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Eu5In2Sb6 is an orthorhombic non-symmorphic small band gap semiconductor with three distinct
Eu2+ sites and two low-temperature magnetic phase transitions. The material displays one of the
greatest (negative) magnetoresistances of known stoichiometric antiferromagnets [1] and belongs
to a family of Zintl materials that may host an axion insulator [2]. Using single crystal neutron
diffraction, we show that the TN1 = 14 K second-order phase transition is associated with long-
range antiferromagnetic order within the chemical unit cell (k1 = (000)). Upon cooling below TN1,
the relative sublattice magnetizations of this structure vary until a second-order phase transition
at TN2 = 7 K that doubles the unit cell along the ĉ axis

(
k2 =

(
00 1

2

))
. We show the anisotropic

susceptibility and our magnetic neutron diffraction data are consistent with magnetic structures
described by the Γ3 irreducible representation with the staggered magnetization of the k1 and k2

components polarized along the b̂ and â axis, respectively. As the k2 component develops, the
amplitude of the k1 component is reduced, which indicates a 2k non-collinear magnetic structure.
Density functional theory is used to calculate the energies of these magnetic structures and to
show the k1 phase is a metal so TN1 is a rare example of a unit-cell-preserving second-order phase
transition from a paramagnetic semiconductor to an antiferromagnetic metal. DFT indicates the
transition at TN2 to a doubled unit cell reduces the carrier density of the metal, which is consistent
with resistivity data [1].

I. INTRODUCTION

Europium Zintl materials have displayed some of the
largest reported (negative) magnetoresistances of anti-
ferromagnetic (AFM) compounds. These include 122
Eu-based antiferromagnets like EuZn2As2 and EuCd2P2

[3, 4]. Recently, the magnetoresistance of the Zintl ma-
terial Eu5In2Sb6 at 9 T and 15 K was reported to be
-99.999% [1]. Eu5In2Sb6 also displays a record negative
piezoresistance[5]. The extreme sensitivity of electronic
transport to external stimuli may make Eu5In2Sb6 use-
ful for dark matter detection [6, 7]. Eu5In2Sb6 has also
been proposed as an axion insulator candidate [1]. While
recent work contests this hypothesis, related chemically
substituted compounds may yet realize the axionic state
[2].

Given the rich interplay of magnetic and electronic
properties, the long-range magnetic order in Eu5In2Sb6
is of particular interest. Two magnetic phase transitions
have been observed at TN1 = 14 K and TN2 = 7 K, with
susceptibility data indicating antiferromagnetic struc-
tures with competing interactions [1, 8]. Here we present
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a single crystal neutron diffraction study of Eu5In2Sb6.
We will refer to the 0 T magnetic phase from 14 K to 7 K
as “phase 1” and the 0 T magnetic phase found from 7 K
down to at least 1.5 K as “phase 2.” We identify the mag-
netic propagation vectors in both phases and candidate
magnetic structures based on comparison of the observed
and calculated structure factors for magnetic structures
that can develop through a second-order phase transi-
tion. With knowledge of the ordered magnetic structure,
we use DFT to calculate the electronic band structure
finding that the gap in the electronic density of states
within the paramagnetic (PM) phase closes in the anti-
ferromagnetic phases.

II. METHODS

Single-crystalline samples of Eu5In2Sb6 were grown us-
ing the flux technique with InSb as the flux solvent [1].
Powder X-ray diffraction (XRD) data, used to confirm
phase purity of the single crystals, were collected over a
scattering angle range of 5◦−60◦ on a laboratory Bruker
D8 Focus diffractometer with a LynxEye detector and
Cu Kα radiation.
Neutron diffraction experiments (Appendix C) were

performed at the NIST Center for Neutron Research
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(NCNR) on the SPINS and BT7 [9] triple-axis spectrom-
eters. A spherical absorption correction with effective
radius corresponding to the sample volume was used to
partially correct for the strong neutron absorption by
Eu and In [10]. Structural and magnetic refinements
were performed using FullProf [11, 12] with absorption
corrected structure factors as the experimental input.
Group theoretical analysis was performed in SARAh and
ISODISTORT from the ISOTROPY software suite [13–
15]. Magnetic structure factors were also calculated an-
alytically in Mathematica [16]. A single crystal neutron
diffraction experiment was performed at Oak Ridge Na-
tional Laboratory (ORNL) on TOPAZ. Analysis of those
data was performed using the Mantid software package
[17, 18]. Code and data are available on GitHub [19].
Error bars represent one standard deviation unless oth-
erwise noted.

To determine the quality and critical temperature of
our sample prior to neutron diffraction, heat capacity
was measured on a 5.2(1) mg single crystal cut from the
BT7 sample (Fig. 1, Fig. 3a). The crystal was mounted
on a heat capacity puck with Apiezon N Grease for mea-
surement in a Quantum Design PPMS using the standard
heat capacity option. Heat capacity was measured using
the semi-adiabatic method with a 2% temperature rise.
Fitting to the Debye model was done using MATLAB
[20].

Density functional theory [21, 22] (DFT) based first
principles calculations were performed using the projec-
tor augmented-wave (PAW) method as implemented in
the VASP code [23, 24]. We used the PBE exchange-
correlation functional as parametrized by Perdew-Burke-
Ernzerhof [25]. The Brillouin zone sampling was per-
formed by using a 5 × 5 × 15 k-grid. The energy cutoff
was chosen 1.5 times as large as the values recommended
for the relevant PAW pseudopotentials. Spin-orbit cou-
pling (SOC) was included self-consistently. The Eu 4f
states were treated by employing the GGA+U approach
with the U value set to 5.0 eV. Dipole energy calcu-
lations were performed in Mathematica [16] using the
phase 1 and phase 2 magnetic structures refined from
neutron diffraction. The net magnetic dipole-dipole in-
teraction strength for these antiferromagnetic structures
was calculated by adding the contributions from all pairs
of moments within an increasing spherical volume until
convergence was achieved for a diameter of 100 Å.

