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We argue that various kinds of topological insulators (TIs) can be insightfully characterized by
an inspection of the charge centers of the hybrid Wannier functions, defined as the orbitals obtained
by carrying out a Wannier transform on the Bloch functions in one dimension while leaving them
Bloch-like in the other two. From this procedure, one can obtain the Wannier charge centers (WCCs)
and plot them in the two-dimensional projected Brillouin zone. We show that these WCC sheets
contain the same kind of topological information as is carried in the surface energy bands, with the
crucial advantage that the topological properties of the bulk can be deduced from bulk calculations
alone. The distinct topological behaviors of these WCC sheets in trivial, Chern, weak, strong, and
crystalline TIs are first illustrated by calculating them for simple tight-binding models. We then
present the results of first-principles calculations of the WCC sheets in the trivial insulator Sb2Se3,
the weak TI KHgSb, and the strong TI Bi2Se3, confirming the ability of this approach to distinguish
between different topological behaviors in an advantageous way.

PACS numbers: 71.90.+q,72.25.-b,73.20.At,73.43.-f

I. INTRODUCTION

Since the work of Thouless et al.1 relating the Chern
number to the integer quantum Hall effect, there has
been great interest in insulators with topologically non-
trivial band structures. In time-reversal invariant insula-
tors, the first Chern number vanishes, but topologically
non-trivial band structures can still emerge in systems
with strong spin-orbit coupling2–5 or crystal point group
symmetries.6 These topological phases are classified by
a series of Z2 invariants. In two dimensions, a single
Z2 invariant distinguishes a quantum spin Hall system
from a trivial 2D insulator, while in three dimensions,
a total of four Z2 invariants [ν0, ν1, ν2, ν3] are needed to
classify the trivial, weak, and strong topological phases
which can emerge. The topologically non-trivial phases
are gapped in the bulk, like trivial insulators, but they
are required to have robust metallic states on the edge
(2D) or surface (3D). These surface states provide the
strongest experimentally accessible signature of insula-
tors with non-trivial topology7–14. However, for reasons
of both computational efficiency and theoretical clarity,
it is preferable to be able to calculate and understand the
topological phases of insulators purely from bulk calcu-
lations.

There have been several previously proposed methods
for calculating Z2 invariants. In principle, it is possible
to calculate them by integrating the Berry connection
on half of the Brillouin zone (BZ),15 but this method
requires fixing the gauge of the wavefunctions, which is
challenging in numerical calculations. In the special case
of a centrosymmetric crystal, the Z2 invariants can be
calculated simply by considering the parity eigenvalues
of the occupied electronic states at the time-reversal-
invariant (TRI) momenta. Our current work is closely
related to a recently developed method which is both gen-
eral (not limited to crystals with special symmetries) and
computationally efficient.16,17 This method relies on the

use of hybrid Wannier functions (WFs), which provide
an alternative to the Bloch representation of the occupied
band subspace. By following the evolution of hybrid WFs
around a closed loop in the BZ, we can describe the adi-
abatic, unitary evolution of the occupied Bloch bands.
The partner switching of these Wannier charge centers
(WCC) around a closed loop, which describes a pump-
ing of “time-reversal polarization,” has been employed to
calculate the Z2 invariants in TRI insulators.16–19

In this work, we focus on the topological properties of
WCCs in 3D materials, which are functions of momentum
k in two dimensions and can be plotted as sheets over the
2D BZ. We study the WCC sheets in trivial, Chern, weak
topological, strong topological, and crystalline topologi-
cal insulators (TIs) using tight-binding models and first-
principles calculations. Although a knowledge of the be-
havior of the WCCs on the TRI planes in the BZ is al-
ready sufficient for determining the topological phase of
the insulator, the more general behavior of WCCs sheets
in different topological phases, including the crystalline
topological phase, can provide new insights into the ori-
gin and properties of these phases. In addition, unlike
the surface states, the behavior of these sheets is inde-
pendent of surface termination and depends purely on
the bulk wavefunctions, allowing for a simpler picture of
many properties.

