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Ab initio Study of the Phase Diagram of Epitaxial BaTiO3
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Using a combination of first-principles and effective-Hamiltonian approaches, we map out the
structure of BaTiO3 under epitaxial constraints applicable to growth on perovskite substrates. We
obtain a phase diagram in temperature and misfit strain that is qualitatively different from that
reported by Pertsev et al. [Phys. Rev. Lett. 80, 1988 (1998)], who based their results on an empirical
thermodynamic potential with parameters fitted at temperatures in the vicinity of the bulk phase
transitions. In particular, we find a region of ‘r phase’ at low temperature where Pertsev et al. have
reported an ‘ac phase’. We expect our results to be relevant to thin epitaxial films of BaTiO3 at
low temperatures and experimentally-achievable strains.

PACS numbers: 77.55.+f, 77.80.Bh, 77.84.Dy, 81.05.Zx

The perovskite oxide barium titanate (BaTiO3) is
a prototypical ferroelectric, an insulating solid whose
macroscopic polarization can be reoriented by the ap-
plication of an electric field [1]. In the perovskite ferro-
electrics, it is well known both experimentally and theo-
retically that the polarization is also strongly coupled to
strain [2], and thus that properties such as the ferroelec-
tric transition temperature and polarization magnitude
are quite sensitive to external stress.

Experimentally, the properties of ferroelectrics in thin
film form generally differ significantly from those in the
bulk [3]. While many factors are expected to contribute
to these differences, it has been shown that the proper-
ties of perovskite thin films are strongly influenced by the
magnitude of the epitaxial strain resulting from lattice-
matching the film to the substrate. For example, Yoneda
et al. [4] used molecular-beam epitaxy (MBE) to grow
BaTiO3 (lattice constant of 4.00 Å) on (001)-oriented
SrTiO3 (lattice constant of 3.91 Å); they found that the
ferroelectric transition temperature exceeds 600 ◦C, to
be compared to the bulk Curie temperature of TC =
130 ◦C. Other studies have shown that the amount of
strain in BaTiO3/SrTiO3 superlattices on SrTiO3 sub-
strates strongly influences properties including the ob-
served polarization, phase transition temperature, and
dielectric constant [5, 6, 7, 8].

In a seminal paper, Pertsev, Zembilgotov and Tagant-
sev [9] introduced the concept of mapping the equi-
librium structure of a ferroelectric perovskite material
versus temperature and misfit strain, thus producing a
“Pertsev phase diagram” (or Pertsev diagram) of the ob-
servable epitaxial phases. The effect of epitaxial strain
is isolated from other aspects of thin-film geometry by
computing the structure of the bulk material with ho-
mogeneous strain tensor constrained to match a given
substrate with square surface symmetry [10]. In addi-
tion, short-circuit electrical boundary conditions are im-
posed, equivalent to ideal electrodes above and beneath
the film [9]. Given the recognized importance of strain
in determining the properties of thin-film ferroelectrics,

Pertsev diagrams have proven to be of enormous inter-
est to experimentalists seeking to interpret the results of
experiments on epitaxial thin films and heterostructures.

In [9], the mapping was carried out with a phenomeno-
logical Landau-Devonshire model taken from the liter-
ature. This should give excellent results in the tem-
perature/strain regime in which the model parameters
were fitted, but will generally be less accurate when
extrapolated to other regimes. In Fig. 1, we compare
two Pertsev diagrams for BaTiO3 computed using two
different sets of Landau-Devonshire parameters, used
by Pertsev and coworkers in [9] and [11], respectively.
While both give the same behavior near the bulk TC and
small misfit strains, they predict completely different low-
temperature phase behavior.

With first-principles methods, it is possible not only
to resolve such discrepancies arising in phenomenogi-
cal theories, but also to generate a wealth of micro-
scopic information about the structure and properties of
epitaxial phases at various temperatures and substrate
lattice constants. In this Letter, using parameter-free
total-energy methods based on density functional theory
(DFT), we map out the equilibrium structure of BaTiO3

as a function of epitaxial constraints at zero tempera-
ture, and then extend the results to finite temperature
via an effective-Hamiltonian approach. The Pertsev dia-
gram obtained in this way has a similar global topology
as that of Fig. 1(b) (but not to the one in [9]). This
allows us to predict the impact of misfit strain on the
magnitude and orientation of the polarization and Curie
temperature of BaTiO3. Our results should thus be of
considerable importance for understanding experimental
growth of high-quality, coherent epitaxial thin films of
BaTiO3 on perovskite substrates, as well as more gener-
ally illustrating the utility of first-principles Pertsev dia-
grams.