III. EXPERIMENTAL RESULTS

Heat capacity measurements show two anomalies, nei-
ther of which have latent heat (Fig. 1a,b). We inter-
pret these anomalies as marking second-order phase tran-
sitions and from the midpoint of the sharp edges of
the specific heat peaks we obtain TN1 = 14.04 K and
TN2 = 7.20 K. Upper bounds on the half width at half
maximum for the upper, sharper edges of these peak are
0.3 K and 0.1 K for TN1 and TN2, respectively. The small
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FIG. 1. (a-c) Specific heat measurements on part of the
Eu5In2Sb6 crystal used for neutron diffraction on BT7. (a)
Debye fit with a correction for a small amount of grease be-
ing transferred during the sample mounting, indicated by the
red line. ΘD = 170(6) K. We find two sharp λ peaks near
TN1 = 14.04 K and TN2 = 7.20 K (indicated with vertical
dashed lines) with a broad peak at 50 K. We interpret the
sharp peaks as second-order transitions. The paramagnetic
phase lies above TN1, “phase 1” is between TN1 and TN2, and
“phase 2” is below TN2. See Appendix A for an alternative fit
using anharmonic contributions as in [26]. (b) An estimate
of the magnetic heat capacity determined by subtracting our
calculated Debye contribution from the observed heat capac-
ity. The magnetic contribution only declines to 0 J/mol·K2

beyond 50 K. (c) Magnetic entropy saturates near 5R log 8
J/mol·K (indicated by the horizontal dashed line), the ex-
pected value for a formula unit with five S = 7/2 Eu2+ ions.
The error bars are correlated. Dashed red lines about the
calculated entropy are fits using upper and lower bounds on
the measured sample mass.

values of ∆T+/TN1 = 0.02 and ∆T+/TN2 = 0.01 indicate
both transitions are associated with magnetic symmetry
breaking in a homogeneous solid.

The corresponding magnetic Bragg peaks of phase 1
are apparent in the single crystal time of flight diffraction
data from TOPAZ at ORNL [27]. Figure 2 shows neu-
tron scattering intensity with momentum transfer span-
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ning the (h0l) reciprocal lattice plane. In the param-
agnetic phase (Fig. 2a) nuclear Bragg peaks consistent
with the orthorhombic space group Pbam (55) are ob-
served. Figure 2b shows the additional Bragg diffrac-
tion that develops upon cooling into phase 1. Several
observations can immediately be made: Magnetic inten-
sity in phase 1 occurs only for integral Miller indices.
This indicates the magnetic wave vector for phase 1 is
k1 = (000), i.e., the magnetic unit cell equals the chem-
ical unit cell. However, magnetic Bragg peaks appear
at (±10l) for integral l where nuclear contributions are
forbidden by the (2n, 0, l) Pbam selection rule [28]. This
indicates antiferromagnetic ordering of Eu spins within
one or more of the three distinct Wyckoff sites. From
the presence of considerable magnetic intensity on reflec-
tions such as (102), (103) and even (104) we learn that
this cannot be ĉ-polarized antiferromagnetism as mag-
netic Bragg diffraction is insensitive to spin components
polarized along wave vector transfer.

We used triple-axis spectrometers at NIST to probe
the detailed temperature dependence of magnetic diffrac-
tion. All the magnetic peaks were found to be resolution-
limited indicating static long-range magnetic ordering.
Temperature dependent Bragg intensity was observed at
nuclear peaks such as (140) (Fig. 3c), which are nuclear
allowed reflections for all but Eu2 on the 2a Wyckoff site.

Rocking scans acquired on SPINS through the purely
magnetic (100) Bragg peak are shown in Figure 4a. Con-
sistent with the TOPAZ experiment and the Pbam se-
lection rules, there is no peak in the paramagnetic phase
at 20 K. Bragg diffraction appears with the symmetry
breaking magnetic order, growing in strength upon cool-
ing. Considering the polarization factor, the presence of
magnetic diffraction at (100) implies the staggered mag-
netization cannot be oriented along â. Since ĉ-oriented
moments are ruled out by the TOPAZ data, the stag-
gered magnetization must be oriented along the b̂ direc-
tion. A fit of the T−dependent intensity in Figure 3b to
I(T ) = I0(1 − T/TN1)

2β including data within 1.2 K of
TN1[29] yields β = 0.37(2). This critical exponent is clos-
est to the Heisenberg universality class (β = 0.366) but
also consistent with XY criticality (0.349). 3D Ising crit-
icality (0.326) lies just beyond our error bars. Assuming
collinear antiferromagnetism (see Sec. IVB), we find that
order on the 2a Wyckoff sites yields Bragg diffraction on
(100), (140), and (011). However, (011) does not have a
conventional critical onset for T < TN1 (Fig. 3d). This
implies collinear AFM ordering on the 2a position can-
not be the principal order parameter of the k1 = (000)
transition.

The reduction in (011) intensity for T < TN2 should be
matched with an increase in intensity elsewhere. Triple-
axis scans using BT7 through the (h0l) plane Brillouin
zone at 1.5 K revealed half-integer peaks, which indi-
cate the development of a new magnetic order parameter
with a characteristic wave vector k2 =

(
00 1

2

)
(Fig. 3e,

Fig. 4b). The corresponding magnetic Bragg peaks are
again resolution-limited. The temperature dependence
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FIG. 2. (a) Intensity in the (h0l) plane of the Eu5In2Sb6

paramagnetic phase. Note that for the crystallographic space
group (Pbam), a reflection of the form (h0l) or (0kl) must
have h or k be an even integer, respectively. This reflection
condition is obeyed. Some powder lines are visible. (b) Inten-
sity difference between base temperature scans and scans in
the paramagnetic phase. The four inequivalent (10l) reflec-
tions are purely magnetic. We find only integer-valued peaks
at base temperature in this experiment, which are associated
with phase 1. Data from TOPAZ.

of the
(
00 1

2

)
reflection near TN2 is consistent with a 3D

Heisenberg criticality (dashed line in Fig. 3e) though the
data quality does not allow for a unique determination
of the universality class.
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FIG. 3. (a) Eu5In2Sb6 heat capacity with two magnetic
transitions indicated by lines at TN1 = 14.24 K and TN2 =
7.20 K. The former temperature was determined by fitting to
the (100) peak for β while the latter was from heat capacity
as described in Figure 1a. (b-e) We find the same transitions
in both our heat capacity and our neutron diffraction results.
Forbidden integer peaks first appear in phase 1 (below TN1)
while half-integer peaks emerge in phase 2 (below TN2). Note
thatQ =

