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Abstract. The electronic ground state of a periodic crystalline solid is usually de-
scribed in terms of extended Bloch orbitals; localized Wannier functions can alterna-
tively be used. These two representations are connected by families of unitary trans-
formations, carrying a large degree of arbitrariness. We have developed a localization
algorithm that allows one to iteratively transform the extended Bloch orbitals of a
first-principles calculation into a unique set of maximally localized Wannier functions.
We apply this formalism here to the case of cubic BaTiO3. The purpose is twofold.
First, a localized-orbital picture allows a meaningful band-by-band decomposition of
the whole Bloch band complex. In perovskites, these Wannier functions are centered
on the atomic sites and display clearly a s, p, d, or hybrid character. Second, since
the centers of the Wannier functions map the polarization field onto localized point
charges, the ground state dielectric properties become readily available. We study the
Born effective charges of the paraelectric phase of BaTiO3. We are able to identify not
only the contributions that come from a given group of bands, but also the individual
contributions from the “atomic” Wannier functions that comprise each of these groups.

INTRODUCTION

The electronic ground state of a periodic solid, in the independent particle ap-
proximation, is naturally labelled according to the prescriptions of Bloch’s theorem:
single-particle orbitals are assigned a quantum number k for the crystal momentum,
together with a band index n. Although this choice is widely used in electronic
structure calculations, alternative representations are available. The Wannier rep-
resentation [1], essentially a real-space picture of localized orbitals, assigns as quan-
tum numbers the lattice vector R of the cell where the orbital is localized, together
with the band index n. Wannier functions can be a powerful tool in the study of the
electronic and dielectric properties of materials: they are the solid-state equivalent
of “localized molecular orbitals” [2], and thus provide an insightful picture of the
nature of chemical bonding, otherwise missing from the Bloch picture of extended
orbitals. In addition, the modern theory of polarization [3] directly relates the
centers of the Wannier functions to the macroscopic polarization of a crystalline
insulator.



Wannier functions are strongly non-unique. This is a consequence of the phase
indeterminacy eiφn(k) that Bloch orbitals ψnk have at every wavevector k. This
indeterminacy is actually more general than just the phase factors: Bloch orbitals
belonging to a composite group of bands (i.e. bands that are connected between
themselves by degeneracies, but separated from others by energy gaps) can un-
dergo arbitrary unitary transformations U (k) between themselves at every k. We
have recently developed a procedure [4] that can iteratively refine these otherwise
arbitrary degrees of freedom, so that they lead to Wannier functions that are well
defined and that are localized around their centers (in particular, they minimize
the second moment around the centers). Such a procedure can be applied either
to a whole band complex of Bloch orbitals, or just to some isolated subgroups.
As a natural first application of this technique, we present here results for the

case of BaTiO3 in the cubic phase. Perovskite ferroelectrics, of which BaTiO3 is a
paradigmatic example, owe their very rich phenomenology to the subtle competi-
tion of several degrees of freedom, balancing the long-range dipole-dipole interac-
tion with short-range Pauli repulsion. One of the striking features is the display
of anomalously large Born effective charges [5]. Their origin is understood in a
simple tight-binding picture [6]: the change in the bond length (Ti-O in this case)
corresponds to a dynamic charge transfer that is stronger when the bonding is bor-
derline between ionic and covalent. Localized Wannier functions can thus be used
to investigate the nature of this bonding, and to monitor the changes that follow
a ferroelectric distortion. Additionally, the displacement of each Wannier center
relates directly to the effective charge contribution of its orbital, and can be used to
identify the nominal and the anomalous contributions to the polarization induced
by an atomic displacement.