The manuscript is organized as follows. In Sec. II we
define the WCC sheets, explain how to construct them,
and discuss their symmetry and topological properties.
In Sec. III we introduce the tight-binding models that
will be used for illustrative calculations. We also present
the materials systems that will be the subject of first-
principles calculations, and discuss the details of the com-
putational methods. The calculated WCC sheets are pre-
sented and discussed in Sec. IV, and we end with a sum-
mary in Sec. V.
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II. WCC SHEETS

The electronic ground state in periodic crystalline
solids is naturally described by extended Bloch functions
|ψnk〉, or the cell-periodic versions |unk〉 = e−ik·r|ψnk〉,
labeled by the band n and crystal momentum k. An al-
ternative representation is the set of localized orbitals or
Wannier functions (WF) which are defined in relation to
the Bloch functions by a unitary transformation:

|Wn(R)〉 =
1

(2π)3

∫
BZ

dk eik·(r−R)|unk〉. (1)

These WFs are not unique, as the U(N) gauge freedom
in choosing the N representatives of the occupied space
at each k-point, |ũnk〉 =

∑
m Umn(k)|umk〉, leaves them

gauge-dependent.
In 1D there is a unique gauge that minimizes the

spread functional of the WFs.20 These maximally local-
ized WFs are eigenfunctions of the band-projected po-
sition operator PzP , where P =

∑
nk |ψnk〉〈ψnk| is the

projection operator onto the occupied bands. In 2D and
3D, on the other hand, the WFs cannot be maximally lo-
calized in all directions simultaneously, because the oper-
ators PxP , PyP , and PzP do not commute and it is not
possible to choose the WFs to be simultaneous eigenfunc-
tions of all three. Instead, a compromise can be achieved
through an iterative procedure that localizes the WFs in
all directions as much as possible.20

Insulators for which the occupied bands are character-
ized by a nonzero Chern number are known as “Chern”
or “quantum anomalous Hall” (QAH) insulators. In this
case, it is well-known that there is a topological ob-
struction to the construction of exponentially localized
WFs.21,22 The vanishing of the Chern number in TRI in-
sulators guarantees the existence of localized WFs, but
special care needs to be taken in choosing the gauge for
Z2-odd insulators, as the localized WFs can only be con-
structed in a gauge which does not let them come in
time-reversal pairs.23

The fact that there is never a topological obstruction to
the construction of WFs in 1D suggests that a convenient
strategy for higher dimensions may be to construct “hy-
brid WFs” that are Wannier-like in 1D and Bloch-like in
the remaining dimensions.20,24 Choosing the ẑ direction
for Wannierization in 3D, these take the form

|Wnlz (kx, ky)〉 =
1

2π

∫
dkze

ik·(r−lzcẑ)|un,k〉 (2)

where lz is a layer index and c is the lattice constant
along ẑ. Since there is a unique construction of maxi-
mally localized WFs in 1D, these are easily constructed
at each (kx, ky), regardless of whether the system is a
normal insulator or a Chern, Z2, crystalline, or any other
kind of TI. The charge center of these hybrid WFs along
the localized direction z̄n is defined as the expectation
value z̄n(kx, ky) = 〈Wn0|ẑ|Wn0〉 of the position operator
ẑ along this direction for the WF in the home unit cell

R = 0. These WCCs, which are eigenvalues of the PzP
operator, have been useful in defining polarization in 2D
Chern insulators,25 understanding polarization in 3D lay-
ered insulators,26 and calculating the Z2 topological in-
variants in TRI insulators.16 Their sum over occupied
bands also gives the “polarization structure” describing
the Berry-phase contribution to the electeric polarization
as a function of k in the 2D BZ.27

It is well known that the nontrivial topology of Chern,
Z2, and crystalline TIs is reflected in a correspond-
ing nontrivial connectivity of the surface energy bands.
While kz is clearly no longer a good quantum number
for a surface normal to ẑ, kx and ky are still conserved,
so that if surface states appear in the bulk energy gap,
their energy dispersions εn(kx, ky) are good functions of
momenta in the surface BZ. In a similar way, the WCCs
z̄n(kx, ky) can be plotted over the same 2D BZ, where the
Wannierized real-space direction plays a role analogous to
the surface normal. Unlike the surface states εn(kx, ky),
the WCCs z̄n(kx, ky) depend only on bulk properties.
However, they still carry the same kind of topological in-
formation as is contained in the surface states, as will be
explained in Sec. II B.

The WCCs can be obtained from a parallel-transport-
based construction20,26 in a straightforward way, as ex-
plained next.