(
00 1

2

)
consists of rocking scans while the others have

the detector stationary at the peak position. The solid red line
in (b) indicates the fitted region for β. The critical behavior
modeled in (e) is intended as a guide for the eye. It assumes
β for a Heisenberg class and TN2 from heat capacity. (b), (d)
and (e) are from BT7 data while (c) is from SPINS. Energies
were E = 14.7 meV for (b), E = 5 meV for (c), E = 35 meV
for (d) and E = 14.7 meV for (e). (f) Susceptibility versus
temperature measured on Eu5In2Sb6 single crystals with a
µ0H = 100 mT field along â, b̂ and ĉ with masses 16.0(1)
mg, 17.2(1) mg and 1.6(1) mg, respectively. Contributions
to the systematic uncertainty from the mass measurements
are 0.6%, 0.6% and 6%, respectively. Susceptibility along â
is enhanced while susceptibility along b̂ is suppressed at TN1.
Susceptibility along â is suppressed at TN2. Measurements
were performed on warming after cooling in zero field (ZFC)
or in the measurement field (FC) as indicated in the figure.
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FIG. 4. (a,b) Rocking scans of Eu5In2Sb6 magnetic reflec-
tions. A slight offset of these peaks from the listed scattering
vectors is interpreted as a consequence of the alignment accu-
racy rather than physical phenomena such as incommensura-
bility. Magnetic peaks were fit to a flat background and Voigt
function with the reciprocal of the Lorentzian half-width half-
maximum giving a spin correlation length (see Appendix F).
The resolution width was set to the mean of fitted Gaus-
sian widths from our brightest Bragg peaks (these were rela-
tively constant as a function of Q). (a) Rocking scan through
Q = (100), which violates a reflection condition for the par-
ent space group Pbam. Data from SPINS experiment on an
(hk0)-aligned sample. The fitted correlation length is greater
than 960 Å for an increase in χ2

r of 20% from the minimum.
(b) Data from BT7 experiment on an (0kl)-aligned sample.
The fitted correlation length is greater than 1554 Å for an
increase in χ2

r of 20%, indicating the peaks are resolution-
limited.

IV. ANALYSIS AND DISCUSSION

A. Interpretation of Magnetic Results

The low symmetry of Eu5In2Sb6, the strong neutron
absorption of Eu, the presence of three Eu Wyckoff sites
and of two magnetic phase transitions make it difficult
to determine the magnetic structure of this compound
by neutron diffraction alone. To proceed, we shall com-
bine information from susceptibility measurements ([1],
Fig. 3f) with T -dependent Bragg diffraction (Fig. 3b-e)
and conventional refinement of neutron diffraction data
(Fig. 5). As we shall see, this leads to hypothesized mag-
netic structures for phases 1 and 2 that are consistent
with the data.
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Fits of the measured heat capacity to the Debye in-
terpolation scheme give an entropy approaching the ex-
pected 5R log 8 J/mol·K for a system with five S = 7

2

Eu2+ atoms per formula unit (Fig. 1c). Furthermore, the
anomalies at each of the phase transitions are λ− like and
carry no latent heat. We thus consider each Eu site to
form a 7 µB local moment and take both transitions to
be second-order such that the 7 K transition simply adds
the k2 =

(
00 1

2

)
propagation vector to phase 1 resulting

in a homogeneous magnetically ordered crystal with two
magnetic wave vectors (see Appendix G).

B. The 14 K Phase Transition

The magnetic susceptibility of Eu5In2Sb6 is highly
anisotropic. The reduction in χb upon cooling below TN1

suggests an antiferromagnetic component of the mag-
netic moment along b̂. χc on the other hand is nearly
temperature-independent across the transition indicating
no component of the magnetic order lies along ĉ. This
is consistent with the TOPAZ and BT7 data that show
the diffraction in the high-T phase is associated with the
b̂-component of Eu1 and/or Eu3, which occupy the 4g
Wyckoff sites (Fig. 2b, Fig. 4a). χa is enhanced and hys-
teresis inM versusH scans at 10 K indicates a very small
ferromagnetic component along â ([1], 0.021(1) µB/Eu in
Fig. 9).

Neutron diffraction shows the TN1 = 14 K transition
leads to AFM order within the chemical unit cell, i.e.,
k1 = (000). With this propagation vector (as well as
the reported parent space group and Eu positions [30]),
we shall use the Landau theory of second-order phase
transitions to narrow down the list of possible magnetic
structures [31]. The basis vectors of the irreducible rep-
resentations of the k1 = (000) little group Gk1 are given
in Table I.

Irreps 2, 3, 5 and 8 describe magnetic order with spins
in the ab-plane. Only irrep 3 allows for ferromagnetism
along â. If the magnetization data for field along â re-
flect an intrinsic ferromagnetic component of the order
parameter, then the 14 K magnetic transition must pro-
ceed through irrep 3 and the staggered magnetization
must be oriented along b̂. Note that if the FM compo-
nent along â is not intrinsic, perhaps indicating a 0.3%
molar fraction EuO impurity phase, then irreps 2, 5 and
8 are also viable.

Further constraints on the magnetic order are obtained
by considering the T−dependent Bragg diffraction in Fig-
ure 3. There are only three spin configurations that pro-
duce magnetic Bragg diffraction at (100) and (140) but
not at (011), consistent with the different temperature-
dependences of the magnetic Bragg diffraction intensities
at these reciprocal lattice points (Fig. 3b-d). These spin
configurations are Eu1 (4g) ordering through Γ2 and Eu3
(4g) ordering through Γ2 or Γ3. But because magnetic
diffraction at (011) does emerge within phase 1 upon
cooling (Fig. 3d), the irrep characterizing phase 1 must

allow other Eu sites to produce magnetic Bragg diffrac-
tion at (011) (see Appendix E). This is not the case for
Γ2, which thus is not a viable irrep for phase 1. We may
conclude that magnetic order on the Eu3 site described
by Γ3 becomes critical at TN1 and subsequently induces
Γ3 order on the Eu1 and/or Eu2 sites. This implies â-
oriented uniform magnetization for T < TN1 as is indeed
observed (Fig. 3f, Fig. 9).

Also in support of this inference, refinement of the
magnetic Bragg intensities in the (hk0) scattering plane
at 10 K using irreps 2, 3, 5 and 8 favors Γ3 (Fig. 5a, see

Appendix C). Only the AFM b̂ component was refined
because the FM â component is constrained by magneti-
zation data. At 10 K, the refined structure is composed
of FM 5-atom arrays (indicated by the black lines) con-
sisting of two each Eu1 and Eu3 sites and one Eu2 site
(Fig. 5a,e,f). Neighboring 5-atom arrays are in turn AFM
correlated. Within the large error bars resulting from
absorption corrections, all Eu sites carry similar ordered
moments at 10 K though criticality at TN1 is driven by
Γ3 AFM order on the Eu3 site.

