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First-principles modeling of strain in perovskite ferroelectric thin films
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We review the role that first-principles calculations have played in understanding
the effects of substrate-imposed misfit strain on epitaxially grown perovskite
ferroelectric films. We do so by analyzing the case of BaTiO3, complementing our
previous publications on this subject with unpublished data to help explain in
detail how these calculations are done. We also review similar studies in the
literature for other perovskite ferroelectric-film materials.
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1. Introduction

Ferroelectrics materials are of technological importance due to their ability to sustain
a macroscopic polarisation that can be switched by the action of an electric field.
In particular, the demand for smaller industrial components has drawn attention in the
last few years to ferroelectrics in film form. These can sometimes be grown epitaxially in
a coherent fashion with thicknesses beyond 10s of nanometers. Part of what makes them
interesting is that the properties of the thin films can differ significantly from those of the
corresponding bulk form. Several factors contribute to these differences, e.g., the thickness
of the film, the electrical boundary conditions imposed on it, the orientation of the
substrate upon which the film grows, the presence of defects or stoichiometric variations,
and the misfit strain imposed by the substrate on the film. The reader interested in the
science of ferroelectric films can consult the recent reviews [1–8].

In this article we will be concerned with the role of the misfit strain in the structural
behaviour of ferroelectric thin films. The cited review by Rabe [6] especifically addresses
this effect; references [9] and [10] are examples of relevant related experimental
publications. We will restrict ourselves to perovskites, one of the most representative
and studied families of ferroelectric materials. We will review how first-principles theories
can be used to isolate the effect of epitaxial strain from the other film-related effects
mentioned above. Section 2 introduces the structural phase diagrams that have proven to
be very useful in understanding the properties of ferroelectric films. Section 3 explains in
detail how first-principles calculations can be used to obtain those diagrams, focusing on
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the case of BaTiO3 as a prototypical example of a perovskite ferroelectric. This section is
based in two of our previous publications [11,12], complemented by expanded results and
detailed explanations that have not previously been published. In Section 4 we review
similar studies that have been carried out for ferroelectric films composed of materials
other than BaTiO3. Finally, we summarize briefly in Section 5.

2. Pertsev diagrams

In a seminal paper, Pertsev, Zembilgotov and Tagantsev [13] introduced the concept of
mapping the equilibrium structure of a ferroelectric perovskite material as a function of
temperature and misfit strain, thus producing a ‘‘Pertsev phase diagram’’ of the observable
epitaxial phases. The effect of epitaxial strain is isolated from other aspects of thin-film
geometry by computing the structure of the bulk material with homogeneous strain tensor
constrained to match a substrate having square surface symmetry and a given in-plane
lattice constant. In addition, short-circuit electrical boundary conditions are imposed,
equivalent to ideal electrodes above and beneath the film [13]. Examples of such diagrams
are shown in Figure 1; the labeling of the phases therein is clarified in Table 1. Given the
recognized importance of strain in determining the properties of thin-film ferroelectrics,
Pertsev diagrams have proven to be of enormous value to experimentalists seeking to
interpret the behavior of epitaxial thin films and heterostructures.

In [13], the mapping was carried out using a phenomenological Landau–Devonshire
model taken from the literature. Within this kind of theory, a thermodynamical potential
describing the behaviour of the material is expanded in the relevant degrees of freedom.
In the case of [13], the basic degrees of freedom were stress and polarisation, with the
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Figure 1. Phase diagrams of epitaxial BaTiO3 as predicted by the theory of Pertsev et al.
[13]. (a) Using the parameters quoted in [13]. (b) Using the parameters quoted in [14]. First- and
second-order phase transitions are represented by thick and thin lines, respectively. (Reprinted from
Ref. [11]).
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temperature being incorporated via a linear temperature dependence of certain expansion
parameters. For fixed misfit strain and temperature, a minimisation over the three
components of the polarisation was carried out. Depending on the direction the
polarisation points after the optimisation, the film is in a distinctive phase labeled as
indicated in Table 1.

