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Electric polarization in a Chern insulator
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We extend the Berry-phase concept of polarization to insulators having a non-zero value of the
Chern invariant. The generalization to such Chern insulators requires special care because of the
partial occupation of chiral edge states. We show how the integrated bulk current arising from
an adiabatic evolution can be related to a difference of bulk polarizations. We also show how the
surface charge can be related to the bulk polarization, but only with a knowledge of the wavevector
at which the occupancy of the edge state is discontinuous. We also present numerical calculations
on a model Hamiltonian to provide additional support for our analytic arguments.

PACS numbers: 77.22.Ej, 73.43.-f, 73.20.At

In 1988 Haldane pointed out that an insulating crystal
with broken time-reversal symmetry may exhibit a quan-
tized Hall conductance even in the absence of a macro-
scopic magnetic field [1]. We shall refer to such a ma-
terial as a “Chern insulator” (CI) because it necessarily
would have a non-zero Chern invariant associated with
its manifold of occupied Bloch states [2, 3]. While no
CI has yet been discovered experimentally, there appears
to be no reason why one could not exist, and theoretical
models that behave as CIs are not difficult to construct.
It seems plausible that the current blossoming of interest
in exotic non-collinear magnets and multiferroics could
yield an experimental example before long.

CIs occupy a middle ground between metals and or-
dinary insulators. Like metals, their conductivity tensor
σαβ is non-zero, their surfaces are metallic (as they are
topologically required to have chiral conductance chan-
nels or “edge states” at the Fermi energy), and it is
impossible to construct exponentially localized Wannier
functions (WFs) for them [4]. On the other hand, only
the off-diagonal (dissipationless) elements of σαβ can be
non-zero, the chiral edge states decay exponentially into
the bulk (so that the deep-bulk region has a well-defined
gap), the one-particle density matrix decays exponen-
tially in the interior [5], and the localization measure ΩI

introduced in Refs. [6, 7] is finite [5] as in other insu-
lators. Overall it appears natural to regard a CI as an
unusual species of insulator, but many aspects of its be-
havior remain open to investigation.

As is well known, the electric polarization P is not well-
defined in a metal. For an ordinary insulator, its defini-
tion alternatively in terms of Berry phases or WFs is by
now well established [8, 9, 10]. For a CI, the absence of a
Wannier representation removes the possibility of using it
to define the polarization, and we shall show below that
there is a fundamental difficulty with the Berry-phase
definition as well. In view of the presence of dissipa-
tionless currents and metallic edge states, one might be
tempted to conclude that P is not well-defined at all in a
CI. On the other hand, Souza et al. [11] have shown that
the localization measure ΩI is related to the fluctuations

of P, and the finiteness of this quantity [5] suggests that
the polarization might be well-defined after all.

The purpose of this Letter is to discuss whether, and
in what sense, a definition of electric polarization is pos-
sible in a CI. We demonstrate that the usual Berry-phase
definition does remain viable if it is interpreted with care
when connecting it to observables such as the internal
current that flows in response to an adiabatic change of
the crystal Hamiltonian, or to the surface charge at the
edge of a bounded sample.

For the remainder of this Letter we restrict ourselves
to the case of a two-dimensional crystalline insulator hav-
ing a single isolated occupied band. The generalization
to the case of a three-dimensional multiband insulator is
not difficult, but would complicate the presentation. We
also restrict ourselves to a single-particle Hamiltonian;
while this restriction is more difficult to remove, we note
that all the principal difficulties associated with under-
standing CIs occur already at the one-particle level. The
lattice vectors a1 and a2 are related to the reciprocal lat-
tice vectors b1 and b2 in the usual way (bi · aj = 2πδij)
and the cell area is S = |a1 × a2|.

The Berry-phase expression for the electric polariza-
tion can be written as

P[k0] =
e

(2π)2
Im

∫

[k0]

dk 〈uk|∇k|uk〉 (1)

where e is the charge quantum (e > 0), |uk〉 are the cell-
periodic Bloch functions, and [k0] indicates the parallelo-
gram reciprocal-space unit cell with origin at k0 (that is,
with vertices k0, k0+b1, k0+b1+b2, and k0+b2). In an
ordinary insulator one insists on a smooth and periodic
choice of gauge (relative phases of the |uk〉) in Eq. (1),
and P is well defined (modulo eR/S, where R is a lattice
vector [8]) independent of k0. However, in a CI such a
gauge choice is no longer possible. To see this, we de-
compose P[k0] = P1a1 + P2a2, k = k1b1 + k2b2, and
k0 = κ1b1 + κ2b2, and rewrite Eq. (1) as

P
[κ2]
1 =

−e
S

∫ κ2+1

κ2

dk2
θ1(k2)

2π
(2)
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where

θ1(k2) = −Im

∫ κ1+1

κ1

dk1〈uk1,k2
|∂k1

|uk1,k2
〉 . (3)

Eq. (3) is a Berry phase and is gauge independent mod-
ulo 2π (independent of κ1). This allows us to make an
arbitrary choice of branch for θ1(k2 = κ2) and to insist,

as part of the definition of P
[κ2]
1 , that θ1(k2) should re-

main continuous as k2 is increased from κ2 to κ2 + 1.
Since states at (k1, κ2) and (k1, κ2 + 1) are equivalent, it
follows that

θ1

∣

∣

∣

κ2+1

κ2

= −2πC (4)

where C is an integer. In fact C just defines the Chern
number, and the insulator is a CI if C 6= 0.

