modes shown in Fig. 3
remain as true RUMs – i.e., the tetrahedra can remain
undistorted to first order in the mode amplitudes. Thus,
all five modes are expected to have low frequencies in a
more realistic description. However, modes α̃2, α̃′

2, α̃3,

and α̃′
3 are no longer RUMs when a finite β̃1 RUM is

present.

In the α̃1 structure, only the α̃1, α̃′
1, and β̃1 distortions

remain as true RUMs. However, the β̃2 and β̃3 modes at
least share the same translational symmetry, and so may
be expected to have somewhat low frequencies. The re-
maining α̃2, α̃′

2, α̃3, and α̃′
3 modes are incompatible both

in the RUM sense and in their translational periodicity.48

Not surprisingly, when we impose the translational pe-
riodicity consistent with the five modes shown in Fig. 1,
we confirm that these five distortions correspond quite
closely to the five unstable phonon modes that we found
in the ideal structure. The unstable Γ modes correspond
to β̃1, β̃2 and β̃3, while the unstable X modes correspond
to α̃1 and α̃′

1. They also correspond closely to the low-

frequency phonons in the α̃ and β̃ structures as discussed
in Sec. III B 3.

Extending the mathematical analysis of the compati-
bility of RUMs, it can be shown that there is an entire
three-dimensional subspace of rigid-unit structures (i.e.,
with the tetrahedral rigidity condition satisfied exactly)
in which finite rotations of type (α1,α

′
1,β1) are simultane-

ously present, and having the space group P212121 that
is induced if any two of them are present. In a similar
way, there are two additional 3D manifolds (α2,α

′
2,β2)

and (α3,α
′
3,β3) corresponding to different choices of the

X point and thus having different Z=4 supercells. The
three subspaces meet only at a single point (the cubic
phase with all angles vanishing), and RUMs selected from
different 3D manifolds are always incompatible with each
other in the sense that the perfect tetrahedral rigidity
cannot be preserved when imposing both. This picture
has important consequences for our understanding of the
possible paths connecting domains of the α̃ and β̃ struc-
tures, as discussed below.

2. Energy landscape inside 3D manifolds

After we have explained the origin of the low-energy
phonons in the α̃ and β̃ structures by relating them to
RUM modes, we would now like to explore the energy
landscape around these structures. To do so, we begin by
finding a configuration space containing both structures.
Since there is no group-subgroup relation between the α̃
and β̃ structures, we seek a maximal common subgroup
of both structures. In the present case, this leads to the
space group P212121 (D4

2).

In the P212121 configuration space, the α̃ and β̃ struc-
tures represent two special points, and we know that the
energy has local minima at these points because all com-
puted phonon frequencies were found to be positive there.
But then we also expect that there must be at least one
saddle point connecting these points. To search for this
saddle point, we started from the midpoint between the
α̃ and β̃ structures in the 12-dimensional P212121 con-
figuration space (described by nine internal coordinates
and three cell parameters), and identified the unit vector
ê pointing between the two structures. We then applied
a simple saddle-point search strategy in which compo-
nent of the force vector parallel to ê was reversed in sign
before executing the steepest-descent update. This algo-
rithm can be expected to succeed if the saddle point is
not too far from the midpoint and if the principal axis
of the negative Hessian eigenvalue at the saddle point
is roughly parallel to ê. In the present case, it led to
a rapid convergence on the desired saddle point. Sur-
prisingly, we find that the saddle point has a very low
energy, only 5 meV per formula unit above that of the α̃
structure, or 17 meV above that of the β̃ structure.

The three points representing the α̃ and β̃ struc-
tures and the saddle point determine a plane in the 12-
dimensional configuration space. To confirm that the
path running through the saddle point encounters only
a single barrier, we have plotted the structural energy
in this plane (without relaxation of other coordinates) in
Fig. 4. We have somewhat arbitrarily carried out a lin-
ear transformation on the coordinates in such a way that
the α̃ and β̃ structures lie at (0, 0) and (1, 0) respectively,
while the saddle point lies at (0.5, 1), in Fig. 4. The re-
sults confirm the picture of a simple barrier of 5 meV
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FIG. 4: Energy in plane defined by the α̃ structure (filled

circle), β̃ structure (filled square), and saddle point (cross).
Coordinates are chosen such that these structures occur at
(0, 0), (1, 0), and (0.5, 1), respectively. The energy difference
separating contours is 3 meV per SiO2 formula unit.

encountered when going from the α̃ to the β̃ structure.