This approach should give excellent results in the regime of temperature and strain in
which the model parameters were fitted. However, it will generally be less accurate when
extrapolated to other regimes. As an illustration of this, we pointed out in [11] that
different sets of parameters can lead to significantly different diagrams even when exactly
the same model is used, as shown in Figure 1. Of course, such an empirical approach is
also limited to materials for which all the needed experimental information is available.

3. First-principles calculations: the example of BaTiO3 films

In this section we describe in detail how to apply a first-principles theory to the study of
misfit strain effects in single-domain perovskite-oxide thin films grown on a substrate with
square-lattice symmetry. In particular, we focus on the prototypical example of barium
titanate. In Section 3.1 we show how this is done at a microscopic level, considering the
physics of the individual electrons and ions in the film; this is what we call full
first-principles calculations. In Section 3.2 we show how to apply a Landau–Devonshire
theory in which first-principles calculations are used to find the coefficients in a Taylor
expansion of the thermodynamical potential that describes the behaviour of the film; this is
what we call first-principles-based calculations. In both cases, the calculations are done for
zero temperature. Finally, in Section 3.3 we show the results of applying a refined first-
principles-based theory to take into account the effects of finite temperature.

3.1. Full first-principles calculations

3.1.1. Theoretical details

First-principles (i.e., ab initio) theories make use of the fundamental laws that govern the
behaviour of electrons and nucleii to derive the macroscopical properties of a material.
Among these, density-functional theory (DFT) [15] as implemented in the Kohn-Sham
approach [16] is the most widely used to deal with systems such as those described here,
since relatively large systems with many electrons can be treated accurately with a modest
expenditure of computer time. Nowadays, several sophisticated computer codes capable of

Table 1. Summary of possible epitaxial BaTiO3 phases.

Phase SG a3 Np Polarisation

p P4mmm cẑ 0 0
c P4mm cẑ 3 Pzẑ
aa Amm2 cẑ 4 Pðx̂þ ŷÞ
a Pmm2 cẑ 4 Px̂
ac Pm c�x̂þ cẑ 8 Px̂þ Pzẑ
r Cm c�ðx̂þ ŷÞ þ cẑ 7 Pðx̂þ ŷÞ þ Pzẑ

Notes: In-plane cell vectors are fixed at a1 ¼ ax̂, a2 ¼ aŷ. Columns list,
respectively: phase label; space group; out-of-plane lattice vector; number of
free internal displacement coordinates; and form of the polarisation vector.
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running such DFT calculations are available as open-source or inexpensive packages,
including, e.g., ABINIT [17], the Quantum-ESPRESSO [18] suite of programs, Siesta [19],
and VASP [20].

The first-principles DFT calculations described in this subsection were carried out
using the VASP [20] software package. The electron–ion interaction was described by the
projector augmented-wave method [21]; semicore electrons are included in the case of Ba
(5s25p66s2) and Ti (3s23p64s23d2). The calculations employed the Ceperley–Alder [22] form
of the local-density approximation (LDA) exchange-correlation functional; other flavours
of this functional, like the generalized gradient aproximation, do not lead to substantial
improvements in the case of BaTiO3 [23]. We use a plane-wave basis set with a 700 eV
kinetic-energy cutoff and a 6� 6� 6 Monkhorst–Pack [24] sampling of the Brillouin zone.

Readers wishing to become more familiar with the terminology used in the previous
two paragraphs, or to know more about the conceptual framework behind DFT, can
consult a recent review on the subject by Capelle [25] or the textbook by Martin [26];
see also references therein.

3.1.2. Search for the most stable phases

Given the constituents of the unit cell, DFT codes allow one to carry out a search for the
structural configuration with the lowest energy. We did this for the case of BaTiO3 in [11]
where, following Pertsev et al. [13], we worked with a bulk-like periodic system in
which the film boundary conditions imposted by the misfit strain have been applied.
We emphasize that there are no surfaces or interfaces in our calculation. Essentially, we
take a single unit cell from the deep interior of the film and replicate it periodically in all
three dimensions; this periodic structure is the one used for our calculations.