Using Eqs. (2-3) and similar equations for P2, we have
arrived at a definition P[k0] that is well-defined, modulo
eR/S as usual, even for a CI. However, as illustrated in
Fig. 1(a),

P[k0+∆k] = P[k0] −
eC

2π
ẑ × ∆k (5)

where ẑ is the unit vector along a1×a2. This dependence
on k0 clearly presents a problem for the interpretation of
Eq. (2) as a “physical” polarization in the case of a CI.

However, let us recall how the concept of polarization
is used. For a normal insulator at least [8], the change of
polarization during an adiabatic change of some internal
parameter of the system from time ti to tf is given by

∫ tf

ti

dtJ(t) = P
(f)
[k0]

− P
(i)
[k0]

(modulo eR/S) , (6)

where J(t) is the cell-averaged adiabatic current flowing
in the bulk. A related statement, connected with the re-
quirement that the charge pumped to the surface must
be consistent with Eq. (6), is that the charge on an insu-
lating surface normal to reciprocal vector b1 is [9]

σ = P · b̂1 (modulo e/a2) . (7)

In the remainder of this Letter, we demonstrate that
Eq. (6) remains correct for the case of a CI, provided that
the same k0 (i.e., the same reciprocal-space cell) is used
for P

(i) and P
(f) in Eq. (6). We also show that Eq. (7)

must be modified in a CI, and show how to do so. We
provide numerical tests as well as analytic arguments for
both claims.

We begin by giving two arguments for the correctness
of Eq. (6) in the CI case. First, it is straightforward
to see that the the contribution to J1(t) can be com-
puted independently for each k2 [9], with the problem in
(k1, t) space effectively corresponding to that of an or-
dinary one-dimensional crystal. Thus, the derivation of
Eq. (6) given in Ref. [8] goes through unchanged for the

∆k ∆k
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FIG. 1: (Color online) (a) Sketch of θ1(k2) in a Chern insu-
lator (C = +1). Solid black and dashed red frames indicate
reciprocal-cell origin chosen at κ2 and κ2 + ∆k respectively.
Dotted lines indicate corresponding averages, proportional to
P1. (b) Computed P1(α) for the modified Haldane model, in
units of −0.01e/S, for adiabatic (dashed lines) and thermal
(solid line and symbols) filling respectively. See text.

CI case. Second, we note that the expected result is ob-
tained for the special case that the parameter of interest
is a spatially uniform but time-dependent vector poten-
tial A(t). Since a slow turning on of A(t) causes state
uke

ik·r to evolve into uk+(e/~c)Ae
ik·r, it follows that

P
[A]
[k0]

= P
[A=0]
[k0] − e2C

hc
ẑ × A . (8)

But a time varying vector potential generates an electric
field E = (−1/c)dA/dt, so that

J =
Ce2

h
ẑ × E . (9)

The transverse conductivity σxy is thus quantized in units
of e2/h, expressing the fact that a CI is a realization of
the integer quantum Hall effect [1].

We further confirm the validity of Eq. (6) by numer-
ically testing our prediction on the Haldane model [1],
which behaves as a CI in a certain region of its parameter
space. This is a tight-binding model for spinless electrons
on a honeycomb lattice (see inset of Fig. 2) at half fill-
ing (one occupied band), with staggered site energies and
complex second-neighbor hoppings. Using the notation
of Ref. [1], we adopt parameters t1 = 1, t2 = 1/3, φ =
π/4, ∆ = 2/3 and the lattice vectors a1 = a0(

√
3x̂+ ŷ)/2

and a2 = a0ŷ (so that a1 = a2 = a0). Furthermore, we
modify the first-neighbor hopping t1 → t1(1 + α) on the
bonds parallel to a1 + a2 so as to break the threefold ro-
tational symmetry and allow an adiabatic current to flow
as α is varied. The compensating ionic charge is assumed
to sit on the site with lower site energy.

