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Ideal barriers to polarization reversal and domain-wall motion in strained ferroelectric

thin films
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The ideal intrinsic barriers to domain switching in c-phase PbTiO3 (PTO), PbZrO3 (PZO), and
PbZr1−xTixO3 (PZT) are investigated via first-principles computational methods. The effects of
epitaxial strain on the atomic structure, ferroelectric response, barrier to coherent domain reversal,
domain-wall energy, and barrier to domain-wall translation are studied. It is found that PTO has
a larger polarization, but smaller energy barrier to domain reversal, than PZO. Consequentially
the idealized coercive field is over two times smaller in PTO than PZO. The Ti–O bond length is
more sensitive to strain than the other bonds in the crystals. This results in the polarization and
domain-wall energy in PTO having greater sensitivity to strain than in PZO. Two ordered phases
of PZT are considered, the rock-salt structure and a (100) PTO/PZO superlattice. In these simple
structures we find that the ferroelectric properties do not obey Vergard’s law, but instead can be
approximated as an average over individual 5-atom unit cells.

PACS numbers: 77.80.Fm 77.84.Dy 77.55.+f

I. INTRODUCTION

The advent of advanced techniques for the growth of
high-quality ferroelectric thin-films1 has spawned a great
deal of interest in using these films for high-density non-
volatile ferroelectric information storage.2,3,4 The device
concept involves associating 0 and 1 bits with “up” and
“down” polarized domains in the film.4,5

For this application, assuring the retention of the data
is of critical importance.4 It is necessary therefore to es-
tablish an understanding of the factors that govern the
stability of polarization domains. As will be seen from
the discussion below, the domain-wall energy and mobil-
ity are especially important. One promising avenue to
control these critical factors is by tuning the epitaxial
strain in the thin films, present due to lattice mismatch
between the film material and the substrate. Both the in-
vestigation of the stability mechanisms and of the effects
of epitaxial strain can be carried out using first principles
methods, as will be described further below.

Polarization switching is believed to occur via the nu-
cleation of an oppositely polarized domain at a defect
such as a dislocation or inclusion, followed by domain
wall advancement outward from the embryonic domain.
The wall does not propagate uniformly, but by a mecha-
nism of kink nucleation and motion initiated at a defect
or compositional inhomogeneity where the local barrier is
reduced. Subsequently this small region expands lateral
to the original wall, converting the phase as it passes.6

This process is complicated and depends strongly on ex-
trinsic effects such as the quality of the film, the process-
ing conditions, the mechanical, thermal, and electrical
histories, as well as the environmental conditions at the
surface of the film.

Underpinning the extrinsic behavior is the intrinsic,
atomic nature of the ferroelectric material. We focus
here on two levels of idealized intrinsic behavior. First,
we consider the barrier for coherent domain reversal, in

which every unit cell in the crystal undergoes simultane-
ous reversal from one ferroelectric ground state to its op-
posite one. This is a purely bulk property, since the crys-
tal is assumed to maintain its three-dimensional periodic-
ity throughout, and the barrier is determined by a saddle
point corresponding to the centrosymmetric (paraelec-
tric) bulk structure.

Second, we consider the idealized barrier for a domain
wall to translate by one unit cell in the direction normal
to the wall, while always maintaining two-dimensional
periodicity in the parallel directions. This ideal bar-
rier for domain-wall motion is determined by a saddle-
point structure in which the domain wall is centered at
an unfavorable position in the unit cell. In both cases,
we focus on zero-temperature transition paths. First-
principles calculations have been performed to examine
180◦ domain walls in PbTiO3,

7 and valence-bond meth-
ods have been employed to study domain-wall motion in
PbZr1−xTixO3.

6

The energy to reverse the polarization via the coherent-
reversal or domain-wall-translation path is proportional
to the volume of the film or to the area of the domain wall
respectively, and thus may be orders of magnitude larger
than the true thermal barrier for motion of the domain
wall. However, even if it is not quantitatively relevant
to the real mechanisms of domain-wall motion, the study
of the idealized barriers give insight into the underlying
atomistic mechanisms and materials properties that are
relevant to real domain-wall motion. Thus, any more
sophisticated treatments that may be put forward in the
future should start from a firm understanding of these
intrinsic effects.