C. The 7 K Phase Transition

Turning now to the lower T transition, we note that
χa is suppressed below 7 K. This indicates a component
of the low-temperature antiferromagnetic order lies along
â. χb and χc, on the other hand, do not change signifi-
cantly at this transition. Given the second-order nature
of both phase transitions, we consider homogeneous 2k
structures. Since k2 =

(
00 1

2

)
, the magnetic unit cell is

doubled along ĉ at this transition. So while a small FM
contribution along â is possible for the k1 = (000) or-
der, the additional magnetic order that develops below 7
K is entirely AFM. Barring strong quantum fluctuations
in this 3D local moment magnet, all spins in Eu5In2Sb6
must eventually acquire the full 7 µB ordered moment
associated with the half filled 4f shell. This implies the
k1 = (000) and the k2 =

(
00 1

2

)
components of the mag-

netic order on every Wyckoff site must have orthogonal
polarizations. Were this not the case, the moment size
would alternate with translations along ĉ. As we have
shown the AFM order in the k1 = (000) structure in-

volves all three Wyckoff sites and is polarized along b̂,
the k2 =

(
00 1

2

)
staggered moment must be primarily

oriented along â. Since Eu3 drives TN1, we expect Eu1
and/or Eu2 drive the 7 K transition, which is consis-
tent with the suppression of the (011) intensity at TN2

(Fig. 3d).
Even though the 7 K transition proceeds from a black-

white group rather than a paramagnetic (grey) group,
it can be shown that an arbitrary black-white group is
isomorphic to a paramagnetic group and their unitary ir-
reducible representations coincide [32, p. 36-37]. Specif-
ically, our proposed Pb′am′ magnetic space group is iso-
morphic to the auxiliary crystallographic space group
Pbam, which is also the parent space group. There-



6

TABLE I. The k1 = (000) and k2 =
(
00 1

2

)
normalized basis vectors for space group Pbam (55). The basis vectors are lists

of (unit) vectors for each Eu atom that specify possible magnetic moment orientations. Eu1 and Eu3 both occupy 4g Wyckoff
sites while Eu2 is on the 2a site. Each irreducible representation is denoted as Γi where i labels the irrep. Each Wyckoff site
has its own set of basis vectors ψj(Γi) and a corresponding set of mixing coefficients in µB. Only spin structures realizing irreps
2, 3, 5 and 8 lie in the ab-plane. Of these, only irreps 3 and 5 have all sites magnetized.

Eu Location Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8

- - ψ1(Γ1) ψ1(Γ2) ψ2(Γ2) ψ1(Γ3) ψ2(Γ3) ψ1(Γ4) ψ1(Γ5) ψ2(Γ5) ψ1(Γ6) ψ1(Γ7) ψ1(Γ8) ψ2(Γ8)

1,3 (x, y, 0) ĉ â b̂ â b̂ ĉ â b̂ ĉ ĉ â b̂

1,3
(
x+ 1

2
, ȳ + 1

2
, 0
)

−ĉ â −b̂ â −b̂ −ĉ −â b̂ ĉ ĉ −â b̂

1,3
(
x̄+ 1

2
, y + 1

2
, 0
)

−ĉ −â b̂ â −b̂ ĉ −â b̂ −ĉ ĉ â −b̂
1,3 (x̄, ȳ, 0) ĉ −â −b̂ â b̂ −ĉ â b̂ −ĉ ĉ −â −b̂
2 (0, 0, 0) ĉ - - â b̂ - â b̂ - ĉ - -

2
(
1
2
, 1
2
, 0
)

−ĉ - - â −b̂ - −â b̂ - ĉ - -

TABLE II. Refined moment sizes on Eu sites 1 (4g), 2 (2a)
and 3 (4g) assuming a homogeneous magnetic phase below
2 K. Errors were determined by varying one moment while
refining all others until a threshold χ2

r 20% larger than the
best χ2

r was exceeded. The error bars on the refined moment
size are unusually large as a result of the strong neutron ab-
sorption by Eu. Refer to Γ3 in Table I for the basis vectors
of these coefficients.

T (K) k µ̂ µ1(µB) µ2(µB) µ3(µB)

10 (000) b̂ 5(2) -7(3) -6(2)
1.6

(
00 1

2

)
â >-3 ≤7 4(3)

1.5 (000) b̂ 5(3) -7(4) -7(2)

fore we simply consider irreps for space group Pbam and
k2 =

(
00 1

2

)
. For this orthorhombic structure the irreps

are the same as for k1 = (000), and are listed in Ta-
ble I. Of these, only irreps 2, 3, 5 and 8 involve a stag-
gered moment along the â axis. Refinement at 1.5 K of
integer-valued (hk0) peaks enhanced by the k1 = (000)
contribution points to irrep 3 as the best-fit (Fig. 5g).
This is in agreement with the 10 K refinement, as the
k1 = (000) irrep should not change at the TN2 = 7 K
transition which is driven by the k2 =

(
00 1

2

)
magnetic

order. Based on our earlier analysis, we constrain the
k2 =

(
00 1

2

)
moment to (1) lie along â and (2) to give a

net moment of 7 µB on every Eu2+ ion up to the error
bar implied by the k1 = (000) refinement. This second
constraint is lifted when calculating the uncertainty in
the refined moments. The structure factor is approxi-
mately dependent on the difference between the Eu1 and
Eu2 moments, giving large uncertainties. A comparison
of the simulated and observed T = 1.5 K, k2 =

(
00 1

2

)
structure factors points to Γ3 as the best-fit solution for
the 7 K transition (Fig. 5g). We note that a 7 K tran-
sition through irrep 3 is consistent with our temperature
scan of the Q =

(
00 1

2

)
peak. Only irreps 3, 5 and 7

can account for that reflection. For irrep 7, only the ĉ
component of the moment contributes to the reflection.
But this is excluded by the polarization factor as it lies

parallel to the scattering vector. Irrep 7 is furthermore
inconsistent with our earlier conclusion from susceptibil-
ity measurements that staggered magnetization lies in
the ab-plane. For irrep 5, only the b̂ component of the
moment contributes to

(
00 1

2

)
but this is contrary to our

earlier conclusion that the staggered magnetizations as-
sociated with k1 and k2 must be perpendicular to each
other.
Thus Γ3 is the only viable option for phase 2. Both the

high- and low-T magnetic orders are given by the mag-
netic space group 55.358 in the Belov-Neronova-Smirnova
(BNS) notation, in which the unit cell is generally not the
paramagnetic unit cell [14]. This is 55.6.446 according to
the Opechowski-Guccione (OG) notation, in which the
unit cell is the paramagnetic unit cell. Refined moments
are reported in Table II. The refined 10 K homogeneous
structure is shown in Figure 5a and the 1.5 K structure
is in Figure 5b.

D. DFT calculations

We now turn to first principles calculations that ex-
plore the DFT ground state energy of magnetic struc-
tures in Eu5In2Sb6 for comparison to the experimentally
determined low−T Γ3 type order. For that structure we
also determine the electronic band structure for insights
into the electronic transport anomalies of the material.
Because the susceptibility data indicate that no com-

ponent of the magnetic order lies along ĉ, we consider
only in-plane magnetic configurations. First we estimate
the energy scale for the in-plane magnetic anisotropy. We
consider a reference magnetic configuration, in this case
a ferromagnetic configuration with spins pointing along
b̂, and then rotate all spins uniformly while monitoring
the total energy. The result in Figure 6a shows that FM
order ha the lowest energy when oriented along â and
the scale of this anisotropy is just 0.1 meV; an order of
magnitude less than kBTN1.