Note that a transformation that would lead from the
α̃ to the β̃ structure along a straight line in configura-
tion space would have an enormously higher barrier of
195 meV per formula unit. This is because the straight-
line path is a poor approximation to a RUM. If instead we
follow a curved minimum-energy path from α̃ through the
saddle to β̃ and compute the relaxed Si-O bond lengths
and O-Si-O bond angles along this path, we find that
these remain almost constant. This strongly suggests
that this minimum-energy path may be well approxi-
mated by some RUM-like distortion.

In the previous subsection, we pointed out that within
the framework of ideal rigid-unit rotations, there is an
entire three-dimensional subspace of structures for which
the tetrahedral rigidity conditions are satisfied exactly, in
which finite rotations of all three types are present. We
label an arbitrary configuration in this 3D manifold by
(α1,α

′
1,β1), where by convention the order of operations

is α̃1 followed by α̃′
1 and then β̃1. The space group at a

generic point in this 3D manifold is P212121, the same
one we have just been discussing. It thus seems likely
that the minimum-energy path in Fig. 4 may correspond
approximately to a path from the point (α1,0,0) to the
point (0,0,β1) and lying, at least approximately, in the
2D subspace (α1,0,β1).

To test this conjecture, we first created an ideal rigid-
unit structure for each pair of angles (α1, β1) on a two-
dimensional mesh. We then used our first-principles cal-
culations to relax each structure subject to the constraint
that these two angle variables should not change. Tech-
nically, we did this by carrying out the minimization of
the energy in the ten-dimensional subspace orthogonal
to the two-dimensional surface for each starting point
(α1, β1). We typically found that these relaxations were
small, confirming the approximate validity of the RUM
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FIG. 5: Energy as a function of rotation angles φα1
and φβ1

,

corresponding to rotations α̃1 and β̃1 shown in Fig. 3. The
origin corresponds to “ideal” cristobalite. Filled squares at
top and bottom denote β̃ minima, filled circles at left and
right denote α̃1 minima, and crosses denote saddle points, as
in Fig. 4. The energy difference separating contours is 3 meV
per SiO2 formula unit.

picture.

The energy surface determined in this way is plotted
as a function of rotation angles α1 and β1 in Fig. 5.
The minima corresponding to the α̃ structure are im-
mediately visible near the left and right sides of the
figure, while those corresponding to the slightly lower-
energy β̃ structure appear near the top and bottom. The
minimum-energy path appears to be roughly circular on
this plot, and four equivalent saddle points are appar-
ent at α1 ≃ ±19◦ and β1 ≃ ±13◦. These saddle points
are equivalent to the one identified in Fig. 4, with a bar-
rier height of 5 meV per formula unit relative to the α̃
structure. We thus confirm the presence of a very low-
energy barrier between these structures, and identify it
as approximating a certain path in the space of rigid-
unit rotations. A video animation showing the evolution
of the structure along this path is provided in the sup-
plementary material.49

It is important to note that, according to the simplified
model of Eq. (1) of Ref. [7], the energy would remain ex-
actly zero on the entire (α1, β1) surface of Fig. 5 since the
ideal rigid-unit structures satisfy the rigidity conditions
analytically. The RUM framework envisages extensions
to make the model more realistic; one way to do this is by
adding an energy term that depends on the relative tilts
of neighboring tetrahedra.50 We tried this by introduc-
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ing a simple double-well potential model that penalizes
the departure of the Si-O-Si bond angles from a preferred
bending angle. In this model the change of total energy
per formula unit is

∆E =
E0

N

∑

i

[

−2

(

π − φi

π − φ0

)2

+

(

π − φi

π − φ0

)4
]

, (7)

where the sum runs over all N Si-O-Si bond angles φi

in the unit cell. We found that we could obtain an opti-
mal fit51 to the results of our first-principles calculations
using parameters E0 = 83 meV per formula unit and
φ0 = 145◦. The energy landscape of the fitted model
looks very similar to the results plotted in Fig. 5. In par-
ticular, the overall circular aspects of the energy land-
scape and minimal-energy path in Fig. 5 are reproduced.
However, the model unfortunately assigns identical ener-
gies to the α̃1 and β̃1 structures, and moreover predicts a
path connecting them on which the energy remains com-
pletely flat. This happens because, for any given pair of
angles (α1,β1) on or near this path, one can find a small
α̃′