A. Construction

A cell-periodic Bloch state |uk〉 belonging to an iso-
lated band can be parallel transported to |uk+b〉 by
choosing the phase of the latter such that the over-
lap 〈uk|uk+b〉 is real and positive, so that the change
in the state is orthogonal to the state itself. If this
is carried out repeatedly for a k-point string extend-
ing along the kz direction by a reciprocal lattice vector
G ‖ ẑ, then once the phase of the initial |uk0〉 is cho-
sen, the phase of each subsequent state, including the
final |uk0+G〉, is determined by this parallel-transport
procedure. The phase of the last state on the string is
then compared with the one |ũk0+G〉 obtained by apply-
ing the periodic gauge condition |ψk0+G〉 = |ψk0〉, i.e.,
ũk0+G(r) = exp(−iG ·r)uk0

(r), and the phase mismatch
U = 〈uk0+G|ũk0+G〉 is computed. For a k-point string
at k⊥ in the 2D BZ, this yields the Berry phase φ(k⊥) =
−Im lnU(k⊥) and the WCC z̄(k⊥) = (c/2π)φ(k⊥),
where c is the lattice constant along ẑ. If the parallel-
transported states themselves are not needed, the same
result can be obtained more straightforwardly by com-
puting φ = −Im ln

∏
〈uk|uk+b〉, where the product is

carried out along the string and the phases are chosen
arbitrarily except for the periodic gauge condition that
fixes the phase of the first and last k-points in relation
to each other.

In the multiband case, where n occupied bands are
treated as a group regardless of possible internal cross-
ings or degeneracies, the corresponding “non-Abelian”
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Berry phases φn can be determined by generalizing this
procedure in terms of n× n matrix operations. For each
pair of neighboring points along the string, the matrix

M
(k,k+b)
mn = 〈umk|un,k+b〉 is computed and subjected to

the singular value decomposition M = V ΣW †, where V
and W are unitary and Σ is real and diagonal (typically,
nearly unity). Again, the states at the end point k0 +G
are predetermined by those at the start k0 by the periodic
gauge condition. We can then identify U (k,k+b) = VW †

as the unitary rotation from k to k + b, and the global
unitary rotation matrix Λ(k⊥) =

∏
U (k,k+b) is con-

structed as the product of these along the string. Be-
ing unitary, its eigenvalues λn are unimodular, and we
can identify the non-Abelian Berry phases (also known
as Wilson loop eigenvalues) as φn(k⊥) = −Im lnλn(k⊥).
The WCCs are then just

z̄n(k⊥) =
c

2π
φn(k⊥) . (3)

As discussed in Ref. 20, this procedure gives the centers
of the maximally-localized Wannier functions in 1D alge-
braically, without the need for any iterative localization
procedure; we just repeat this procedure for each k⊥ to
construct the WCC sheets.

B. SYMMETRIES AND TOPOLOGY

A major theme of the present work is to show how the
WCC sheet structure z̄n(k⊥) shares many qualitative fea-
tures with the surface energy bandstructure εn(k⊥), with
the crucial advantage that they can be used to deduce the
topological properties of the bulk from bulk properties
alone. In this subsection we show that the WCC sheet
structure obeys all of the symmetries that are found in
the surface energy bandstructure, and sometimes more.
In particular, when TR is present, the Kramers degen-
eracies found at the 2D time-reversal invariant momenta
(TRIM) in the surface energy band structure also neces-
sarily appear in the WCC sheet structure. We also sketch
a physical argument as to why the topological connected-
ness of the WCC sheets mirrors that of the surface band-
structure, providing access to the topological indices in a
similar way.

1. Symmetry

To review, we consider a crystalline insulator with ẑ
taken along a primitive reciprocal lattice vector, and let
k‖ and k⊥ denote the wavevectors parallel and perpen-
dicular to ẑ respectively. We then consider the surface
bandstructure εn(k⊥) for a 1×1 (unreconstructed) sur-
face that has been cut normal to ẑ, where n labels en-
ergy eigenstates lying in the bulk projected band gap.
We also consider the WCC sheets z̄n(k⊥) constructed
as detailed in Sec. II A, where n labels the sheets with
−c/2 ≤ z ≤ c/2 in one unit cell along z. In both cases,

k⊥ resides in the same 2D surface BZ (both functions
have the same periodicity in k⊥).

An element S = {G|τ} of the full space group S is com-
posed of a generalized rotation G (possibly improper, and
possibly containing TR) followed by a possible fractional
translation τ (in non-symmorphic crystals), in addition
to lattice translations; the full point group G is composed
of all of the G appearing in the space-group elements.