Then we continuously interpolate between the low-
est energy configurations. Note that all follow the rod-
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FIG. 5. (a-h) Magnetic refinements following neutron diffrac-
tion on Eu5In2Sb6 single crystals. (a) 10 K (phase 1) homoge-
neous k1 = (000) refinement. Eu1 (4g) are red, Eu2 (2a) are
green, and Eu3 (4g) are blue. Approximately ferromagnetic
5-atom “rods” of Eu are centered about the Eu2 sites. (b)
1.5 K (phase 2) homogeneous k1 = (000) and k2 =

(
00 1

2

)
.

Moments in black correspond to ions at z = c while moments
in gray are at z = 0. (c) 1.5 K heterogeneous k1 = (000). (d)
1.5 K heterogeneous k2 =

(
00 1

2

)
. A single layer of the unit

cell at constant z is shown, the moments flip upon moving up
or down one lattice parameter c. (e-f) Observed versus calcu-
lated structure factors, defined to allow negative values. NB
negative values are not visible on the log-scale. (e) Paramag-
netic refinement. (f) 10 K homogeneous k1 = (000). Nuclear
contributions to k1 = (000) magnetic peaks were subtracted
off using the PM dataset. (g) 1.5 K homogeneous k1 = (000)
and k2 =

(
00 1

2

)
. Nuclear contributions to k1 = (000) mag-

netic peaks were subtracted off using the PM dataset. (h) 1.5
K heterogeneous phases 1 and 2 (k1 = (000) and k2 =

(
00 1

2

)
).

η indicates the refined volume fraction.

θ (deg)

θ (deg)

FIG. 6. (a,b) Comparison of the total calculated energy be-
tween different Eu5In2Sb6 magnetic configurations. (a) Esti-
mation the magnetic anisotropy scale by uniformly rotating
the spins of a reference magnetic configuration. (b) Interpo-
lation between the low energy rod-like configurations. The
black dashed line corresponds to the magnetic phase 1 shown
in Fig. 5a while the magenta dashed line corresponds to mag-
netic phase 2 shown in Fig. 5b.

like geometry shown in Figure 5 where the spins are
parallel along the rod defined by the five Eu atoms.
Specifically, starting from the A-type AFM configura-
tion, which contains four rods in the magnetic unit cell,
we rotate two of the rods clockwise and the other two
anticlockwise so that at 90◦ we get phase 1. For 45◦

we approximately get phase 2 (Fig. 5b). This corre-
sponds to taking the Γ3 irrep for every Wykcoff po-
sition and both k-vectors, with 7 µB for all Eu sites.
For Eu1, Eu2, and Eu3, the k2 =

(
00 1

2

)
compo-

nents are given by Γ3(7 cos θ µB, 0), Γ3(7 cos θ µB, 0),
and Γ3(7 cos θ µB, 0) while the k1 = (000) components
are given by Γ3(0, 7 sin θ µB), Γ3(0,−7 sin θ µB), and
Γ3(0,−7 sin θ µB), where θ is the rotation angle and

(η1, η2) define mixing coefficients along â and b̂, respec-
tively. However, our first principles calculations find
the energy of the structure that describes our lowest-
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FIG. 7. (a-c) Calculation of the Eu5In2Sb6 band structure in each magnetic phase consistent with the diffraction data. (a)
Paramagnetic state. Signs indicate the parity of each band at the Γ point. Contrary to [1], we find the bands are topologically
trivial [2]. (b) Phase 1 (Fig. 5a). The gap perhaps closes upon magnetic ordering though the bands remain separated. (c)
Phase 2 (Fig. 5b). We note that [1] reports an increase in resistivity with cooling into phase 2.

temperature diffraction data to be of a higher energy than
that of the structure describing the higher-temperature
diffraction data.

While dipole interactions were not included in the
DFT, we calculated the energy per Eu atom associated
with dipole interactions up to some distance dmax from
each site in the unit cell. After reaching convergence,
assuming homogeneous magnetic order with refined mo-
ments from our neutron diffraction, the dipole energy of
phase 1 is -0.07 meV and the dipole energy of phase 2 is
-0.14 meV. These energies (and those of other tested con-
figurations) are 10% smaller than the energy separation
between phase 1 and phase 2 determined by DFT, there-
fore the discrepancy is not due to dipole interactions.
Further work will be required to understand this discrep-
ancy between theory and experiment. Uncertainty in the
chemical potential, however, may dramatically change
the Fermi surface. Given the experimental challenges
stated above, it is likely that the refined moment orien-
tations deviate somewhat from the ideal structure. The
refined moments from diffraction have uncertainties that,
despite not significantly affecting the quality of the refine-
ment, may yield significantly different energies in DFT.

We report band structures in each of the three mag-
netic phases that are consistent with the diffraction data
(Fig. 7). These calculations were performed for a re-
finement uncorrected for absorption (see Appendix C).
While the band gaps should be treated with caution, we
qualitatively find the paramagnetic phase is a narrow gap
semiconductor (Fig. 7a). With long-range magnetic or-
der at 14 K, the band gap closes and Eu5In2Sb6 becomes
metallic (Fig. 7b). The gap remains closed upon cooling
but perhaps begins to reopen below 7 K. The influence
of magnetic order on the band structure of this narrow
gap semiconductor may explain interesting changes in
resistivity, including the large decrease upon antiferro-
magnetic ordering at 14 K [1].

V. CONCLUSION

The combination of magnetization data, temperature-
dependent magnetic diffraction data, and Rietveld analy-
sis of magnetic diffraction data at 10 K and 1.5 K leads us
to the following tentative conclusion about the magnetic
structure of Eu5In2Sb6.

The 14 K transition is into a k1 = (000) antiferromag-
net described by irrep 3 with a very small ferromagnetic
moment along the â axis and an antiferromagnetic mo-
ment along b̂. This k1 = (000) component of the mag-
netic structure is identical in all ab-planes. The principal
order parameter is at the Eu3 site while magnetization is
induced on the Eu1 and/or Eu2 sites upon cooling. We
find a phase 1 magnetic structure in which approximately
linear arrangements of five near-neighbor Eu atoms (con-
sisting of all three Wyckoff sites) adopt ferromagnetically
aligned moments. The Eu2 (2a) Wyckoff sites lie in the
center of each five member Eu “stick”, with Eu3 (4g) sites
next, then Eu1 (4g) at the ends. These sticks are aligned
antiferromagnetically relative to each other so there is no
net moment along b̂. This structure agrees well with the
lowest energy configuration recently reported by Criv-
illero et al. [33]. In a homogeneous model, the 7 K tran-

sition maintains k1 = (000) antiferromagnetism along b̂
while adding a k2 =

(
00 1

2

)
component of the moment

along â on all Wyckoff sites. The principal order param-
eter is at the Eu1 or Eu2 site, proceeding through irrep
3.