The impact of strain on a crystal’s ferroelectric re-
sponse has been theoretically studied using both phe-
nomenological and first principles techniques. For single-
phase compounds, epitaxial strain phase diagrams have
been obtained both from the Landau-Devonshire free-
energy8 and from first-principles effective-Hamiltonian
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methods.9,10 The effect of strain has also been studied
in superlattices.11 However the effect of composition and
strain on polarization reversal and domain-wall energy
has yet to be reported in detail.

In this paper, the ideal barriers to coherent polariza-
tion reversal and domain-wall motion are studied for
c-phase PbTiO3 (PTO), PbZrO3 (PZO), and two or-
dered forms of PbZr1−xTixO3 (PZT), the rock-salt struc-
ture and a (100)-oriented superlattice. In particular,
we report the dependence of the structure, the sponta-
neous ferroelectric polarization, the barrier to coherent
domain reversal, the domain-wall energy, and the bar-
rier to domain-wall translation as a function of epitaxial
strain.

The manuscript is organized as follows. In Sec. II we
discuss the boundary conditions used in our approach,
present the geometries of the cells used to treat pure PTO
and PZO and the ordered PZT alloys, and give the de-
tails of the computational methods that were used. The
results of the calculations are presented in Sec. III. A
more detailed analysis of the crystal structures and an
identification of the relevant atomistic features is given
in Sec. IV. Finally, we summarize and conclude in Sec. V.

II. THEORETICAL APPROACH

A. Boundary conditions

In the study of ferroelectric thin films, one has to spec-
ify both the mechanical boundary conditions, such as epi-
taxial strain constraints,9 as well as the electrical bound-
ary conditions. In the present calculations, periodic
boundary conditions are used. This corresponds to zero
macroscopic field such as would be obtained with ideal
symmetric short-circuited electrodes. Thus, these results
may not apply in film geometries in which an electri-
cal bias is intentionally or unintentionally present.12,13,14

We further note that these periodic boundary conditions
produce “constrained bulk” calculations, similar to those
of Ref. [9], in which we carry out a bulk calculation on
a primitive unit cell whose basal lattice vectors are con-
strained to form a simple square lattice having a specified
lattice parameter a. This allows us to isolate the effects
of epitaxial strain from surface and interface effects which
would also be present in a real film.

B. Structures: PTO and PZO

For ferroelectric PTO and PZO we assume tetragonal
P4mm symmetry with 5 atoms per unit cell (point group
C4v). We take the normal to the film to be the 4-fold axis
along z. In the paraelectric case, there is an additional
mirror symmetry perpendicular to z, resulting in point
group D4h. The degrees of freedom that are relaxed to
obtain the lowest-energy configuration are the magnitude

c of the lattice vector along z and the atomic displace-
ments, all along z, that are consistent with the symme-
try constraints.. The calculations are carried out as a
function of the epitaxial strain, i.e., in-plane lattice con-
stant a. Restricting the calculations to a single tetragonal
phase allows for an examination of the intrinsic properties
of the crystal in a continuous manner, without consider-
ing abrupt changes due to possible strain-induced phase
transitions.

Domain-wall energies and the barriers to domain-wall
motion are studied using the methods outlined in Meyer
and Vanderbilt.7 For pure PTO and PZO, the domain
wall is modeled using an N × 1 × 1 supercell contain-
ing N/2 “up” unit cells and N/2 “down” cells. It is
found that the domain walls are sufficiently thin that
the energies are converged for N=6; however, supercells
of size N=8 are used to investigate the local structure.
Epitaxial constraints are applied to the domain-wall cal-
culations, as follows. The c parameter is held fixed at
the computed value for the bulk ferroelectric structure,
appropriate for an isolated domain wall far from any sur-
faces or interfaces, and the in-plane lattice parameters
are fixed at Na and a, which define the strain state of
the system. The symmetries of the supercell are selected
such that the domain wall is centered either on a PbO
plane or on a TiO2 (or ZrO2) plane. In the simplest sce-
nario, the difference of the energies of these two configu-
rations would give the idealized barrier for domain-wall
motion.