We performed optimisations of distorted configurations of the five-atom unit cell of
the cubic perovskite structure in order to look for the six possible phases mentioned
in Table 1. Each starting structure had the Ba atoms fixed as determined by the substrate,
and we displaced the Ti and O atoms along the direction of the polarisation vector of
each phase. Then, while retaining the symmetry determined by these displacements,
we relaxed the atomic positions and the out-of-plane cell vector until the value of the
Hellmann–Feynman forces and zz, yz and zx stress tensor components fell below
0.001 eV Å�1 and 0.005 eV, respectively. This process allowed us to determine the
lowest-energy structure for each of the six possible phases.

Following this recipe for different values of the in-plane strain on the film, we obtained
the energy curves of Figure 2 (top panel). This strain is defined as a/a0� 1, where a is the
chosen in-plane lattice constant for the optimizaiton and a0 is the theoretical lattice
constant of the most stable cubic phase. In some cases we started with a structure with
a given symmetry, but found that the system relaxed to a structure with a higher
symmetry; for example, starting with a structure having the symmetry of the r phase at
misfit strains exceeding �0.6%, we find that it converges to a structure of aa symmetry
(collapse of the green curve onto the orange curve in the figure). It can be seen that the
c phase is the most stable structure for large negative (compressive) misfit strains, then the
r phase is most stable for an intermediate strain range, and finally the aa phase is most
stable at large positive (expansive) strains.

Because the phase transitions from c! r! aa are both of second-order, the curves
join each other so smoothly that it is difficult to locate the precise phase boundaries from
the energy curves alone. The boundaries can be located much more precisely by using
a stability analysis. At each value of misfit in the c phase, for example, we carry out
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Figure 2. Top panel: energies of the possible epitaxial BaTiO3 phases fordifferent misfit strains,
as obtained from the full first-principles calculations. Center panel: value of the lowest non-trivial
eigenvalue of the force-constant matrix for the three relevant phases; when it is zero, the second-
order phase transitions denoted by vertical lines occur. Bottom panel: displacements of the atoms
from the cubic perovskite cell positions, for the most energetically favourable configuration
at a given misfit strain; �3(Ti) labels the displacement of the Ti atom in units of the third lattice
vector, etc.
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finite-difference calculations of x forces and the xz stress as the atomic x coordinates and
the xz strain are varied. The lowest eigenvalue of the resulting 6� 6 Hessian matrix is
plotted as the blue curve in the middle panel of Figure 2, and its zero crossing identifies the
critical misfit. A similar analysis is used to consider z displacements and shear strains in the
a and aa phases (red and orange lines, respectively). By properly considering the zone-
center phonons, the elastic shear, and linear cross-coupling between these two kinds of
degrees of freedom, this analysis allows us to locate the second-order phase boundaries
much more precisely than is possible through direct comparison of total energies. Since the
a phase is never the lowest-energy structure for any misfit strain (see top panel of
Figure 2), we can ignore it, and we locate the c$ r and r$ aa transitions as indicated by
the vertical dashed lines in the figure.

With first-principles calculations it is also possible to inspect the individual
displacements of the atoms in each structure, as shown in the bottom panel of Figure 2.
At the phase transition points, displacement patterns arise that characterize the phases on
both sides of the transition.

The three panels in Figure 2 give therefore a consistent picture showing how the
structural properties of the film vary as a function of the misfit strain imposed on it.
For large compressive strains, the lowest energy corresponds to the c phase; on the
other hand, for large tensile strains the aa phase is favoured. At a misfit strain of
smax(c)¼�6.4� 10�3 (a¼ 3.930 Å), there is a second-order transition from the c phase to
the r phase, with the polarisation in the r phase continuously rotating away from the
z direction as the misfit strain increases. At misfit strain smin(aa)¼ 6.5� 10�3 (a¼ 3.981 Å),
the r phase polarisation completes its rotation into the xy plane, resulting in another
second-order transition to the aa phase.