Future work should experimentally further examine
and perhaps modify our hypothesized magnetic struc-
tures (e.g., as a function of applied field as discussed in
[8]), investigate in detail the interactions leading to the
two magnetic phases, and develop a thorough, quanti-
tative understanding of the relationship between mag-
netic and transport properties. This will contribute to
knowledge of colossal magnetoresistance in antiferromag-
netic 4f -electron systems and has potential applications
in spintronics technology. Our results also shed light
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on the magnetic properties of axion insulator candidates
realized by substitution of the Eu5In2Sb6 parent com-
pound.
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Appendix A: Heat Capacity

We fit our heat capacity data using the Debye interpo-
lation scheme while minimizing a χ2

r statistic. The data
were fit from 70 K to 200 K, which is below the tem-
perature at which Apiezon N Grease freezes but above
magnetic contributions to the Eu5In2Sb6 heat capacity
([1] and our own fitting). To estimate error bars on the
fit parameters (γ and ΘD), each parameter was varied
while fitting the remaining parameters until the result-
ing goodness-of-fit exceeded a threshold χ2

r . According
to the Dulong-Petit law, the heat capacity is expected to
approach 3nR = 324 J/mol·K in the high-temperature
limit where n = 13 is the number of atoms in the prim-
itive cell. The experimental data exceeds this limit by
10%. Experimental factors such as grease being trans-
ferred to the sample during mounting might account for
this or anharmonic effects beyond the Debye model. Be-
cause the heat capacity of the grease is much larger than
the heat capacity of the sample at high-temperatures, a
small amount of grease transferred to the sample has a
dramatic effect on the inferred sample specific heat ca-
pacity at high temperatures. In the analysis reported
in the main text a scale factor (1 + α) was applied to
the measured addenda heat capacity prior to subtraction.
Enforcing thus the Dulong Petit limit yields α = 1.4(4)%
extra grease. However, the deviation from the Dulong-
Petit limit can also be captured by the anharmonic model
developed in [26] for body-centered-cubic lattices involv-
ing only nearest neighbor interactions (Fig. 8). In that
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FIG. 8. (a-c) Specific heat measurements on part of the
Eu5In2Sb6 crystal used for neutron diffraction on BT7. (a)
Debye fit with an anharmonic correction as given in Equa-
tion 1. ΘD = 175(5) K. (b) An estimate of the magnetic
heat capacity determined by subtracting our calculated De-
bye contribution from the observed heat capacity. The mag-
netic contribution only declines to 0 J/mol·K2 beyond 50 K.
(c) Magnetic entropy saturates near 5R log 8 J/mol·K (indi-
cated by the horizontal dashed line), the expected value for a
formula unit with five S = 7/2 Eu2+ ions.

model the heat capacity is given by:

C(v,Deb) = 9R

(
T

θD

)3 ∫ θD
T

0

x4ex

(ex − 1)2
dx

× (1 +AT ) . (A1)

C(v,Deb) is the lattice contribution to the specific heat
per atom in the unit cell and A is the linear anharmonic
correction. Despite Eu5In2Sb6 being more complicated
than is assumed in the above model, we find a linear coef-
ficient A = 5(1)×10−4 K−1 which is near the theoretical
value for Na reported in [26] (A = 2.34× 10−4 K−1).
The difference between the Debye heat capacity and

the observed heat capacity then gives an estimate for the
magnetic heat capacity.

Cp(T ) = nC(p,Deb) + Cmag(T ) (A2)
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where n is the number of atoms per formula unit. This
magnetic heat capacity is integrated for the magnetic en-
tropy

Smag(T ) =

∫ T

0

Cmag(T
′)

T ′ dT ′. (A3)

To integrate our discrete data we used trapezoidal nu-
merical integration. In a primitive cell with five Eu2+

atoms, the expected magnetic entropy is given by Smag =
NR log (2S + 1) = 5R log 8. For the grease corrected fit-
ting we find the entropy is within 2% of the expected
result for S = 7/2 Eu2+ ions. For the anharmonic fit-
ting, we find the entropy is within 7% of the expected
result. By comparison, the error bar on the sample mass
measurement is 2%. NB there is additional uncertainty
in the fitted parameters associated with the choice of fit-
ting range for the Debye model.

Appendix B: Magnetization

Magnetization along the â axis was measured in a 7
T-MPMS on a 16.0(1) mg sample mounted with GE var-
nish to a quartz cylinder placed inside a brass sample
holder. Magnetization along the b̂ axis was also mea-
sured in the MPMS on the same 17.2(1) mg sample (some
mass was lost between measurements) mounted with GE
varnish to a quartz cylinder placed inside a brass sample
holder. Magnetization along the ĉ axis was measured in
a 14 T-PPMS with the VSM option on a different 1.6(1)
mg sample mounted with GE varnish to a quartz sam-
ple holder. All alignments were confirmed by comparing
Laue X-ray backscattering spectra to the simulated pat-
terns from QLaue [34]. Other than the modest increase

along b̂ at TN2, for which we don’t observe hysteresis
in M versus H at T = 2 K and T = 10 K, anomalies
in the susceptibility at magnetic transitions intrinsic to
Eu5In2Sb6 match those observed in [1] (Fig. 3f, Fig. 9).