C. Structures: PZT

Random alloys such as PZT (PbZr1−xTixO3) pose a
challenge to first-principles methods because the atomic
arrangement is not naturally compatible with periodic
boundary conditions. One approach to addressing this
problem is to construct large supercells in which the
cation arrangement approaches randomness, either by
randomizing the occupation of each cation site in the
supercell or by the application of techniques for con-
structing so-called special quasirandom structures.15 Us-
ing effective-Hamiltonian methods or parameterized in-
teratomic potentials, it may be possible go to quite large
supercells,16,17 but one is typically limited to rather small
supercells when using direct first-principles methods.

To study PZT at x = 0.50, we here adopt this supercell
approach, considering two minimal supercells: (i) a su-
perlattice structure with alternating layers of PTO and
PZO in the (100) direction, and (ii) a rock-salt struc-
ture (or “3D chess board”) in which the chemical iden-
tity alternates between all nearest B–B neighbors in the
ABO3 structure. We again constrain the in-plane lattice
constants to equal those of an assumed cubic substrate,
and impose orthorhombic C2v or tetragonal C4v sym-
metry for the (100)– and rock-salt–ordered superlattices
respectively. In the paraelectric case, when the polar-
ization vanishes, the corresponding symmetry labels are
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D2h and D4h.

D. Computational Methods

Density-functional theory calculations are performed
using the local-density approximation18,19 as imple-
mented in the PWscf code package.20 Ultrasoft pseudo-
potentials21,22 are used in place of the all-electron ion po-
tentials. The Kohn-Sham wave functions are expressed
in terms of a plane-wave expansion, and the Brillouin
zone is sampled using the Monkhorst-Pack algorithm.23

The coherent reversal calculations were performed with
a 35Ry plane-wave cutoff and 6×6×6 k-point sampling,
while the domain-wall calculations were carried out us-
ing a 30Ry cutoff and 4×4×2 sampling; in all cases these
were chose to ensure that the forces are converged to bet-
ter than 15meV/Å. The Berry-phase technique10 is used
to calculate the polarization of the structures.

With these choices the lattice parameters of known
structures are calculated to be near experimental val-
ues for PTO, aexp

0 = 3.90 Å and cexp
0 = 4.15 Å.24,25 In

particular, we obtain equilibrium lattice parameters for
the tetragonal ferroelectric phases of PTO and PZO of
aPTO
0 = 3.86 Å, cPTO

0 = 4.02 Å, aPZO
0 = 4.09 Å, and

cPZO
0 = 4.16 Å. The calculated lattice parameters for the

PZT structures (with symmetry imposed as explained
above) are aPZT

0 = 3.97 Å and cPZT
0 = 4.09 Å, consistent

with the predictions of Vegard’s law. All epitaxial strain
values reported in this paper are defined relative to the
corresponding ground-state a0 values given here.

III. RESULTS

A. Structural properties of paraelectric and

ferroelectric states

Figure 1 shows a sketch of the double-well potential
of a typical ferroelectric, indicating the structure of one
of the local ferroelectric minima and of the paraelectric
saddle-point configuration. We calculate the energy, c/a
ratio, and polarization for these ferroelectric and para-
electric states in PTO, PZO, and PZT by relaxing c as
well as all internal coordinates subject to the appropriate
symmetries specified in the previous section.

In Fig. 2 we present our computed values of the c/a
ratio as a function of epitaxial strain for both symme-
tries. Applying a compressive in-plane strain causes c
(and c/a) to increase, which corresponds to the common
situation where the Poisson ratio is positive. This in-
crease is roughly linear and composition-independent in
the paraelectric case, shown in Fig. 2(a), where the po-
larization plays no role. However, in the ferroelectric
case, the curves are steeper, more non-linear, and more
composition-dependent, as shown in Fig. 2(b), where the
electric polarization is enhanced by compressive in-plane
strain.

FIG. 1: Double-well potential of PTO at zero in-plane strain.
The ferroelectric state (minimum sketched at right) has point-
group symmetry C4v ; the paraelectric state (saddle point
sketched at center) has D4h.