3.1.3. Comments on the underlying assumptions

Here we comment briefly on the effects of the assumptions made in the construction of this
first-principles Pertsev diagram. In principle, we should consider the possibility of
equilibrium structures with larger unit cells, particularly those with cell-doubling
octahedral rotations (i.e., tilts). Such rotations have been shown to be important in
SrTiO3, and could condense in BaTiO3 under sufficiently large misfit strains. As an
example, we have checked that the paraelectric phase of the film is stable with respect to
octahedral rotations about the [001] direction (with M3 symmetry) up to an epitaxial
compressive strain of �70.9� 10�3 (a¼ 3.675 Å), far larger than those likely to be
experimentally relevant (Figure 3).

In addition, while we have studied only the effects of epitaxial strain, other physical
effects may also be relevant to the structure and properties of thin films, such as atomic
rearrangements at the film-substrate interface and free surface and the instability to the
formation of multiple domain structures [27]. Finally, our theory relies on the LDA to
compute the exchange and correlation terms in DFT. This introduces small systematic
errors in the calculation, the most important of which is probably the error in the
equilibrium lattice constant. However, such errors are well understood and well
characterized in perovskites, and tend to be similar for different materials of this class,
so that there is a tendency for cancellation of errors when making relative comparisons of
quantities such as misfit strains (see, for example, [28]).

It should be kept in mind, however, that for both films and superlattices, the
assumptions that the system is in a single domain and that the epitaxial strain strongly
dominates other factors will not be valid in all cases. Phase diagrams including
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multiple-domain states have, for example, been discussed in [27,29,30]. Other influences

that may be important include surface relaxation and reconstruction, atomic and

electronic rearrangements at the interface, imperfectly compensated macroscopic electric

fields, deviations from stoichiometry, and the presence of defects.

3.2. First-principles-based calculations: a Landau–Devonshire model

In a Landau–Devonshire approach, a ferroelectric system is described by

a thermodynamical potential that is expanded as a Taylor series of the relevant degrees

of freedom. For example, in the work of Pertsev and collaborators [13], the model is

built by starting with the bulk free energy expanded in polarisation and stress.

The reference state is the paraelectric cubic perovskite phase at the bulk critical

temperature Tc, and the parameters are fit to reproduce experimental observations of the

behaviour near the bulk ferroelectric transition. For the dependence on epitaxial strain,

a Legendre transformation is then made to obtain the potential as a function of

polarisation and misfit strain. Because of the way in which the parameters are fit, this

Landau–Devonshire potential will give its most accurate results for small misfit strains and

temperatures near the bulk Tc.
It is also possible to develop models in the same spirit, but constructed from

first-principles calculations. Compared with the phenomenological approach, such

a first-principles-based theory has the advantage that the information needed for the

model fit can readily be calculated in a consistent and accurate manner within the

framework of the chosen first-principles approach. Then, once the fitting has been

completed, such models can be used to compute detailed properties orders of magnitude

faster than could be done using the full first-principles calculations. Thus, they can be

applied to larger systems where the full calculations would be impractical. In this Section,

we summarize how one such model [12] can be applied to study BaTiO3, providing

additional details that were not included in the previous publication in order to clarify how

the expansion coefficients were obtained.
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Figure 3. Value of the restoring force on the oxygen octahedra when they are subjected to a rotation
about the [001] axis of 0.23� in a pattern of M3 symmetry. A negative value indicates an instability
leading to a doubled unit cell with oppositely rotated octahedra, but this only happens at a very high
compressive strain (the equilibrium lattice constant is 3.96 Å).
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3.2.1. Formalism

The starting point of this analysis is the parameterized total-energy expression presented

by King-Smith and Vanderbilt in [28]. This is a Taylor expansion around the cubic

perovskite structure in terms of the six independent components �i of the strain tensor

(i is a Voigt index, i¼ 1�6) and the three Cartesian components u� (�¼ x, y, z) describing

the amplitude of the soft mode defined by the pattern of eigen-displacements associated

with the smallest eigenvalue of the (zone-center) force-constant matrix.
The energy (per unit cell) of the bulk material can be expressed as a sum

E ¼ E elasðf�igÞ þ E softðfu�gÞ þ E intðf�ig,fu�gÞ, ð1Þ
of a term E elas arising purely from strain, a term E soft arising purely from the soft-mode

amplitude, and a term E int describing the interactions between these two kinds of degrees

of freedom. The zero of energy is taken to correspond to the cubic reference structure.