The first-principles DFT calculations are carried out in
the Kohn-Sham framework [12] using the VASP software
package [13]. The electron-ion interaction is described
by the projector augmented wave method [14]; semi-
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FIG. 1: Phase diagrams of epitaxial BaTiO3 as predicted by
the theory of Pertsev et al. [9]. (a) Using the parameters
quoted in [9]. (b) Using the parameters quoted in [11]. The
second- and first-order phase transitions are represented by
thin and thick lines, respectively.

core electrons are included in the case of Ba (5s25p66s2)
and Ti (3s23p64s23d2). The calculations employ the
Ceperley-Alder [15] form of the local-density approxima-
tion (LDA) exchange-correlation functional [16], a 700 eV
plane-wave cutoff, and a 6× 6× 6 Monkhorst-Pack sam-
pling of the Brillouin zone [17].

We begin by systematically performing optimizations
of the five-atom unit cell of the cubic perovskite struc-
ture (space group Pm3̄m) in the six possible phases con-
sidered by Pertsev et al. in [9]. A description of these
phases is given in Table I. Starting from a structure
in which the symmetry is established by displacing the
Ti and O atoms, we relax the atomic positions and the
out-of-plane cell vector until the value of the Hellmann-
Feynman forces and zz, yz and zx stress tensor compo-
nents fall below some given thresholds (0.001 eV/Å and
0.005 eV, respectively).

In Fig. 2 we present the computed energy for each
phase as a function of the misfit strain s = a/a0 − 1,
where a0 is our DFT lattice constant for free cubic
BaTiO3 (3.955 Å). For large compressive strains, the low-
est energy corresponds to the c phase; for large tensile
strains, the aa phase is favored. At a misfit strain of
smax(c) = −6.4 × 10−3 (a = 3.930 Å), there is a second-
order transition from the c phase to the r phase, with the
polarization in the r phase continuously rotating away
from the z direction as the misfit strain increases. At mis-
fit strain smin(aa) = 6.5×10−3 (a = 3.981 Å), the r phase
polarization completes its rotation into the xy plane, re-
sulting in a continuous transition to the aa phase. The
minimum energy r phase is at misfit strain of 2.2× 10−3

(a = 3.964 Å); lattice matching to the substrate would
be optimal at this point. At the misfit strain of the c→r

transition, the polarization could also begin a continuous
rotation into the (010) plane, corresponding to the ac

phase. However, it is clear from the figure that the energy
of the ac phase is always higher than that of the r phase,

TABLE I: Summary of possible epitaxial BaTiO3 phases. In-
plane cell vectors are fixed at a1 = ax̂, a2 = aŷ. Columns list,
respectively: phase; space group; out-of-plane lattice vector;
number of free internal displacement coordinates; and form
of the polarization vector.

Phase SG a3 Np Polarization

p P4mmm cẑ 0 0

c P4mm cẑ 3 Pz ẑ

aa Amm2 cẑ 4 P (x̂ + ŷ)

a Pmm2 cẑ 4 P x̂

ac Pm cαx̂ + cẑ 8 P x̂ + Pz ẑ

r Cm cα(x̂ + ŷ) + cẑ 7 P (x̂ + ŷ) + Pz ẑ

which makes sense given that the r phase is an epitax-
ial disortion of the ground-state rhombohedral phase of
bulk BaTiO3, while the ac phase is related to the higher-
energy bulk orthorhombic phase. We conclude that the
phase sequence at low temperatures is not c→ac→aa as
given in [9], but c→r→aa.

Figure 3 shows the computed behavior of the atomic
displacements for the lowest-energy phase with increas-
ing misfit strain. For large compressive strains, the pat-
tern of displacements corresponds to the c phase, and
atoms relax only along the [001] direction. As the in-
plane strain increases, we observe a second-order phase
transition (c→r), and while the magnitude of the atomic
displacements continues to diminish along [001], the dis-
placements in the xy plane begin to grow. With in-
creasing tensile strain, the displacements along [001] van-
ish at the r→aa transition, while the displacements in
the xy plane continue to grow smoothly. Similar results
are found when we analyze the c→ac→a sequence (not
shown), where what was said for the xy plane applies now
to the [100] direction. The clear change in character of
the displacement pattern within the r phase witnessed
here illustrates the quantitative limitations of using a
single misfit-strain-independent local mode to model the
phase diagram.

A stability analysis provides the precise limits of phase
stability shown in Figs. 2 and 3. At each value of misfit
in the c phase, for example, we carry out finite-difference
calculations of x forces and xz stress as the atomic x
coordinates and xz strain are varied. The zero crossing
of the lowest eigenvalue of the resulting 6 × 6 Hessian
matrix identifies the critical misfit. A similar analysis is
used to consider z displacements and shear strains in the
a and aa phases. By properly considering zone-center
phonons, elastic shear, and linear cross-coupling between
them, this analysis allows us to locate the second-order
phase boundaries much more precisely than is possible
through direct comparison of total energies [18].