The enhancement of polarization by compressive epi-
taxial strain can be seen clearly in Fig. 3(a). The polar-
ization is generally largest in PTO, smallest in PZO, and
intermediate in PZT. This ordering is consistent with the
variation in the c/a ratios presented in Fig. 2. However,
Fig. 3(b) shows that the height of the barrier is actually
larger for PZO than for PTO, with the PZT alloys again
lying at intermediate values.

B. Double-well potential and domain reversal

A double well potential as a function of polarization is
obtained as a fourth order polynomial

E(P ) = aP 2 + bP 4, (1)
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FIG. 2: Lattice-constant ratio c/a versus applied epitaxial
strain, obtained by relaxing in the ferroelectric (a) or para-
electric (b) state.
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(a)

(b)

FIG. 3: Polarization (a) and energy-barrier height (b) versus
applied epitaxial strain in tetragonal PTO-PZO systems.

where E is the energy (relative to the paraelectric sad-
dle point) and P is the polarization. Knowing the val-
ues P1 and E1 that characterize the ferroelectric mini-
mum, Eq. (1) can be rearranged to find a = 2E1/P 2

1 and
b = −E1/P 4

1 . Figure 1 shows the double-well potential
of ferroelectric PTO at zero in-plane strain. The various
double-well potentials can conveniently be analyzed by
fitting them to this simplified functional form.26 For ex-
ample, the shapes of the double-well potentials are seen
to be rather different for PTO and PZO, with the lat-
ter having a deeper minimum that however occurs at a
smaller value of polarization.

Introducing the electric enthalpy F = E − EP , where
E is the electric field, and recalling that E = dE/dP
corresponds to the slope of the E(P ) curve, we obtain

Ec = (4/3)3/2E1/P1 (2)

for the ideal intrinsic coercive field, defined as the max-
imum slope attained between the minimum and saddle
point. It should be emphasized that this is an artificial
quantity that may be orders of magnitude larger than
physical coercive fields; it corresponds to the field at
which the minority domain ceases to be defined theo-
retically, whereas physical coercive fields are defined by
the field at which domain walls become unpinned. In
comparison, Lee et al. find coercive fields of ∼25MV/m
in PbZr0.2Ti0.8O3 thin films of 100nm thickness.

Using Eqs. (1-2) and the data in Fig. 3, the coercive
field is calculated as a function of applied strain and plot-
ted in Fig. 4. The ideal coercive field can be seen to be
much larger for PZO than for PTO (with PZT at in-
termediate values). This is consistent with the trends
identified earlier, since E1 increases while P1 decreases
in going from PTO to PZO, and from Eq. (2) it is obvi-
ous that both of these effects tend to increase the ideal

FIG. 4: Ideal coercive field versus epitaxial strain as deter-
mined from Eq. (2) using the data from Fig. 3.

coercive field. The observed strain dependence of the po-
larization and coercive field indicate that the application
of compressive strain expands the hysteresis loops and
applying a tensile strain contracts them.

From the simple model of Eq. (1) it is also straight-
forward to plot the polarization as a function of electric
field in order to obtain ideal hysteresis curves such as
those plotted in Fig. 5. Again we emphasize that this
corresponds to coherent domain reversal, i.e., a scenario
in which the reversal happens simultaneously everywhere
without loss of crystal periodicity. The ideal coercive field
can be seen to be much larger for PZO than for PTO,
consistent with Fig. 4.

FIG. 5: Hysteresis curves calculated from Eq. (1) at zero
epitaxial strain.
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FIG. 6: Domain wall energy and barrier to domain-wall mo-
tion in strained PTO (a) and PZO (b) films. The energy
barrier is scaled 2×.