METHOD

Electronic structure calculations are carried out using periodic boundary condi-
tions. This is the most natural choice to study perfect crystals and to minimize
finite size-effects in the study of several non-periodic systems (e.g. surfaces, or

impurities). The one-particle effective Hamiltonian Ĥ then commutes with the

lattice-translation operator T̂R, allowing one to choose as common eigenstates the
Bloch orbitals |ψnk 〉,

[ Ĥ, T̂R ] = 0 ⇒ ψnk(r) = eiφn(k) unk(r) e
ik·r , (1)

where unk(r) has the periodicity of the Hamiltonian. There is an arbitrary phase
φn(k), periodic in reciprocal space, that is not assigned by the Schrödinger equation
and that we have written out explicitly. We obtain a (non-unique) Wannier repre-
sentation using any unitary transformation of the form 〈nk |Rn 〉 = eiϕn(k)−ik·R :

|Rn 〉 =
V

(2π)3

∫

BZ
|ψnk 〉 e

iϕn(k)−ik·R dk . (2)



Here V is the real-space primitive cell volume. It is easily shown that the |Rn 〉 form
an orthonormal set, and that two Wannier functions |Rn 〉 and |R′n 〉 transform
into each other with a translation of a lattice vector R−R′ [7]. The arbitrariness
that is present in ϕn(k) [or φn(k)] propagates to the resulting Wannier functions,
making the Wannier representation non-unique. Since the electronic energy func-
tional in an insulator is also invariant with respect to a unitary transformation of its
n occupied Bloch orbitals, there is additional freedom associated with the choice
of a full unitary matrix (and not just a diagonal one) transforming the orbitals
between themselves at every wavevector k. Thus, the most general operation that
transforms the Bloch orbitals into Wannier functions is given by

|Rn 〉 =
V

(2π)3

∫

BZ

∑

m

U (k)
mn |ψmk 〉 e

−ik·R dk . (3)

The Wannier functions wn(r−R) = |Rn 〉, for non-pathological choices of phases,
are “localized”: for a Ri far away from R, wn(Ri −R) is a combination of terms
like

∫
BZ umk(0)e

ik·(Ri−R) dk, which are small due to the rapidly varying character
of the exponential factor [7].

Maximally-localized Wannier functions

Several heuristic approaches have been developed that construct reasonable sets
of Wannier functions, reducing the arbitrariness in the U (k)

mn with symmetry consid-
erations and analiticity requirements [8], or explicitly employing projection tech-
niques on the occupied subspace spanned by the Bloch orbitals [9]. At variance
with those approaches, we introduce a well-defined localization criterion, choosing
the functional

Ω =
∑

n

[
〈r2〉n − r̄ 2

n

]
(4)

as the measure of the spread of the Wannier functions. The sum runs over the n
functions |0n 〉; 〈r2〉n and r̄n = 〈r〉n are the expectation values 〈0n | r2 |0n 〉 and
〈0n | r |0n 〉. Given a set of Bloch orbitals |ψmk 〉, the goal is to find the choice of
U (k)
mn in (3) that minimizes the values of the localization functional (4). We are able

to express the gradient G = dΩ
dW

of the localization functional with respect to an
infinitesimal unitary rotation of our set of Bloch orbitals

|unk〉 → |unk〉+
∑

m

dW (k)
mn |umk〉 , (5)

where dW an infinitesimal antiunitary matrix dW † = −dW such that

U (k)
mn = δmn + dW (k)

mn . (6)

This provides an equation of motion for the evolution of the U (k)
mn, and of the |Rn 〉

derived in (3), towards the minimum of Ω; small finite steps in the direction opposite
to the gradient decrease the value of Ω, until a minimum is reached.



1 Real-space representation

There are several interesting consequences stemming from the choice of (4) as the
localization functional, that we briefly summarize here. Adding and subtracting

the off-diagonal components Ω̃ =
∑

n

∑
Rm 6=0n

∣∣∣〈Rm|r|0n〉
∣∣∣
2
, we obtain the decom-

position Ω = Ω I + ΩD + ΩOD, where Ω I, ΩD and ΩOD are respectively

Ω I =
∑

n

[
〈r2〉n −

∑

Rm

∣∣∣〈Rm|r|0n〉
∣∣∣
2
]
,

ΩD =
∑

n

∑

R 6=0

∣∣∣〈Rn|r|0n〉
∣∣∣
2
,

ΩOD =
∑

m 6=n

∑

R

∣∣∣〈Rm|r|0n〉
∣∣∣
2
.