1 such that the rigid-unit structure (α1,α
′
1,β1) has all its

Si-O-Si bond angles exactly equal to φ0. Therefore our
simplified model of Eq. (7), or any other model that de-
pends solely on the Si-O-Si angles, predicts a zero-barrier
path between α̃1 and β̃1 structures. This behavior is rem-
iniscent of an early model of Nieuwenkamp52 for β cristo-
balite, in which the Si-O-Si bond was assumed to rotate
freely on an annulus lying in the plane that is equidistant
between Si atoms.

To further test the model of Eq. (7), we performed first-
principles calculations on a mesh of (unrelaxed) struc-
tures in the 2D space (α1,α

′
1,β1=0). The resulting energy

landscape is shown in Fig. 6. The barrier between α̃1 and
α̃′

1 structures is now about 35 meV, substantially higher

than for the path connecting α̃ and β̃ structures. When
we use the same fitting parameters obtained earlier, we
again get very good overall agreement; the energy land-
scape obtained from our model has the same diamond-
like appearance as in Fig. 6, and saddle points appear in
very similar locations. Moreover, the barrier of 41meV
predicted by the model is in quite good agreement with
the first-principles value of 35meV. However, in this case
the picture presented by Fig. 6 is somewhat misleading,
because it turns out that the entire minimum-energy path
lying in the β1=0 plane is unstable, and falls to lower
energy as β̃1 is turned on. Thus, the apparent saddle
points in Fig. 6 are actually stationary points with two

negative eigenvalues in the 3D (α1,α
′
1,β1) space. Within

the model of Eq. (7), in fact, the lowest-energy path con-
necting the α̃1 and α̃′

1 structures is actually completely

flat, being composed of a segment connecting α̃1 to β̃1

and then another connecting β̃1 to α̃′
1. This observation

agrees with our first-principles calculations, since if we
start from the purported saddle-point configuration and
do a structural relaxation subject to the constraint that
α1 = α′

1, the structure is found to converge to the β̃1

structure as expected.
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FIG. 6: Energy as a function of rotation angles φα1
and φα′

1
,

corresponding to rotations α̃1 and α̃′
1 shown in Fig. 3. The

origin corresponds to “ideal” cristobalite. The four minima
(filled circles) correspond to the α̃′

1 structure (top and bot-
tom) and to the α̃1 structure (left and right). The energy
difference separating contours is 3 meV per SiO2 formula unit.

3. Cell volume at minima and saddle point

Because we have found the unit-cell parameters to be
very sensitive to details of the calculation, we increased
the energy cutoff from 22Ha to 30Ha in order to obtain
an accurate description of the volume changes along the
minimum-energy path. We obtain a volume per formula
unit of 45.7 and 46.7 Å3 for the α̃ and β̃ local minima re-
spectively, so that the volume is about 2.2% larger for the
latter. This is in qualitative agreement with experiments,
which show that the β structure is about 5% larger53, and
implies that applied pressure would tend to favor the α̃
phase and raise the α-to-β transition temperature. At
the saddle point, we find that the volume per formula
unit is 46.8 Å3, which is just slightly larger than for ei-
ther of the parent-phase structures. This finding may be
of interest for future studies of the pressure-dependence
of the phase-transition mechanism.

4. Domain walls

The barriers discussed in Sec. III C 2 refer to transfor-
mation pathways in which the crystal remains periodic
and transforms homogeneously, and the energy barriers
are given per unit cell. It would also be of interest to con-
sider the energies of domain walls between various α̃ and
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β̃ structures. This is beyond the scope of the present in-
vestigation, but the results for homogeneous transforma-
tions may give some hints as to what could be expected.
For example, we speculate that domain walls connecting
α̃ and β̃ structures belonging to the same 3D rigid-unit
manifold will probably have a rather low energy per unit
area, while those connecting structures belonging to dif-
ferent 3D manifolds would be expected to have much
higher energies.

IV. DISCUSSION

In this section we give a brief overview of several pre-
viously proposed models of α and β cristobalite phases,
and discuss how the results of our calculations relate to
those models.