C. Domain walls

The energies of domain walls are calculated for PTO,
PZO, and the (100) superlattice PZT. For all three crys-
tals the supercell belongs to the D2h point group. We
constrain the domain-wall location by enforcing an in-
version symmetry about a center in the specified plane,
and relax all other internal degrees of freedom. For PTO
and PZO the domain-wall energies are shown on the right
axis of Fig. 6. These increase with compressive strain, for
which the polarization is larger and therefore the cost of
introducing an unpolarized layer is larger. A simple esti-
mate of the energy barrier to domain-wall motion is the
difference between the two domain-wall energies, which
is plotted along the left axis of Fig. 6. These barriers
have a strain dependence quite different in PTO than in
PZO. We shall discuss this behavior further in Sec. IVB.

The domain-wall energies are shown for the (100) PZT
superlattice in the top frame of Fig. 7(a). Here it is pos-
sible to specify a domain wall located on a ZrO2 or TiO2

plane, but not on a PbO plane, because the composi-
tional order makes it impossible to choose an inversion
center in a PbO plane. As is evident in the figure, the
Zr-centered domain wall is lower in energy at all strains.
If we choose initial atomic coordinates corresponding to
a domain wall that is positioned on a PbO plane, we find
that the atomic relaxations spontaneously carry the do-
main wall toward the nearest ZrO2 plane, consistent with
the fact that it is not pinned by symmetry constraints.
Figure 7(c) shows a sketch of the resulting energy land-
scape for domain-wall motion in this superlattice system.
We have not attempted to calculate (or even to precisely
define) the energy surface between the TiO2 and ZrO2

planes, so the dashed lines in the Fig. 7(c) are just con-
jectural.
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FIG. 7: Domain-wall energy (a) and barrier to domain-wall
motion (b) in a strained (100) PZT superlattice. Sketch of
energy landscape emerging from the calculations (c).

IV. DISCUSSION

In this section we take a closer look at the results pre-
sented in Sec. III, seeking to explain some of those results
in terms of interactions at the atomistic level. The influ-
ence of local strain on the structure will be examined.

A. Polarization and polarization reversal

1. Dependence of polarization on composition

In Fig. 2(a) it can be seen that the c/a ratio for fer-
roelectric PZT obeys Vegard’s law quite well, being very
close to the average of PTO and PZO at all strains. How-
ever, this is not the case for the polarization in Fig. 3(a),
where the PZT superlattice and rock-salt structures lie
above and below the average, respectively.

This can be understood by inspecting the local strains
and how they impact the properties of the crystal. Look-
ing first at the superlattice case, while the periodicity is
2aPZT

0 = 7.94 Å in the (100) direction, the Pb atoms are
not uniformly spaced. The spacing is 3.81 and 4.14 Å
across the TiO2 and ZrO2 planes respectively. Defin-
ing the local strain in the (100) direction relative to
the equilibrium lattice parameters (aPTO

0 = 3.86 and
aPZO
0 = 4.09 Å), the PTO layer has a strain of −1.3%

while that of the PZO layer is +1.2%. Using the data for
strained PTO and PZO in Fig. 3(a) and applying these
local strains, we can estimate the polarization contribu-
tion to be 0.91 and 0.66C/m2 from the PTO and PZO
layers respectively. The average of these is 0.79C/m2,
which is very close to the calculated Berry-phase value
of 0.77C/m2. A similar analysis applies to the rock-salt
case. The Pb separation in both the (100) and (010)
directions is 3.97 Å, corresponding to a strain of ±2.8%
in the PTO and PZO cells respectively. Extrapolating
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FIG. 8: Partial PDFs for Ti–O (left) and Zr–O (right) dis-
tances. Top, middle, and lower panels show applied epitaxial
strains of ǫ = −1.2% (compressive), 0, and +1.2% (tensile),
respectively.

linearly using the data in Fig. 3(a), we expect contribu-
tions from the PZO and PTO components to be 0.62 and
0.77C/m2. This averages to 0.70C/m2, which is again
very close to the calculated value of 0.72C/m2.