For crystals with cubic symmetry, the strain energy is given, to second-order in strain, by

E elasðf�igÞ ¼ 1

2
B11ð�2

1 þ �2
2 þ �2

3Þ þ B12ð�1�2 þ �2�3 þ �3�1Þ þ 1

2
B44ð�2

4 þ �2
5 þ �2

6Þ, ð2Þ

where B11, B12, and B44 are related to the elastic constants of the crystal by factors of the

cell volume. The soft-mode energy given in [28] contains terms up to fourth-order in the

soft-mode amplitude,

E softðfu�gÞ ¼ �u2 þ �u4 þ �ðu2
xu2

y þ u2
yu2

z þ u2
zu2

xÞ, ð3Þ
where u2 ¼ u2

x þ u2
y þ u2

z , � is twice the soft-mode eigenvalue, and � and � are the two

independent symmetry-allowed fourth-order coefficients describing the cubic anisotropy.

Finally, the interaction between the strains and the soft-mode amplitude is given to leading

order by

E intðf�ig,fu�gÞ ¼ 1

2
B1xxð�1u2

x þ �2u2
y þ �3u2

zÞ þ
1

2
B1yy �1ðu2

y þ u2
zÞ þ �2ðu2

z þ u2
xÞ þ �3ðu2

x þ u2
yÞ

h i

þB4yzð�4uyuz þ �5uzux þ �6uxuyÞ, ð4Þ
where B1xx, B1yy, and B4yz are the phonon-strain interaction coefficients. All the

coefficients in these three parts of the total-energy expression can be obtained from

first-principles calculations on a series of distorted structures as described in [12,28].

In Figure 4 we present previously unpublished results of our first-principles calculations

that were used as the basis for fitting these coefficients for the case of BaTiO3.
Once we have an expression for the energy of bulk BaTiO3, we can develop a potential

appropriate for describing films. In the case of coherent epitaxy, where strain elements

�1, �2, and �6 are constrained while the others are free, this expression is

~G ¼ ðA �� �� ��
2 þ A ��� ��� þ A���

2Þ þ ðB �� ��þ B�� þ BÞu2
xy þ ðC �� ��þ C�� þ CÞu2

z

þDu4
xy þ Eu4

z þ Fu2
xyu2

z þHu4
xy sin2 � cos2 �: ð5Þ

where �¼ �zz is a possible external uniaxial stress applied perpendicular to the film,

uxy ¼ ðu2
x þ u2

yÞ1=2, and �¼ tan�1(ux/uy), so that

ux ¼ uxy cos �, ð6Þ
uy ¼ uxy sin �: ð7Þ
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Figure 4. Results of first-principles calculations used to fit the coefficients of the first-principles-
based model for bulk BaTiO3 as described in this section. In each panel, each symbol corresponds to
a full first principles calculation, while each curve is a low-order polynomial fit to the data.
The ground-state lattice constant and bulk modulus are obtained from the data in (a), through the
use of the Birch equation. B11 and B44 are related to the curvature of the third-order polynomials of
graphs (b) and (c); B12 is obtained from the relation B¼B11þ 2B12. The coefficient � is half the
lowest eigenvalue of the force constant matrix, obtained using finite differences and the ability of the
first-principles programs to compute forces on the atoms. The coefficients � and � are obtained from
the double-well sixth-order polynomial in (d). Finally, B1xx, B1yy, and B4yz are proportional to the
first derivative at zero strain of the third-order polynomials of (e), (f), and (g).
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The detailed expressions relating the coefficients appearing in Equation (5) back to the
KSV coefficients in Equations (2)–(4) are given in [12].

Once we have determined the set of coefficients in Equation (5), we can predict the
phase diagram as a function of misfit strain � and the normal external stress � by
minimizing ~G to find the values of the ground-state soft-mode amplitude components.
For a fourth-order theory like the present KSV expression, the entire optimisation process
can be done analytically, since it is possible to compute first and second derivatives of ~G
and to do a stability analysis of the various possible phases.