We consider an infinite strip of the Haldane model N1

cells wide and extending to ±∞ along y, as sketched in
the inset of Fig. 2. States ψnk2

(r) are labeled by k2,
which remains a good quantum number, and an addi-
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tional index n = 1, ..., 2N1. In the limit of large N1

P1 =
−e
N1S

∫ 1

0

dk2

∑

n∈N (k2)

〈ψnk2
|r1|ψnk2

〉 , (10)

where position vector r is decomposed as r = r1a1 +r2a2

and N (k2) is the set of occupied states to be discussed
shortly. We associate the integrated current that flows
along x̂ in the interior of the strip during an adiabatic
evolution from α = αi to α = αf by the corresponding
change in Eq. (10), since by continuity the charge must
arrive at the surfaces. We then compare this with the
change of P1 evaluated using a single bulk unit cell via
Eqs. (2-3) to validate the theory.

There is a subtlety, however. Neutrality implies that
N (k2) contains N1 states, but which ones? The problem
arises because a CI is topologically required to have chiral
metallic edge states. Our ribbon of CI therefore has one
band of edge states along its left (L) edge and one along
its right (R) edge (see inset of Fig. 2). For any given
α, let k×2 (α) be the value of k2 at which L-edge and R-
edge bands cross. A thermalized filling of the edge states
would correspond to the thick black curve for case αi in
Fig. 2, where the N1 lowest-energy states are occupied
at each k2 and ǫF = ǫ(k×2 ). Defining k∗2 to be the point
at which the occupation switches between L and R edge
states, we have k∗2 = k×2 for the thermalized case.

In general k×2 (α) varies with α. However, k∗2 cannot
change during an adiabatic evolution. Because we want
to “measure” the polarization by the charge that accu-
mulates at the surface, we specify that the adiabatic evo-
lution is fast compared to the tunneling time between
edge states but slow compared to all other processes, so
that electrons cannot scatter between edges. Thus if we
thermalize the system at αi and then adiabatically carry
the system from αi to αf , we arrive at the adiabatic filling
illustrated by the thick red curve for case αf in Fig. 2.

We thus expect that the change in polarization calcu-
lated from the right-hand side of Eq. (6) from the bulk
bandstructure using Eqs. (1-3) should match that given
by the change of Eq. (10) only if the adiabatic filling is
maintained. We have confirmed this numerically for our
modified Haldane model. The polarization as a function
of α calculated using Eq. (10) and using the right-hand
side of Eq. (6) are indicated in Fig. 1(b) with black and
blue dashed lines respectively [12]. Eqs. (2-3) were evalu-
ated on a 300×300 k-point mesh. Eq. (10) was calculated
using five values of N1 ∈ [25, 70] and then extrapolating
to infinity, while the k2 integral was discretized with 5000
k-points. While there is a vertical offset between these
curves that depends on the choice of k0 in Eq. (6), the
differences ∆P1 between different α are correct at the
level of 10−5. On the other hand, the results obtained
with the thermalized filling in Eq. (10), shown by the
solid line in Fig. 1(b), are drastically different. These
results confirm that the appropriate comparison is with
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FIG. 2: (Color online) Sketch of a band structure of a finite
ribbon of a Chern insulator. Solid regions indicate projected
bulk bands; thin solid lines are edge states. Black and red
correspond to α = αi and α = αf respectively; corresponding
values of k×

2 are indicated. Thick lines indicate filling of edge
states as dictated by k∗

2 , chosen to illustrate system thermal-
ized at αi and then carried adiabatically to αf . Inset: edge
states associated with L (green) and R (blue) surfaces.

the adiabatic filling, and provide numerical confirmation
that Eq. (6) is indeed satisfied even in a CI.

We now turn our attention to Eq. (7). A naive general-

ization to the CI case might be that σ = P[k0] · b̂1 (mod-
ulo e/a2), but this cannot be correct. First, the left-hand
side should be independent of k0, but the right-hand side
is not. Second, the usual proof for ordinary insulators of
the connection between surface charge and bulk polar-
ization assumes that the surface is insulating, with the
Fermi level lying in a gap common to both the bulk and
surface [9]. When chiral edge states are present, the sur-
faces cannot be insulating, so the usual conditions are
violated.

To show how Eq. (7) can be corrected for the case of
a CI, let us again consider our Haldane-model ribbon at
some fixed value of parameter α. Its surface charge σ
can be calculated from σ = P · b̂1 = (S/a2)P1 with P1

evaluated using Eq. (10), but its value will depend on the
the choice of the k∗2 at which the occupation of the edge
state has its discontinuity, so that

σ[k∗

2
] =

−e
N1a2

∫ 1

0

dk2

∑

n∈N

〈ψnk2
|r1|ψnk2

〉 , (11)

where N is the set of N1 occupied states at k2 given the
specified k∗2 (i.e., the choice whether the L or R edge state
is included in N flips as k2 passes through k∗2).