2. Local distortions and partial distribution functions

The local strain arguments above suggest that in the
superlattice the TiO2 layer contributes more to the net
polarization than the ZrO2 layer, whereas in the rock-salt
structure the Ti and Zr cells make approximately equal
contributions. The contributions of the Ti and Zr ions
are roughly proportional to their displacements relative
to the surrounding oxygen octahedra.27,28 The calculated
relative displacements are presented as partial pair distri-
bution functions (PDFs)29 for Ti–O and Zr–O neighbors
in Fig. 8. The first peak at the shortest distance in each
of the distributions corresponds to the Ti or Zr bonded
to the O atom located in the nearest xy-oriented (basal)
PbO plane. This Zr–O bond length is almost identical in
the two PZT structures, while the Ti–O bond length is
about 2.5% shorter in the superlattice than the rock-salt
structure. This supports the hypothesis that in the su-
perlattice structure the TiO2 layer contributes more to
the net polarization than does the ZrO2 layer. In addi-
tion, the Ti–O bond is shorter in the superlattice and
the spacing between PbO layers is smaller, leading to a
larger energy barrier in the superlattice as compared to
the rock-salt structure.

The sensitivity of a crystal’s polarization to its strain
can also be related to the atomic structure. From Fig. 3
it is clear that PTO is more sensitive to applied strain
than is the case for PZT or PZO. The PDFs indicate

FIG. 9: Partial PDF of Pb–O distances. Top, middle, and
lower panels show applied epitaxial strains of ǫ = −1.2%, 0,
and +1.2%, respectively.

that the change in Ti–O bond length under applied load
in PTO is larger than in PZT, and larger than that of Zr–
O bonds in PZT or PZO. It is this large change in bond
length that leads to the change in PTO polarization with
applied strain.

A partial PDF of Pb–O separations is shown Fig. 9.
The shorter distances (those below 5 a.u.) correspond to
Pb and O atoms lying in the same xz or yz plane. The
superlattice has enough flexibility that the shortest of
these can remain almost independent of strain, while the
others show a modest shift in bond length with strain.
On the other hand, the longer bonds in the right part
of the figure, which correspond to Pb–O bonds in the
basal plane, show much larger shifts because they have
little choice but to scale linearly with the a lattice pa-
rameter. In rock-salt PZT the structure has so little
flexibility that its Pb–O bond distances are essentially
just averages of the PTO and PZO ones, as can be seen
in Fig. 9. In the PZT superlattice, on the other hand,
the peak splits strongly because there are two PbO inter-
planar distances, with the peaks near 5.45 and 5.25 a.u.
corresponding to Pb bonds with O atoms in a TiO2 or
ZrO2 plane, respectively. Understanding the spatial re-
lationships between the Pb and the basal O atoms helps
to further illuminate the nature of the partial PDFs for
Ti–O and Zr–O shown in Fig. 8.

The partial PDFs in Fig. 10 show the Ti–Pb and Zr–
Pb separations. The distributions look very reminiscent
of those shown for Pb–O distances in the right part of
Fig. 9, except that here there is almost no shift with
strain. The peak associated with the rock-salt structure
splits because the ferroelectric distortions of the Ti and
Zr atoms differ, but the splitting is quite small (< 0.01
a.u.). The Pb and Ti or Zr atoms are not bonded to one
another, but interact indirectly through shared O atoms.
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FIG. 10: Partial PDF of Pb–Ti and Pb–Zr distances. Top,
middle, and lower panels show applied epitaxial strains of
ǫ = −1.2%, 0, and +1.2%, respectively.

B. Domain-wall properties

We turn our attention now to the results on domain
walls presented in Sec. III C. We have inspected the
atomistic structure of the domain walls, and find that in
all cases they are only a few atomic planes thick. To illus-
trate this, the polarization profiles atomic displacements
and obtained as one scans across the domain wall are
plotted in Figs. 11-12 for both PTO and PZO at zero epi-

FIG. 11: Decomposition of polarization on a plane-by-plane
basis across domain wall. Left, PTO; right, PZO. Top, Pb-
centered walls; bottom, Ti- or Zr-centered walls. Symbols
denote PbO (circles), TiO2 (squares), and ZrO2 (triangles)
planes.

taxial strain. The polarizations in Fig. 11 are determined
by the procedure outlined in Ref. 7 using the atomic dis-
placements in Fig. 12 and are normalized such that the
bulk polarization has a value of 1. Similar domain-wall
thicknesses are observed for PZT. These results confirm
those obtained for PTO in Ref.7, and it is clear that the
180◦ domain walls are atomistically sharp, at least at
zero temperature. Since the domain walls are all about
equally narrow, it seems likely that their energies should
correlate mainly with the energy cost of introducing an
atomic plane in which the ferroelectric distortions are
absent. This hypothesis is consistent with the observed
increase of domain-wall energy with compressive strain,
which makes the bulk more ferroelectric, thus introduc-
ing a larger penalty for a layer that is not ferroelectric.