The RUM model of Ref. [7] describes the β phase as an
average cubic structure that has strong dynamical fluctu-
ations occurring simultaneously into RUMs in all allowed
regions of the Brillouin zone. A simplified version of this
picture would be one in which the tetrahedra are assumed
to be completely free to pivot around their apices, as in
Eq. (1) of Ref. [7]. In general, the simultaneous excita-
tion of more than one RUM will have an associated en-
ergy cost because the tetrahedra typically cannot remain
perfectly rigid while undergoing both kinds of distortion
simultaneously. However, as an exception, we have iden-
tified 3D rigid-unit manifolds within which the geomet-
rical constraints can simulatneously be satisfied. Within
the model of Eq. (1) of Ref. [7], or the split-atom model
of Ref. [54], the energy landscape within this special 3D
manifold would be completely flat, and one would expect
that freezing in of one RUM of type α̃1, α̃′

1 or β̃1 would
have no consequence on the energy profile of one of these
other RUM distortions.

However, once one goes beyond the simplest versions of
the model and includes terms that depend on the Si-O-Si
bond angles at the apices, our calculations indicate that
the RUM distortions of type α̃1, α̃′

1 and β̃1 become cou-
pled and have a rich energy landscape. As a step in this
direction, the more sophisticated split-atom model hav-
ing an additional energy term depending on Si-O-Si bond
angles50 should provide an improved description. How-
ever, we note that even this model, or any model based
solely on Si-O-Si bond angles, still has a nonphysical be-
havior in that it would necessarily predict zero-energy
barriers between the α̃1 and β̃1 structures, as discussed
at the end of Sec. III C 2. Nevertheless, we believe that
the split-atom and similar models can provide important
complementary information to ours, since they are not
restricted to periodic supercell structures as ours are.

Among the models of cristobalite phase transitions is
also the model of Hatch and Ghose.55 They argue that
the β phase is dynamically and spatially fluctuating be-
tween the twelve different possible α̃ domains having
P41212 space-group symmetry. The counting arises be-
cause there are three different X points; each exhibits a
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FIG. 7: Sketch of important states in one of the three-
dimensional rigid-unit subspaces discussed in the text. Local
energy minima associated with α̃ (D4) and β̃ (D2d) struc-
tures are indicated by filled circles and squares respectively.
Remainder of space, including saddle points (crosses), has D2

symmetry.

doublet of degenerate modes leading to enantiomorphic
α̃1 and α̃′

1 structures (see Fig. 3); and the tetrahedra
can rotate by ±φ. The model is based on symmetry
arguments and assumes that all of the barriers separat-
ing these twelve α̃ structures are small. However, our
work suggests that the barriers separating different types
of α̃ domains have very different barriers. Furthermore,
their model does not take into account that fact that the
β̃ structure is easily accessible with a very low barrier,
suggesting that fluctuations into the β̃ structure may be
more important than some of the other α̃ structures.

Finally, O’Keeffe and Hyde4 do discuss a path connect-
ing α̃ and β̃ structures, but it is of a different type than
those discussed above since it connects α̃ and β̃ struc-
tures belonging to different 3D rigid-unit manifolds. In
our notation, their path would connect α̃1 or α̃′

1 to β̃2

or β̃3, etc. Such a path would involve the simultaneous
application of RUM rotations that are incompatible with
each other, and as such would be expected to have a high
energy barrier.

To clarify our view of the cristobalite phase transitions,
we start by emphasizing once again the existence of three
distinct 3D rigid-unit manifolds, as described above at
the end of Sec. III C 1. To review, one of these is de-
scribed by rotation angles (α1,α

′
1,β1) giving rise to struc-

tures of space group P212121 whose translational period-
icity is that corresponding to the X point (2π/ac)(001)
or equivalently (2π/ac)(110). This manifold contains

the α̃1, α̃′
1, and β̃1 structures, and their partners with

reversed sense of rotation, as shown schematically in
Fig. 7. The second and third 3D subspaces are de-
scribed by rotations (α2,α

′
2,β2) and (α3,α

′
3,β3), with pe-

riodicities set by X points (2π/ac)(010) = (2π/ac)(101)
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and (2π/ac)(100) = (2π/ac)(011), respectively. We have
found that these three subspaces are essentially incom-
patible, in the sense that it is not possible to combine
rotations taken from any two of them into a combination
that preserves the rigid-unit constraints. This occurs in
part because these three 3D rigid-unit subspaces have in-
compatible translational symmetries, but also because of
incompatibilities in the patterns of rotations.