Appendix C: Neutron Diffraction

On TOPAZ, a 59.65 mg sample was wrapped in a
thin layer of aluminum foil. Its dimensions were ap-
proximately 3×3×1 mm3 with b̂ along the shortest di-
rection. The TOPAZ data were analyzed using Mantid.
For the SPINS experiment, an 80 mg crystal aligned in
the (hk0) scattering plane by Laue X-ray backscatter-
ing was mounted on an aluminum sample holder. For
the BT7 experiment, two 30 mg crystals were aligned
in the (0kl) and (h0l) scattering planes and co-mounted
on an aluminum holder. The latter three samples were
cooled using a helium flow cryostat with a 1.5 K base
temperature. The neutron energy was Ei = Ef = 5 meV
on SPINS and 35 meV for most scans on BT7 (excep-
tions mentioned in text). Sets of reflections for mag-
netic refinements were obtained as rocking scans. The
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FIG. 9. Magnetization versus field applied along â at T =
10 K. The sample is the 16.0(1) mg crystal from Figure 3f.
We find a remnant magnetization corresponding to 0.021(1)
µB/Eu. Our neutron diffraction is insensitive to this small
ferromagnetic component of the moment along â. (Note that
1 µB = 9.274× 10−24 J T−1.)

structure factors were derived from these rocking scans
in MATLAB. Poor peaks located near aluminum pow-
der lines were excluded. The most prominent nuclear,
k2 =

(
00 1

2

)
, T = 10 K k1 = (000), and T = 1.5 K

k1 = (000) peaks from each experiment were fit to Gaus-
sian peaks with a flat background in order to obtain fixed
values of the full width at half maximum (fwhm) for sub-
sequent fitting. The four fit parameters are I0, IG, x0,
and W where I0 is the flat background intensity, IG is
the Gaussian area (NB this is an integrated intensity),
x0 is the peak a3 position, and W is the Gaussian fwhm.
With the fwhm fixed by these fits to prominent peaks,
all peaks were then fit. Error bars on the three fit pa-
rameters I0, IG, and x0 were determined by continuously
varying one of the parameters and fitting the others until
threshold χ2

r values were exceeded, then taking half the
difference between the upper and lower parameter val-
ues. Rocking scan integrated intensities were determined
by fits in MATLAB and converted into a full d3Q inte-
gral over the Bragg peak, which is proportional to the
structure factor, using ResLib with the collimation con-
figuration and Ei as inputs. Thus the experimental struc-

ture factors were F 2 =
√

M22

2π
QIG
R0

where R0 and M22 are

the normalization prefactor and resolution matrix com-
ponent, respectively, from ResLib and Q is the scattering
vector. The ratio between the largest and smallest ab-
sorption correction factor for reflections from the SPINS
(µabs = 12 mm−1) and BT7 (µabs = 5 mm−1) experi-
ments were 18.8 and 4.0, respectively. These short ab-
sorption lengths imply that multiple scattering can be ne-
glected. Squared structure factors, uncertainties, and re-
flection indices were written to .int files for refinement of
the magnetic structure in FullProf. Refinements uncor-
rected for absorption had the k2 =

(
00 1

2

)
â components

given by 7(1) µB, 3(6) µB, and 5(1) µB for Eu1, Eu2,

and Eu3, respectively. The k1 = (000) b̂ components
were 2(2) µB, 6(3) µB, and 5(1) µB. Given the large
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TABLE III. Atomic positions, where the positions of the
degenerate sites may be obtained from the given set of atomic
coordinates by applying symmetry operators [30]

.

Site Wyckoff Position x y z
Eu1 4g .32749 .01894 0
Eu2 2a 0 0 0
Eu3 4g .9128 .7505 0

error bars, these values do not deviate significantly from
the absorption-corrected refinement where the â compo-
nents were refined within a window derived from the un-
certainty of the refined b̂ component. Magnetic exchange
energy calculations using density functional theory took
the uncorrected components as inputs, with the assump-
tion of a 7 µB net moment in the low-T limit.

Appendix D: Magnetic Structure Factor
Calculations

Here we present calculations involving the vector struc-
ture factor, defined as:

F =
∑
d

σd exp(iq · d), q = ha∗ + kb∗ + lc∗,

d = xa+ yb+ zc, σd =
∑
i

ηiσi (D1)

For a given Wyckoff position, the vector structure fac-
tor F is a sum over N contributions σd from each atomic
site d belonging to the N -fold degenerate Wyckoff posi-
tion. σi is a set of N basis vectors from the chosen irrep
(Table I) and ηi is the set’s mixing coefficient. In the
notation of the main text, Γ3(η1, η2) refers to a magnetic
configuration at some Wyckoff position whose contribu-
tion to the structure factor F is given by (sets of) basis
vectors σ1, σ2 (found in Table I) with mixing coeffi-
cients η1, η2, respectively. Subscripts i belonging to σi

below indicate the atomic coordinates from the respec-
tive Wyckoff site (Table III).

For a general reflection (hkl) in phase 1 and Wyckoff
position 2a, we find F(hkl),2a = σ1 + σ2 exp iπ(h+ k).
The contribution of the 4g sites is given by:

F(hkl),4g = 2(σ1 + σ2) cos 2π(hx+ ky)

+ 2i(σ1 − σ2) sin 2π(hx+ ky)

+ 2 exp iπ(h+ k) [(σ3 + σ4) cos 2π(−hx+ ky)

+i(σ3 − σ4) sin 2π(−hx+ ky)]

Considering two of the reflections from our neu-
tron diffraction temperature scans, we find F(100),2a =
F(011),2a = σ1 − σ2, F(100),4g = 2(σ1 + σ2 − σ3 −
σ4) cos 2πx+2i(σ1−σ2+σ3−σ4) sin 2πx, and F(011),4g =
2(σ1+σ2−σ3−σ4) cos 2πy+2i(σ1−σ2−σ3+σ4) sin 2πy.
Taking the structure to be a collinear antiferromagnet, we

can calculate the structure factor for each possible con-
figuration explicitly. Some of the vector structure factors
may be further simplified by making the approximation
that x1 = 0.3279 ≈ 1

3 , y1 = 0.01894 ≈ 0 for Eu1 and

y3 = 0.7505 ≈ 3
4 for Eu3. This approximation is good for

the small wave vector transfers of our experiment and,
when compared with the observed (100) and (011) re-
flections, leads to the Γ3 irrep with Eu3 ordering.
Table IV lists the factors from the differential cross

section ∂2σ
∂Ω∂E which account for polarization effects by

removing the component of the vector structure factor
parallel to the scattering vector [35]. This is given by

I = |F |2 − |Q̂ ·F |2. Mixing coefficients are given by mix

with i giving the Wyckoff position and x giving direction
of the corresponding basis vector.

Appendix E: Secondary Order Parameters

Regarding the phase transitions, it is understood that
primary order parameters (associated with some irrep)
may in general be accompanied by secondary order pa-
rameters (perhaps associated with a different irrep). But
for space group Pbam (with propagation vector k1 =
(000) or k2 =

(
00 1

2

)
), the secondary order parameters

can only be associated with the identity irrep [36]. We
therefore expect all magnetic order parameters sharing a
critical temperature are associated with the same irrep.
We consider at most three order parameters associated
with a single irrep composed of axial basis vectors, cor-
responding to magnetic order at the three Eu Wyckoff
sites.