It can be shown that all terms are positive-definite (in particular Ω I, see Ref. [4]);
more importantly, Ω I is also gauge-invariant, i.e., it is invariant under any arbitrary
unitary transformation (3) of the Bloch orbitals. The minimization procedure thus

corresponds to the minimization of Ω̃ = ΩD+ΩOD. At the minimum, the elements∣∣∣〈Rm|r|0n〉
∣∣∣
2
are as small as possible, realizing the best compromise in the simulta-

neous diagonalization, within the space of the Bloch bands considered, of the three
position operators x, y and z (which do not in general commute when projected
within this space).

2 Reciprocal-space representation

As shown by Blount [7], matrix elements of the position operator between Wan-
nier functions take the form

〈Rn|r|0m〉 = i
V

(2π)3

∫
dk eik·R〈unk|∇k|umk〉 (7)

and

〈Rn|r2|0m〉 = −
V

(2π)3

∫
dk eik·R〈unk|∇

2
k
|umk〉 . (8)

These expressions provide the needed connection with our underlying Bloch for-
malism, since they allow us to express the localization functional Ω in terms of the
matrix elements of ∇k and ∇2

k
. We thus determine the Bloch orbitals |umk〉 on a

regular mesh of k-points, and use finite differences to evaluate the above deriva-
tives. For any given k-point in a regular cubic mesh (sc, fcc, bcc), we have a star
b of Z k-points that are first-neighbors; their weights in the evaluation of deriva-
tives are wb = 3/Zb2. We define M (k,b)

mn = 〈umk|un,k+b〉 as the matrix elements



between Bloch orbitals at neighboring k-points. The M (k,b)
mn are a central quantity

in our formalism, since we can then express all the contributions to the localization
functional using the connection made by Blount, together with our finite-difference
evaluations of the gradients. After some algebra we obtain [4]

ΩI =
1

N

∑

k,b

wb

(
Nbands −

∑

mn

|M (k,b)
mn |2

)
, (9)

ΩOD =
1

N

∑

k,b

wb

∑

m 6=n

|M (k,b)
mn |2 , (10)

and

ΩD =
1

N

∑

k,b

wb

∑

n

(
−Im lnM (k,b)

nn − Im lnM
(k,b)
nn

)2

. (11)

From these, we can calculate the change in the localization functional in response
to an infinitesimal unitary transformation of the Bloch orbitals, as a function of the
M (k,b)

mn ; once these steepest-descents are available, it is straightforward to construct
a procedure that updates the U (k)

mn towards the minimum of the functional.

RESULTS: THE CASE OF BATIO3

We study here the cubic phase of BaTiO3, using a plane-wave total-energy
pseudopotential approach with the local-density approximation to the exchange-
correlation functional. We use norm-conserving pseudopotentials in the Kleinman-
Bylander representation, with qc kinetic-energy tuning [10] for the oxygen atom and
a Troullier-Martins procedure [11] for the titanium, to bring the cutoff convergence
down to 900 eV. The 3s and 3p levels of titanium have been included in the valence.
The Brillouin zone is sampled with a 4 × 4 × 4 Monkhorst-Pack mesh; the lattice
parameter used is 3.98Å.

Wannier functions of cubic BaTiO3

The minimization of the total energy provides the Kohn-Sham Bloch orbitals on
a regular mesh of k-points, that are then used as a starting point for the construc-
tion of the Wannier functions. The subsequent minimization of the localization
functional determines the U (k)

mn that correspond to the maximally-localized Wan-
nier functions. In BaTiO3 there are several groups of bands that are separated by
gaps. In order of increasing energy, we have the band groups corresponding to the
Ti 3s (1), Ti 3p (3), Ba 5s (1), O 2s (3), Ba 5p (3) and O 2p (9) levels (in paren-
thesis are the number of bands in each group). We initially consider each group of



FIGURE 1. Left panel: oxygen-centered Wannier function from the O 2s 3-band group (the

O atom is surrounded by four Ba atoms on the sides, and two Ti atoms on top and bottom).