The structure of the space sketched in Fig. 7 is intended
to reflect a three-level hierarchy of energies and energy
barriers as suggested by our analysis. In the model of
Eq. (7), the energy is degenerate for all six of the struc-
tures shown in Fig. 7, as well as on the solid curves con-
necting them.49 According to our first-principles results,
this picture is modified so that the α̃ and β̃ structures are
local minima, with low-energy saddle points (∼5 meV)
between them (see Fig. 5). The low curvature of the en-
ergy surface along these curves is reflected in the presence
in Table VI of a very soft 29 cm−1 B1 mode starting from
the α̃ structure, and a 35 cm−1 M3M4 doublet starting
from the β̃ structure.56 While our calculations have the
α̃ structures at a slightly higher energy than the β̃ ones,
this is presumably reversed in the true physical system.

The next energy scale in the hierarchy is that asso-
ciated with the direct paths between α̃ structures in
the same 3D manifold, indicated by the dashed lines in
Fig. 7. As shown in Fig. 6, this energy is on the order
of ∼35meV, so that the true minimum-energy path be-
tween neighboring α̃ structures goes instead through (or

perhaps nearly through) the β̃ structures.
Finally, the highest energies are associated with the

barriers separating any of the structures in Fig. 7 from
any of the structures in the other two 3D subspaces.
These barriers are on the order of 80meV, the energy
needed to pass through the undistorted cubic phase.
While not enormously larger than the 35meV mentioned
above, this is high enough that we do not expect these
barriers to be especially relevant for the phase transitions
in this system.

We can now speculate on the nature of the phase tran-
sition between α and β cristobalite. We propose that
in the lower-temperature α phase, the system is locally
frozen onto one of the minima of type α̃ in one of the
3D manifolds, but with substantial fluctuations along
the low-energy paths leading to the two neighboring β̃
structures in the same manifold. Then, in the higher-
temperature β phase, we speculate that the system in-
stead shifts over and condenses locally onto one of these
β̃ structures, but with substantial fluctuations along the
low-energy paths leading to the four neighboring α̃ struc-
tures, all in the same 3D manifold. The fact that there
are four low-energy paths to fluctuate along, instead of
two, is consistent with the fact that the β phase (be-
ing the higher-temperature phase) has higher entropy. If

the system were truly to freeze onto a single β̃ struc-
ture, it would be globally tetragonal, with space group
I 4̄2d. However, it is also possible that the system forms
on some larger scale into spatiotemporal domains com-

posed of β̃ structures from all three of the 3D manifolds,
giving an overall average Fd3̄m structure in accord with
the picture espoused in Refs. [7,8].

Let us return for a moment to the recent work of Zhang
and Scott,6 who argued that their Raman studies of sin-
gle crystals of β-cristobalite were inconsistent with Oh

symmetry. Assuming D2d symmetry instead for the β
phase, these authors then noted that D4 is not a sub-
group of D2d, and thus that the existence of a group-
subgroup relation for the phase transition would rule out
the assignment of the α phase to the D4 α̃ structure. On
this basis, they suggested that a lower symmetry, such
as D2, should be considered for α-cristobalite. Our view,
instead, is that a group-subgroup relation does not have
to hold for the transition, since the transition is known
to be of first order, and thus assignments of D2d and
D4 for the α and β phases respectively are not inconsis-
tent. As pointed out in the Introduction, while certain
spectroscopic signatures of the transition are indicative
of a weakly first-order transition, the volume change and
latent heat at the transition are substantial. The transi-
tion may perhaps be described as a reconstructive transi-
tion in the sense of Tolédano and Dmitriev,11 although in
the present case the rearrangements of atoms can occur
very gently, because of the existence of very low-barrier
paths of D2 symmetry connecting the D4 (α̃) and D2d (β̃)
structures. The situation may be somewhat analogous
to the tetragonal–to-orthorhombic and orthorhombic-to-
rhombohedral transitions in ferroelectric perovskites such
as BaTiO3 and KNbO3, where the presence of low-barrier
paths of monoclinic symmetry is associated with the
weakly first-order nature of the transitions.57

Unfortunately our calculations are carried out at 0 K
with crystal periodicity imposed. It is therefore diffi-
cult to draw any firm conclusions about the nature of
the phase transitions between cristobalite phases, espe-
cially if fluctuations are as important as we think they
are, and much of what we have said above must remain
speculative. Nevertheless we hope that the results of our
calculations will be of use in developing improved models
that may allow for realistic finite-temperature modelling
of the phase transitions in this system, ultimately leading
to a resolution of the controversies that have surrounded
this system over the years.