However, the barrier to domain-wall motion does not
depend on the absolute energies of the domain walls, but
on their relative energies, as sketched in Fig. 7(c). Con-
sider first the energy barriers in PTO and PZO, plotted
in Fig. 6. The energy barrier in PTO increases substan-
tially moving from tensile to compressive strain. This
is because the domain wall centered on the TiO2 layer
is highly sensitive to strain compared to the PbO layer.
Moving from ǫ = +1.2% to −1.2% the energy of the TiO2

centered wall increases by 155 mJ/m2. This is almost
twice the increase of the PbO centered wall, which in-
creases 81 mJ/m2. The barrier to domain-wall motion is
related to the difference in the domain-wall energies, and
the rate of change of barrier height with applied strain is
related to the difference in the rate of change of domain
wall energies.

FIG. 12: Atomic displacements across domain walls. Left,
PTO; right, PZO. Top, Pb-centered walls; bottom, Ti- or Zr-
centered walls. Symbols denote Pb (circles), Ti (squares), Zr
(triangles), O in the xz or yz plane (pluses), and O in the xy
plane (crosses).
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In comparison, consider the energy barrier in PZO.
Under compression the barrier to domain-wall motion is
small because the domain walls centered on the ZrO2

and PbO planes have around the same energy. The bar-
rier increases with applied tensile strain because the do-
main wall energies at the two planes diverge from one
another in the tensile regime. Although the domain-wall
energy normally increases with applied compressive load,
the barrier to wall motion can decrease under some cir-
cumstances, because the barrier is a relative measure.

The sensitivity of the TiO2 layer to strain also appears
to be responsible for the large barrier in the PZT su-
perlattice. This is observed by replotting Figs. 6 and 7
in terms of the lattice parameter, as shown in Fig. 13.
When the PZT domain-wall energies are plotted versus
the average lattice parameter (solid symbols and open
symbols connected by dashed lines), no obvious relation-
ship emerges. On the other hand, the data clusters well
when the domain-wall energies are plotted versus the lo-

cal lattice constant (solid symbols and open symbols con-
nected by solid lines), defined in terms of the local lattice
spacing of the PbO planes in the (100) direction. We

can thus understand that the small spacing of the TiO2

planes is responsible for the large domain-wall energy and
the large energy barrier for domain-wall motion.

V. CONCLUSIONS

Working with the prototypical PTO/PZO system, we
have shown that the application of compressive epitaxial
strain to a tetragonal ferroelectric perovskite increases
its c/a aspect ratio, polarization, barrier to coherent po-
larization reversal, ideal coercive field, and domain-wall
energies. These relationships have been quantified and
related to the enhancement of the atomic ferroelectric
distortions and the strengthened Ti–O bonding. The
bond between the Ti atom and the basal O is highly
sensitive to applied strain, as observed in the calculated
partial PDFs. This sensitivity is manifested in the or-
dered phases of PZT, enhancing both the polarization
and barrier to domain-wall motion.

In alloys, issues of local composition and strain have
been shown to play an important role. Although some
bulk properties, such as the average lattice parameter,
obey Vegard’s law, many others do not. In PZT the bulk
polarization can be understood as an average of polariza-
tion contributions from each 5-atom cell, in which this
contribution depends crucially both on its identity (Ti
or Zr) and on the local strain. Similarly, we have shown
that the energy of domain walls can also be understood in
terms of such local effects, specifically the composition of
the plane on which the domain wall is centered, and the
local in-plane lattice constant for cells surrounding that
plane. These results demonstrate how apparently com-
plex properties of ferroelectric alloys can be understood
as averages over single-cell properties under appropriate
conditions of strain and composition.
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