Center and right panels: barium-centered Wannier function from the Ba 5p 3-band group, and

barium-centered Wannier function from the Ba 5p and the O 2s 6-band group (the Ba atom is

surrounded by 12 oxygens).

bands separately, and perform the minimization on the 6 subspaces of dimensions
1× 1, 3× 3, 1× 1, 3× 3, 3× 3, and 9× 9.

TheWannier functions determined from the the Ti 3s or the Ti 3p groups strongly
resemble atomic orbitals, slightly deformed by the underlying crystal potential, and
are not shown here. We show instead in the left panel of Fig. 1 one of the three
oxygen-centered Wannier functions that are derived from the oxygen 2s bands. In
each unit cell there are three such functions, sitting on each of the oxygens. The
orbital shows its atomic s character; there are some contributions on the Ti, with p
and/or d character (the titanium is slightly embedded in a dz2 orbital). Interesting
results emerge from the localization of the Ba 5p bands (Fig. 1, center and right
panels). These bands correspond to three orbitals in each unit cell, all centered
on the barium and oriented along the three cristallographic directions (px, py and
pz). It can easily be seen (center panel) that, in addition to the distinctive atomic
p orbital on the barium, there are significant sp-like contributions sitting on 8
of the 12 neighboring oxygens. This supports the suggestion that barium in this
compound has some covalent character [12], and it is consistent with the anomalous
effective-charge contributions that come from this group of Wannier functions (see
next subsection). It is interesting to note that if we decide to treat the Ba 5p bands
together with the O 2s bands, we can (obviously) increase the degree of localization
of each orbital. In this latter case (right panel) the sp contributions on the oxygens
decrease, being transferred to the 2s orbitals localized on the oxygens themselves.

Finally, we examine the 9 oxygen 2p bands that result from the hybridization of
the O 2p electrons with the Ba 6s and the Ti 4s and 3d. There are three localized
orbitals on each oxygen, oriented along the Ti-O-Ti bonds. We label two of these
orbitals as π and one as σ, according to their symmetry along the Ti-O-Ti axis. One
of the σ orbitals is shown in Fig. 2, first with the atoms in their ideal positions (left



FIGURE 2. Oxygen-centered σ Wannier function from the localization of the O 2p 9-band

group. The orbital is oriented along the Ti-O-Ti bond; the four Ba atoms neighboring the central

oxygen and the two Ti atoms on top and bottom are also shown. Left panel: ideal atomic

positions. Right panel: same, but with the titanium atoms displaced downwards.



panel) and then with the Ti atoms displaced along the Ti-O bond (right panel).
The σ orbital shows clearly the hybridization between the oxygen p orbital oriented
along the Ti-O-Ti direction and the dz2 orbital of the titanium. The σ and even
more the π orbitals have strong anomalous contributions to the effective charges,
that can be visualized with the large charge transfer from the oxygen atoms in
response to the titanium displacements.