3.2.2. Testing the model: zero perpendicular external stress

We first consider the usual case in which the external perpendicular stress � vanishes.
Figure 5 (top) shows the energy curves of the various phases as predicted by the
first-principles-based KSV theory (right panel) compared with the full DFT results
(left panel). The agreement between the two sets of results is very good, with the small
differences arising from two sources. First, the first-principles calculations in [11] (and in
Section 3.1) were performed using the projector-augmented wave method [21], while the
first-principles calculations used to obtain the KSV coefficients referred here were
performed using ultrasoft pseudopotentials [31]. Second, there are the intrinsic errors
associated with the use of a Taylor expansion that has been truncated as described in the
previous section; these errors are expected to grow as the strain and soft-mode amplitudes
increase. The bottom panels in Figure 5 show the displacements of the atoms from their
centrosymmetric perovskite positions as the strain is varied. Again, the agreement between
the KSV results (right) and the full DFT results (left) is very good. In particular, the
square-root behaviour predicted by the KSV theory is exhibited by the more exact
DFT calculations.

3.2.3. Other results

In [12] we studied the effect of external stress � applied perpendicular to the film in
addition to the effect of misfit strain. We did this for BaTiO3 and other seven perovskites,
constructing a phase diagram for each in the two-dimensional space of normal stress and
misfit strain. We found that the stress-strain phase diagrams obtained for all of the
perovskites show a universal topology with straight-line phase boundaries meeting at
a single crossing point. A detailed interpretation of the those results was given in [12],
together with an analysis of the variables that drive each kind of behaviour seen for each
film. In the same article we also presented the computed polarisation of the films and
related these results to the concept of polarisation matching.

3.3. Finite-temperature calculations

The calculations presented so far were all done at zero temperature. In [11], we extended
our study of epitaxial BaTiO3 to finite temperatures by using the effective Hamiltonian
approach of Zhong, Vanderbilt, and Rabe [32,33]. This method follows the spirit of the
first-principles-based calculations described above, but now the model is expanded to
allow for different distortions in each individual unit cell. The relevant degrees of freedom
are taken to consist of a ferroelectric local-mode vector in each cell; a displacement vector
in each cell; and the global homogeneous strain variables. The ferroelectric local-mode
and the displacement variables describe local (in general inhomogeneous) polarisations
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Figure 5. Top panel: comparison of BaTiO3 energy curves for the six epitaxial phases studied,
as obtained from direct DFT calculations [11] (left), and from the KSV theory (right). Energies are
relative to the paraelectric structure at zero misfit strain. The lines in the left panel and the symbols
in the right panel are provided as guides to the eye. Bottom panel: comparison of BaTiO3 atomic
displacements for the most stable phase at each given value of strain, as obtained from direct DFT
calculations [11] (left), and from our KSV model (right). �z(Ti) indicates the displacement of the Ti
atom along the z direction, etc. Symmetry implies that �y(Ti)¼�x(Ti), �x(O2)¼�y(O1),
�y(O2)¼�x(O1), �z(O2)¼�z(O1), and �y(O3)¼�x(O3). The lines in the left panel are guides to
the eye.
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and strains, respectively. The number of parameters needed to describe such a model is

larger, since one needs to include new coefficients that quantify the interactions between

local-mode variables on neighbouring sites. However, all of the coefficients in the

expanded model are again obtained from fitting to an appropriately constructed database

of first-principles results. Finally, the effective-Hamiltonian model obtained in this way

can be used as the basis for finite-temperature Monte Carlo (MC) simulations that can be

used to map out finite-temperature phase diagrams.
It is straightforward to impose the constraint of fixed in-plane strain by fixing three of

the six elements of the homogeneous strain tensor during the MC simulations. For each

value of in-plane strain, MC thermal averages are obtained for the unconstrained

components of the homogeneous strain and the average polarisation, and phase

transitions are identified by monitoring the symmetries of these quantities. The resulting