Having established the first principles zero-
temperature phase diagram, we now extend our
study of epitaxial BaTiO3 to finite temperatures using
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FIG. 2: Energies of the possible epitaxial BaTiO3 phases for
different misfit strains, as obtained from the full ab initio

calculations. The vertical lines denote the phase transition
points given by the stability analysis.

the effective Hamiltonian approach of Zhong, Vanderbilt,
and Rabe [19]. In this method, the full Hamiltonian
is mapped onto a statistical mechanical model by a
subspace projection, and parameterized through ab

initio calculations of small distortions of bulk BaTiO3

in the cubic perovskite structure. The reduced subspace
is composed of a set of relevant degrees of freedom
identified for ferroelectric perovskites as the unit cell
distortions corresponding to local polarization, expressed
in the form of local modes. This subspace is augmented
by the inclusion of the homogeneous strain.

It is straightforward to impose the constraint of fixed
in-plane strain by fixing three of the six tensor strain
components during the Monte Carlo (MC) simulations.
For each value of in-plane strain, MC thermal averages
are obtained for the unconstrained components of the ho-
mogeneous strain and the average polarization [20], and
phase transitions are identified by monitoring the symme-
try of these quantities. Following [19], all the simulations
were performed at the same negative external pressure of
P = −4.8 GPa. Misfit is defined relative to a0 = 3.998 Å,
the lattice constant at the bulk cubic-to-tetragonal tran-
sition as computed with this approach [19]. The resulting
phase diagram appears in Fig. 4, where all phase lines
represent second-order transitions.

The Pertsev diagrams of Figs. 1(a), 1(b), and 4 share
the same topology above and just below TC: p at high
temperature, c at large compressive misfit, aa at large
tensile misfit, and a 4-phase point connecting these
phases with the r phase at TC. At lower temperature,
there is a drastic difference between Figs. 1(a) and 1(b),
with our theory supporting the latter. While our theory
underestimates the temperature of the 4-phase crossing
point in Fig. 4 by about 100 ◦C, this is the price we pay
for insisting on a first-principles approach; indeed, this
effective Hamiltonian underestimates the temperature of
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FIG. 3: Displacements of the atoms from the cubic perovskite
cell positions, for the most energetically favorable configura-
tion at a given misfit strain. The vertical lines denote the
phase transition points obtained from the stability analysis.
∆3(Ti) labels the displacement of the Ti atom in units the
third lattice vector, etc.

the bulk cubic-to-tetragonal transition by about the same
amount.

At low temperature, our Pertsev diagram shows the se-
quence of second-order phase transitions c→r→aa. The
r phase is predicted to exist in a range that is more than
twice as broad as that shown in Fig. 2. We have found
that this range is reduced to about 1.5 times that of Fig. 2
when the negative-pressure correction is not included.
The remaining discrepancy is related to technical differ-
ences between the DFT calculations used in [21] to obtain
the parameters for the effective Hamiltonian method and
the DFT calculations we report here [22]. We should also
mention that the effective Hamiltonian used here does
not include the physics related to the zero-point motion
of the ions. This quantum effect should alter the shape of
the lines of the diagram at very low temperatures, and it
would result in those lines approaching the misfit-strain
axis with infinite derivative (see, for example, [23]). In
any case, at zero temperature, the phase sequence is quite
unambiguously established by the first-principles results.
This clearly indicates that the low-temperature extrapo-
lation of the Landau-Devonshire parameters fitted near
TC can give rise to spurious results, such as the stability
of the ac phase obtained in Ref. [9].

Finally, we comment on the effect of the assumptions
made in the construction of this first-principles Pertsev
diagram. In principle, we should consider the possibil-
ity of equilibrium structures with larger unit cells, par-
ticularly those with cell-doubling octahedral rotations,
which have been shown to be important in SrTiO3, and
could condense in BaTiO3 under sufficiently large misfit
strains. As an example, we have checked that the para-
electric phase of the film is stable with respect to octahe-
dral rotations about the [001] direction (with M3 symme-
try) up to an epitaxial compressive strain of −70.9×10−3
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FIG. 4: Phase diagram of epitaxial BaTiO3 obtained using
the effective Hamiltonian of Zhong, Vanderbilt and Rabe [19].

(a = 3.675 Å), far larger than those likely to be exper-
imentally relevant. In addition, while we have studied
only the effects of epitaxial strain, other physical effects
may also be relevant to the structure and properties of
thin films, such as atomic rearrangements at the film-
substrate interface and free surface, and the instability
to formation of multiple domain structures [24].

To summarize, we have performed density-functional
theory calculations in order to obtain the “Pertsev di-
agram” of epitaxial BaTiO3 at zero temperature. The
results we obtain differ from those computed previously
[9] using a Landau-Devonshire theory where the param-
eters needed were obtained from experimental informa-
tion about bulk BaTiO3 at the phase transitions temper-
atures. Alternatively, the use of a similar theory where
the constants of the model are computed using an ab

initio method is consistent with both the first principles
results at zero temperature, and with the work of Pertsev
et al. [9] at high temperature.

It is a pleasure to thank Jorge Íñiguez, Javier Jun-
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