Band-by-band decomposition of the Born effective charges

The Born dynamical effective charges describe the change in macroscopic polar-
ization that is induced by the displacement of a given ion. As such, they play a
fundamental role in determining the dynamical properties of insulating crystals,
and are a powerful tool to investigate the dielectric and ferroelectric properties of
materials. They also determine the splitting of the infrared-active optical modes;
in simpler compounds (e.g. GaAs) they can be unambiguously determined from
the experimental phonon dispersions. Perovskite ferroelectrics display anomalous,
large effective charges, that can be almost double their nominal ionic value. The
origin of this effect lies in the large dynamical charge transfer that takes place when
moving away from the high-symmetry cubic phase (i.e., going from more ionic to
more covalent bonding). Orbital hybridization is necessary for this transfer to take
place; for this reason, our localized-orbitals approach provides an insightful tool in
examining these effects. In the language of the modern thory of polarization [3], the
anomalous contribution is determined by the relative displacement of the Wannier
centers with respect to the ion that is being moved. If the bonding were purely
ionic, electrons (and thus Wannier centers) would be firmly localized on each anion,
and move rigidly with it. This is not the case in perovskite oxides. The anomalous
contribution is often traced [13] to substantial hybridization between the oxygen p
orbitals and the d orbitals of the atom in the B site (Ti, in this case). The picture
can be somewhat more complex, with other group of bands playing a role in the
anomalous dielectric behavior.
We present in Table 1 a full decomposition of the effective charges in BaTiO3

coming from the different groups of bands; and, inside each group, coming from the
individual Wannier functions identified by the localization procedure. We compare
the results for the groups of bands with those obtained by Ghosez et al. (Ref. [12]).
We find very good agreement, given the difference in the pseudopotentials used
and our choice of lattice parameter. These results underline the conclusion that
the decomposition into band groups is consistently defined in the linear-response
formalism only when the calculations are performed in the so-called diagonal gauge

[12]. The effective-charge tensor reduces to a scalar for barium and titanium, while
it is diagonal with two inequivalent components (those parallel and perpendicular
to the Ti-O bonds) for the oxygens. Several facts stand out from an inspection
of the table. The anomalous effective charges originate not only from the oxygen
2p bands; there are also sizeable contributions originating from the barium 5p



TABLE 1. Born effective charges decomposed into atomic contributions, for BaTiO3. The Z
⋆

el
are calculated

by displacing a Ba, Ti or a O sublattice (O1 is parallel to the Ti-O direction, O2 perpendicular) by δa0, where

δ = 0.002. The numbers in parenthesis are those of Ghosez et al. (a0=3.94Å). Horizontal lines group band

complexes that have been treated together in the Wannier minimization. Top line in each group is the total

for that group. We have added at the bottom the O 2p decomposition obtained in a calculation performed

using a Ti atom with the 3s and 3p levels frozen in the core (Ti4+).

Ba Ti O1 O2

(δ, 0, 0) ( 1
2
+ δ, 1

2
, 1

2
) ( 1

2
, 1

2
, δ) ( 1

2
+ δ, 1

2
, 0)

Ti 3s (1) 0.01 (0.01) -2.04 (-2.03) 0.03 (0.02) 0.00 (0.00)

Ti 3p (3) 0.02 (0.02) -6.19 (-6.22) 0.21 (0.21) -0.02 (-0.02)
( 1
2
, 1

2
, 1

2
) 0.00 -2.21 0.00 0.00

( 1
2
, 1

2
, 1

2
) 0.01 -1.99 0.21 -0.02

( 1
2
, 1

2
, 1

2
) 0.01 -1.99 0.00 0.00

Ba 5s (1) -2.09 (-2.11) 0.04 (0.05) 0.01 (0.01) 0.02 (0.02)

O 2s (3O) 0.65 (0.73) 0.20 (0.23) -2.45 (-2.51) -2.21 (-2.23)
(0, 1

2
, 1

2
) -0.11 0.48 -0.04 -0.01

( 1
2
, 0, 1

2
) 0.38 -0.14 -0.04 0.01

( 1
2
, 1

2
, 0) 0.38 -0.14 -2.36 -2.21

Ba 5p (3Ba) -7.20 (-7.38) 0.31 (0.36) -0.11 (-0.13) 0.50 (0.58)
(0, 0, 0) -2.46 0.04 -0.06 0.21
(0, 0, 0) -2.37 0.14 0.01 0.01
(0, 0, 0) -2.37 0.14 -0.06 0.29