V. SUMMARY

Based on first-principles calculations, we have per-
formed a detailed analysis of the α̃ (P41212) and β̃ (I 4̄2d)
structures of cristobalite SiO2. In particular, we have
confirmed that both structures are locally stable against
all possible distortions associated with Γ-point modes of
the four-formula-unit conventional cell. We have calcu-
lated phonon frequencies for the α̃ and β̃ structures, com-
pared these to the experimental values, and discussed
how the phonons in these two structures are related to
each other. We have also tried to resolve some experi-
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FIG. 8: Structural parameters of the α̃ structure vs. vol-
ume per formula unit. Top panel: c/a ratio. Bottom panel:
absolute values of deviations of internal parameters u(Si)
(squares), x(O) (triangles), y(O) (crosses), and z(O) (circles)
from ideal-cubic values. Symbols represent first-principles cal-
culations; lines are fits to an ideal rigid-unit geometry.

mental anomalies that were found in spectroscopic stud-
ies of the cristobalite phases. Finally, we have explored
the energy landscape connecting the α̃ and β̃ structures.
We have emphasized the existence of three distinct 3D
manifolds of structures, each of which contains both α̃
and β̃ structures that can be connected to each other
within the manifold by paths with a surprisingly small
barrier of 5 meV per formula unit, while paths connect-
ing different manifolds have a much higher barrier. We
have speculated on the possible consequences of these
findings for the understanding of α-β cristobalite phase
transition.
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APPENDIX A: COMPARISON WITH

RIGID-UNIT GEOMETRY

In a picture in which the rigid-unit constraints are per-
fectly enforced, it turns out that the structures of α̃ and
β̃ symmetry are completely determined by a single pa-
rameter, which can be taken to be the volume V per for-
mula unit relative to the corresponding value V0 in the
ideal cubic structure. (That is, V0 is the volume below
which rigid distortions start to appear, as explained in
Sec. III A.) In this Appendix, we check to see how closely
our structures, as optimized from the first-principles cal-
culations, match with this elementary model.
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FIG. 9: Structural parameters of the β̃ structure vs. volume
per formula unit. Top panel: c/a ratio. Bottom panel: x(O).
Symbols represent first-principles calculations; lines are fits
to an ideal rigid-unit geometry.

The solid curves in Figs. 8 and 9 show the mathemat-
ical predictions of this elementary model, obtained by
applying rotations of type α̃1 and β̃1 (see Fig. 3) in such
a way as to keep the tetrahedra perfectly rigid. (For
V > V0, the elementary model cannot be satisfied, and
the ideal cubic parameters are plotted instead.) The sym-
bols shown in Figs. 8 and 9 denote the results of our first-
principles calculations where, for each specified value of
V , the volume was treated as a constraint while all other
structural parameters were relaxed. The fit was opti-
mized by choosing a common V0 = 55.1 Å3 for both α̃
and β̃ structures. For reference, the first-principles equi-
librium volumes are 45.7 and 46.7 Å3 for the α̃ and β̃
structures, respectively.

We find that the agreement is extraordinarily good for
all of the internal parameters, but that there are some sig-
nificant discrepancies in the c/a ratios. At first sight this
may seem contradictory: why are the c/a ratios off by
many percent, while the Si-O bond lengths agree within
∼0.05%? The answer is connected with the presence of
volume-preserving tetragonal distortions of low energy
cost. In such a distortion, each tetrahedron is stretched
slightly along c and compressed in a (or vice versa), and

it happens that the tetrahedral angle of arccos(1/
√

3) is
precisely the one at which Si-O bond lengths are pre-
served to first order in the distortion amplitude. While
the O-Si-O bond angles do change at first order, this
may entail a smaller energy cost than for bond-length
changes. As expected from this analysis, we find that our
first-principles O-Si-O bond angles differ from the ideal
ones by ∼4%. In short, it appears that it is energetically
more important to preserve bond lengths than bond an-
gles, and that for geometrical reasons this translates into
an enhanced freedom for the c/a ratio to deviate from
the ideal rigid-unit geometry.
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