Appendix F: Correlation Length

Rocking scans were fit to a flat background and Voigt
function, defined as the convolution of a Gaussian and
a Lorentzian. The width σ of the Gaussian was fixed
to be the average of our brightest paramagnetic widths
when fit to Gaussians. No systematic dependence of the
widths on Q was observed. Correlation lengths were de-
termined by ξ = 2

γ where γ is the half width at half max-

imum (hwhm) of the Lorentzian component of the Voigt
function. Our Voigt function was integrated numerically
using MATLAB’s integral() function. Error bars for the
hwhm were first computed by varying the hwhm and re-
fitting the background, Voigt prefactor, Voigt center po-
sition and Gaussian width until a threshold reduced chi-
squared χ2

r,th = χ2
r,best

(
1 + 1

ν

)
was exceeded. Here ν is

the number of degrees of freedom, equal to the number of
data points minus the number of fit parameters. Because
the upper and lower bounds are asymmetric about the
best fit χ2

r,best, we individually considered each bound.

We found correlation lengths in excess of 1000 Å. Vi-
sual inspection of the fits suggested they were in fact
resolution-limited, consistent with significant variation
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TABLE IV. Prefactors of the scattering cross section derived from the component of the vector structure factor perpendicular
to the scattering vector. Numerical subscripts indicate the Wyckoff position while Latin characters indicate the crystallographic
direction of the basis vector. This is an approximation in which the exact coordinates x1 = 0.32749 and y3 = 0.7505 were taken
to x1 = 1

3
and y3 = 3

4
. Coefficients were rounded to the nearest two decimal places.

Γ (100) (011)
(
00 1

2

)
1

4(m2
1c − 2m1cm2c +m2

2c

−3.41m1cm3c + 3.41m2cm3c + 2.91m2
3c)

7.89(m2
1c + 1.01m1cm2c + 0.25m2

2c) 0

2 12(m2
1b − 1.20m1bm3b + 0.36m2

3b) 0.23(m2
1a − 16.85m1am3a + 70.95m2

3a) 0

3
4(m2

1b − 2m1bm2b +m2
2b

−3.41m1bm3b + 3.41m2bm3b + 2.91m2
3b)

7.89(m2
1b + 1.01m1bm2b + 0.25m2

2b) 4(2m1a +m2a + 2m3a)
2

4 12(m2
1c − 1.20m1cm3c + 0.36m2

3c) 0 0
5 0 15.77(m2

1a + 1.01m1am2a + 0.25m2
2a) 4(2m1b +m2b + 2m3b)

2

6 0 0.11(m2
1c − 16.85m1cm3c + 70.95m2

3c) 0
7 0 0 0
8 0 0.11(m2

1b − 16.85m1bm3b + 70.95m2
3b) 0

among the Gaussian widths. We therefore report lower
bounds determined from a 20% increase in χ2

r , at which
the deviation from the fit becomes visibly worse.

Appendix G: Heterogeneous Model

Here we consider several possibilities for how these
phases occupy the volume of the crystal, how they com-
pete or coexist with each other. We expect other experi-
mental techniques will be useful in elucidating the specific
nature of each phase [37]. There are at least four possi-
bilities, each of which may be classified as either homoge-
neous or heterogeneous depending on whether or not the
phases occupy the same volume. 1) Both transitions are
second-order phase transitions. The 7 K transition sim-
ply adds the k2 =

(
00 1

2

)
propagation vector to phase 1

forming a homogeneous crystal. 2) Different volume frac-
tions have distinct second-order phase transitions (either
at 14 K or at 7 K), perhaps due to chemical differences.
Each transition is from a paramagnetic state to an or-
dered state. This heterogeneous model is inconsistent
with the reduction in (011) intensity as we would not
expect significant competition between the two isolated
phases. 3) Below 7 K there’s an an incomplete second-
order transition to a single-k structure. Here, part of the
k1 = (000) phase transitions to a k2 =

(
00 1

2

)
phase be-

low 7 K. The 14 K transition is from the paramagnetic
state while the 7 K transition is from the ordered state.
This is a heterogeneous model which again could result
from chemical differences. 4) Incomplete conversion via a
first-order phase transition to a heterogeneous structure
with k1 = (000) and k2 =

(
00 1

2

)
phases below 7 K. But

we find the 7 K transition appears to be second-order in
heat capacity so we’re left with models 1 and 3. We focus
on model 1 but also present results for model 3.

In model 3, the crystal undergoes an incomplete
second-order phase transition in which particular vol-
umes transition from a pure k1 = (000) phase to a pure
k2 =

(
00 1

2

)
phase to give a heterogeneous sample. Here,

the k2 =
(
00 1

2

)
volume is in general allowed to possess

both â and b̂ components without giving an oscillating
moment size upon approaching low-T . There is, however,
little anomaly seen in the susceptibility along b̂ at the 7
K transition so it appears the staggered moment of the
k2 =

(
00 1

2

)
phase is still primarily along â. We refine

structures for both phases, each of which has the satu-
rated moment (Fig. 5c,d). Unlike the homogeneous case,
all Wyckoff positions in a given phase must have mo-
ments with identical magnitudes and directions. This is
somewhat compensated by the additional degree of free-
dom that allows for different relative volume fractions of
the two phases. We find the refinements for the heteroge-
neous model are quite similar to the homogeneous model
(Fig. 5h). Based on the refined scale factors at 1.5 K, we
find the phase 1 volume fraction to be 70(38)% and the
phase 2 volume fraction to be 40(14)% under the con-
straint that the sum of volume fractions cannot exceed
100%. The magnetic space group of this second pure
phase is 62.451 in the Belov-Neronova-Smirnova (BNS)
notation, in which the unit cell is generally not the para-
magnetic unit cell [14]. This is 55.9.449 according to the
Opechowski-Guccione (OG) notation, in which the unit
cell is the paramagnetic unit cell. The structure cor-
responds to the A-type antiferromagnetic configuration
proposed in [1].

On the one hand, energy scales from DFT appear to
favor the two distinct single-k phases composing the het-
erogeneous model. Figure 6b shows the experimentally
determined low-temperature homogeneous state lies near
a maximum in energy between two minima. The min-
ima correspond to the two heterogeneous phases. On the
other hand, in a heterogeneous sample we would expect
different syntheses to produce different chemical phase
fractions. The sharp peaks in heat capacity and con-
sistency between heat capacity measurements are not
expected for this model. Furthermore, the (011) tem-
perature scan is not consistent with the heterogeneous
picture. Specifically the (011) intensity was observed to
sharply decline at 7 K. Influence of the k2 =

(
00 1

2

)
tran-
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sition on the k1 = (000) structure suggests the k-vectors
are not separated in space as is assumed in the heteroge-
neous model. Rather the low-T state consists of a single
homogeneous magnetic phase in which a shift of inten-

sity from k1 = (000) to k2 =
(
00 1

2

)
reflections is simply

a consequence of the reorientation of magnetic moments
on each atomic site.
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