O 2p (9) 1.26 (1.50) 3.01 (2.86) -9.57 (-9.31) -6.35 (-6.50)
(0, 1

2
, 1

2
)σ -0.01 0.81 -0.07 0.03

(0, 1

2
, 1

2
)π -0.20 1.78 -0.17 -0.49

(0, 1

2
, 1

2
)π -0.20 1.78 -0.01 0.00

( 1
2
, 0, 1

2
)π 0.22 -0.17 -0.01 0.01

( 1
2
, 0, 1

2
)π 0.51 -0.27 -0.17 0.04

( 1
2
, 0, 1

2
)σ 0.10 -0.24 -0.07 0.02

( 1
2
, 1

2
, 0)π 0.22 -0.17 -3.10 -1.89

( 1
2
, 1

2
, 0)σ 0.10 -0.24 -2.86 -1.81

( 1
2
, 1

2
, 0)π 0.51 -0.27 -3.10 -2.26

Total Z⋆

el
-7.35 -4.67 -11.87 -8.06

Core 10.00 12.00 6.00 6.00

Total Z⋆ 2.65 (2.77) 7.33 (7.25) -5.87 (-5.71) -2.06 (-2.15)
Ref. [5] 2.75 7.16 -5.69 -2.11

Ti4+

O 2p (9) 1.29 (1.50) 2.33 (2.86) -8.93 (-9.31) -6.36 (-6.50)
(0, 1

2
, 1

2
)σ -0.02 0.49 -0.13 0.01

(0, 1

2
, 1

2
)π -0.19 1.48 -0.19 -0.41

(0, 1

2
, 1

2
)π -0.19 1.48 -0.02 -0.01

( 1
2
, 0, 1

2
)π 0.22 -0.16 -0.02 0.01

( 1
2
, 0, 1

2
)π 0.51 -0.25 -0.19 0.04

( 1
2
, 0, 1

2
)σ 0.11 -0.15 -0.13 0.03

( 1
2
, 1

2
, 0)π 0.22 -0.16 -2.88 -1.89

( 1
2
, 1

2
, 0)σ 0.11 -0.15 -2.50 -1.87

( 1
2
, 1

2
, 0)π 0.51 -0.25 -2.88 -2.28



orbitals and even from the oxygen 2s. More notably, there is a wide range of
compensating effects between groups of bands and between different orbitals inside
each group. The partial cancellation of such large orbital polarizabilities hints again
at the complexity of these materials, which exhibit such a wide range of equilibrium
properties as a consequence of the existence of many of these competing effects.
Titanium shows the strongest deviations from a naive ionic picture. The σ and
π oxygen orbitals carry a positive electronic Z⋆ contribution, equal respectively to
0.81 and 1.78. It should be noted that it is always the O 2p π orbitals that carry
the largest anomalous charge. The O 2p contributions to the O1 effective charges
(i.e. in the direction of the Ti-O bond) are also anomalous, up to −1.10 for each π
orbital (in addition to the nominal −2.00 for each orbital).
Finally, we present at the bottom of Table 1 the oxygen 2p decomposition per-

formed in a calculation where the 3s and 3p orbitals of the titanium have been
removed from the pseudopotential (i.e., removed from the valence and frozen in the
core). It is interesting to note that most contributions are completely unchanged;
differences arise only for the anomalous contributions for the Ti and the O1 dis-
placements (whose anomality, incidentally, is reduced if this more approximate
formalism is employed).

CONCLUSIONS

We have summarized here our formalism for obtaining maximally-localized Wan-
nier functions from the Bloch orbitals of an ab-initio electronic structure calcula-
tion. This formalism can be very helpful in understanding the chemical and dielec-
tric properties of materials. Perovskite ferroelectrics are a particularly promising
class of systems to be studied, since the nature of the bonding and hybridization
can have a striking influence on the dielectric properties and on the development
of ferroelectricity. At variance with other approaches, our method allows for a
decomposition of electronic properties (e.g., the effective charges) into meaningful
atomic contributions. In the case of BaTiO3, it elucidates in particular the origins
of the large anomalous contributions to the effective charges.
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