Since the surface charge theorem of Eq. (7) for ordi-
nary insulators was demonstrated via the Wannier repre-
sentation [9], we take the same approach here. However,
well-localized bulk WFs do not exist in a CI [4], so we fo-
cus instead on “hybrid Wannier functions” (HWFs) [13]
in which the Fourier transform from Bloch functions is
carried out in the r1 direction only. Thus k2 remains a
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good quantum number and the HWF

Wk2
(r1, r2) =

√

N1

∫ 1

0

dk1 Ψk1k2
(r1, r2) (12)

is well localized only in the a1 direction. Using these we
can represent the polarization

P
[κ2]
1 =

−e
S

∫ κ2+1

κ2

dk2 ρ
[κ2]
k2

(13)

in terms of the HWF center ρ
[κ2]
k2

= 〈Wk2
|r1|Wk2

〉. We
require that ρ be a continuous function of k2 ∈ [κ2, κ2+1]
so as to guarantee a result that is equivalent to Eqs. (1-3).

To make the connection between this expression and
Eq, (11), we construct Wannier-like functions along the
a1 direction also for the finite-width strip. Constructing
the N1 ×N1 matrix

R[k∗

2
]

mn,k2
= 〈ψmk2

|r1|ψnk2
〉 , (14)

where m,n ∈ N as specified by k∗2 . The N1 eigenvectors

of R[k∗

2
]

k2
correspond to states that are Bloch-like along r2

but localized along r1, and we refer to them as the HWFs
of the finite-width ribbon. The corresponding eigenvalue

̺
[k∗

2
]

jk2
locates the center of charge of the j-th ribbon HWF.

Using the basis-independence of the trace, Eq. (11) can
now be rewritten as

σ[k∗

2
] =

−e
N1a2

∫ 1

0

dk2

∑

j

̺
[k∗

2
]

jk2
. (15)

The similarity between Eqs. (13) and (15) suggests
that these can be connected. Since k2 is a good quan-
tum number, each k2 can be treated independently. For
each k2 we can compare the infinite (bulk) 1D system
described by Eq. (13) with the finite (ribbon) 1D sys-
tem described by Eq. (15). The essential observation is
that, in the limit of large N1, the HWF centers ̺jk2

in
the central part of the ribbon converge to the bulk ones
given by ρk2

modulo an integer [9]. This is also illus-
trated in Fig. (3), where both sets of HWF centers are
plotted as a function of k2 for a ribbon of width N1 = 6.
Furthermore, the fact that the occupation of edge states
switches between L and R edge at k∗2 is reflected in the
discontinuity of ribbon HWF centers ̺jk2

at k∗2 . On the
other hand, the bulk HWF centers ρk2

are chosen to be
continuous across k∗2 . We can account for this discrep-
ancy either by including a correction term proportional
to (k∗2 − κ2),

σ[k∗

2
] =

1

a2

[

SP
[κ2]
1 + eC(k∗2 − κ2)

]

(modulo e/a2) ,

(16)
or by realizing that by the virtue of Eq. (5) this is equiv-
alent to shifting the reciprocal space origin to k∗2 ,

σ[k∗

2
] =

S

a2
P

[k∗

2
]

1 (modulo e/a2) , (17)

k⋆2 k⋆2 + 1

6

4

2

0

κ2 κ2 + 1k2

ρ, ̺

FIG. 3: (Color online) Black dots show ribbon HWF centers

̺
[k∗

2
]

jk2
and red dots bulk HWF centers ρ

[κ2]
k2

and its periodic
images as a function of k2. Dashed frame corresponds to

choice of origin at discontinuity in ̺
[k∗

2
]

jk2
, k∗

2 .

as can be seen from the dashed frame in Fig. 3. Eq. (16)
or (17) is the appropriate generalization of the surface
charge theorem, Eq. (7), to the case of a CI, and should
be correct in large N1 limit for both thermalized and
adiabatic fillings as long as the appropriate k⋆

2 is used.

We have also tested the correctness of this formula us-
ing our numerical calculations on the modified Haldane
model. Recall that the solid curve in Fig. 1(b) represents
the surface charge as computed from Eq. (10) for the
thermalized case. Next, for each α, we locate k∗2 = k×2
using 1000 k-points on a ribbon width N1 = 70 and eval-
uate Eq. (17) using Eqs. (2-3) on a 250 × 250 k-point
mesh. The resulting values are plotted as blue dots in
Fig. 1(b). The agreement is clearly excellent.

In summary, we have generalized the Berry-phase con-
cept of polarization to the case of a Chern insulator.
The integrated current flow during adiabatic evolution
is given by Eq. (6), where the reciprocal-space cell must
be the same in both terms on the right-hand side. The
surface charge at an edge of a bounded sample is given by
Eq. (17), where k∗2 specifies the wavevector at which the
occupation discontinuity occurs in the chiral edge state.
These results may be of use in understanding the physical
properties of these topological insulators, and perhaps in
searching for experimental realizations.
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