Pertsev diagram is shown in Figure 6; it is reproduced from [11], where additional technical

details were given.
The Pertsev diagrams of Figures 1(a) and (b) and 6 share the same topology above and

just below TC : p at high temperature, c at large compressive misfit aa at large tensile misfit,

and a four-phase point connecting these phases with the r phase at TC. At lower

temperature, there is a drastic difference between Figures 1(a) and (b), with our theory

supporting the latter. While our theory underestimates the temperature of the four-phase

crossing point in Figure 6 by about 100�C, this is the price we pay for insisting on a first-

principles approach; indeed, this effective Hamiltonian underestimates the temperature of

the bulk cubic-to-tetragonal transition by about the same amount.

4. Studies of other perovskite films

In this section we review work on the effect of misfit strain on perovskite films other

than BaTiO3 using first-principles methodologies similar to the ones described in the

previous section.

−15 −10 −5 0 5 10 15

Misfit strain (10−3 )

−200

−100

0

100

200
3.94 3.96 3.98 4.00 4.02 4.04 4.06

In-plane lattice constant (Å)

T
em

pe
ra

tu
re

 (
°C

)

p

r

c aa

Figure 6. Phase diagram of epitaxial BaTiO3 obtained using the effective Hamiltonian of Zhong,
Vanderbilt and Rabe [32,33]. All transitions are second-order.
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4.1. KNbO3

KNbO3 is a perovskite whose bulk form is very similar to that of BaTiO3. It displays the

same sequence of transitions with decreasing temperature: cubic to tetragonal to

orthorhombic to rhombohedral, with five-atom unit cells.
Using our zero-temperature first-principles-base approach, we found [12] that KNbO3

and BaTiO3 also behave in a very similar way in terms of their behaviour as a function of

epitaxial strain in the context of film geometries. KNbO3 shows the same c! r! aa

sequence of transitions as does BaTiO3 when varying the misfit strain at zero temperature

in the absence of external perpendicular stress. The first transition occurs at a misfit strain

of �4.8� 10�3, and the second occurs at 5.5� 10�3.

4.2. PbTiO3

As in the cases of BaTiO3 and KNbO3, bulk PbTiO3 has a ferroelectric ground state with

a five-atom unit cell. In this case, however, there is only one transition, from cubic to

tetragonal, as the temperature is reduced.
A very similar approach to the full first-principles one presented in Section 3.1 was

used by Bungaro and Rabe to study the influence of misfit strain on PbTiO3 films [34].

As in the case of BaTiO3, they find a c! r! aa sequence of phase transitions, although

in this case the range of stability of the r phase is narrower than for BaTiO3

(from þ6.6� 10�3 to þ14.8� 10�3), and occurs only at expansive strains. In the same

paper, these authors analyze a superlattice with alternating layers of PbTiO3 and PbZrO3,

finding again the c! r! aa sequence of transitions, but with a wider region of

r behaviour than in the pure PbTiO3 case.
Our first-principles-based approach of [12] also predicts that PbTiO3 adopts the

c phase for compressive strains and the aa phase for tensile strains, with a window of

around 1% misfit strain in between (from �3.0� 10�3 to 8.4� 10�3). However, we find

that the r phase is less energetically favorable than a combination of c and aa domains.

4.3. SrTiO3

This perovskite is a ‘‘quantum paraelectric’’ in bulk form, meaning that it is only the

zero-point motion of ions that prevents ferroelectricity from developing. The cubic

phase undergoes a non-ferroelectric oxygen-tilting (or antiferrodistortive) transition at

about 105 K.
Antons and coworkers [35] carried out a full first-principles investigation along the

lines we have described in Section 3.1 for SrTiO3 films with five atoms in the unit cell.

They found that in this case the sequence of second-order transitions is c! p! aa as the

strain goes from compressive to tensile. The paraelectric phase exists for misfit strains

between �7.5� 10�3 and þ5.4� 10�3. They also observed a strong dependence of the

dielectric properties of these films on the misfit strain. A similar behaviour was observed

by us in [12], although with a narrower window of p phase in between the c and aa phases.
In their first-principles study, Lin, Huang, and Guo [36] considered larger unit cells for

SrTiO3, including in this way the possibility of having antiferrodistortive instabilities in

the films. As in the previous studies, they find that the polarisation goes from

pointing in the [001] direction for sufficiently compressive strains to pointing in the

[110] direction for sufficiently tensile strains. The paraelectric window extends in their
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case from �4� 10�3 to þ4� 10�3. Their phase diagram is richer due to the presence of the
new phases that involve rotations of the oxygen octahedra.

4.4. KTaO3

As in the case of SrTiO3, ferroelectricity is suppressed in bulk KTaO3 by quantum
fluctuations. In [37] Akbarzadeh and coworkers use first-principles based method to draw
the Pertsev diagram for KTaO3 films. Unlike the theories described above, this work
includes electrostatic boundary conditions and finite-size effects, albeit in an approximate
way. For films that are 28 Å thick, these authors find that quantum fluctuations
have almost no effect when the electrodes are ideal (short-circuit boundary conditions).
In this case, the diagram is very similar to that of strong ferroelectrics like BaTiO3. When
they simulate more realistic electrodes, they find that the corresponding depolarizing fields
in the film strongly affect the phase diagram. Under these conditions, the quantum
fluctuations might affect the phase diagram and eventually suppress the r phase.

4.5. Other perovskites

Bulk CaTiO3 experiences a phase transition from the cubic phase (with a five-atom unit
cell) to an orthorhombic phase (with a twenty-atom unit cell) as temperature is reduced.
Our calculations [12] for CaTiO3 films show a similar behaviour as for the PbTiO3 ones,
with the window between c and aa phases (misfit strains of �2.3� 10�3 to 5.35� 10�3)
showing a mixture of c and aa domains.

The ground state of bulk NaNbO3 shows a ferroelectric monoclinic phase with twenty
atoms in the unit cell. The behaviour of the film form [12] is similar to that of KNbO3, with
a c! r! aa sequence of transitions occurring at misfit strains of 5.5� 10�3 and
4.1� 10�3.

Bulk PbZrO3 undergoes a transition from cubic to an antiferroelectric phase that
has forty atoms in the unit cell. In [12] we show that the five-atom unit cell film stays in
the r phase except for large misfit strains that are experimentally difficult to achieve.
The behaviour of the true ground-state structure with epitaxial strain has yet to be
fully explored.

BaZrO3 maintains the simple cubic structure in bulk form at all temperatures.
According to our previous study [12], it also remains paraelectric in film form for all
experimentally relevant misfit strains.

5. Summary

In this article we have reviewed the role that first-principles calculations have played in
understanding the effects of substrate-imposed misfit strain on epitaxially grown
perovskite ferroelectric films. To do so we have analyzed the case of BaTiO3,
complementing our previous publications on this subject with unpublished data to help
explain in detail how these calculations are done. In particular, we have added new
explanations and figures to clarify how we carried out a stability analysis to identify
precisely the critical misfit strains at which phase transitions occur, how we checked for the
possible effects of octahedral rotations, and how we computed the coefficients of our first-
principles based Landau–Devonshire theory. We have also reviewed similar studies in the
literature for other perovskite ferroelectric-film materials.
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The use of first-principles calculations to understand the effects of misfit strain on the
properties of films is not restricted to the type of materials discussed here. For example,
Fennie and Rabe [38] have suggested that misfit strain can be used as a mechanism to
obtain strong coupling between ferroelectric and magnetic ordering in EuTiO3. Even more
recently, Ishida and Liebsch [39] have found that, when grown epitaxially on SrTiO3,
LaTiO3 becomes a highly correlated metal, instead of being a Mott insulator as found in
the bulk form. It is also worth mentioning that for some perovskite films not considered in
this article the dependence between polarisation and misfit strain is very weak [40,41].

We have shown that important insights can be gained by isolating the effects of misfit
strain on the properties of ferroelectric films. In the future, it would be desirable to extend
the theory by developing similar systematic approaches capable of handling other effects
that are relevant for films, including electric boundary conditions, domain formation,
surface and interface effects, and the role of vacancies and impurities.
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