The symmetry of the WCC sheets is controlled by
the reduced space group SW ⊆ S and the correspond-
ing point group GW ⊆ G defined by restricting the list
of G’s to those that map ẑ onto ±ẑ. For such opera-
tions, let G = KTzG⊥ where G⊥ is the in-plane rota-
tion (possibly improper), Tz is either the identity or the
simple mirror Mz, and K is either the identity or TR.
Then a space-group element {G|τ} ∈ SW must trans-
form a hybrid Wannier function Wn(k⊥) into another
hybrid Wannier function Wn′(±Gk⊥), with the Wannier
center transformed as

z̄n′(±G⊥k⊥) = Tz z̄n(k⊥) + τz , (4)

where the minus sign applies if G contains TR.
The symmetry of the surface bandstructure εn(k⊥),

on the other hand, is associated with the space group
SS ⊆ SW with the additional constraints that its elements
do not reverse ẑ to −ẑ and and do not contain partial
translations τz along ẑ. Then for any element G = KG⊥
in the corresponding point group GS we have that

εn(±G⊥k⊥) = εn(k⊥) (5)

where again the minus sign applies if TR is involved.
Since GS ⊆ GW, it follows from Eq. (4) that the WCC

sheets also obey

z̄n(±G⊥k⊥) = z̄n(k⊥) (6)

for any G ∈ GS. Thus, the WCC sheets show at least
as much symmetry as the surface bandstructure. If
the space group contains symmetry elements that re-
verse the z axis, then there is an additional symmetry
z̄n(±G⊥k⊥) = −z̄n(k⊥) associated with these elements,
or if it contains glide or screw operations along ẑ, then
also z̄n(±G⊥k⊥) = z̄n(k⊥) + τz. These additional WCC
symmetries have no counterpart in the surface bandstruc-
ture.

Finally, we note that TR symmetry plays a similar role
for the WCC sheets as for the surface energy bandstruc-
ture. Specifically, for any G ∈ GS, a Kramers degeneracy
is enforced whenever G⊥k⊥ = −k⊥ (modulo a reciprocal
lattice vector), due to the antiunitary nature of the TR
operation. In particular, if TR by itself is a symmetry,
then the WCC sheets and the surface energy bands are
guaranteed to touch and form Kramers pairs at all of
the TRIM. Additionally, if CZ2 ⊗TR is a symmetry, then
both the WCCs and surface energy bands are Kramers
degerate everywhere in the 2D BZ.
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FIG. 1: (a) Flow of Wannier charge centers along ẑ vs. ky
for a 2D Chern insulator. (b) Flow of surface energy bands
vs. ky for a 2D Chern insulator. (c-d) Same, but for a 2D Z2-
odd (quantum spin Hall) insulator. Dashed lines are arbitrary
reference positions in (a) and (c), or Fermi energies in (b) and
(d).

2. Topology

Just as the symmetries of the surface bandstructure are
replicated in the WCC sheet structure, a similar principle
applies to the topological properties. This will be amply
illustrated by the examples to follow, but we give here a
sketch of a general argument that this should be so.

For simplicity, consider first a 2D Chern insulator ly-
ing in the y-z plane with one occupied band carrying a
Chern number C = +1. Then the WCC z̄(ky) undergoes
a shift by c as ky is adiabatically carried from ky = 0 to
ky = 2π/b (assuming a rectangular b × c unit cell), as
shown in Fig. 1(a). This means that one electron is adi-
abatically pumped by cẑ during one cycle of ky around
the 1D BZ. If the edge bandstructure remained gapped
throughout the cycle, this would lead to a contradiction,
since by conservation of charge one extra electron per
surface unit cell would reside on the top edge at the end
of the cycle. However, the starting and ending point are
physically identical, so the edge charge must be the same.
This paradox can only be avoided if there is a surface
state that emerges from the valence band, rises throught
the gap, and disappears into the conduction band dur-
ing one cycle, as shown in Fig. 1(b). In this case, the
sudden loss of one electron that occurs when the sur-
face band crosses the Fermi energy compensates for the
gradual gain of one electron from the pumping, restoring
charge conservation. In other words, we conclude that
the edge bandstructure has a state crossing the gap if
and only if the WCC structure has a WCC that winds
by one unit during the cycle.

More generally, for an insulator with N occupied

bands, if
∑N
n z̄n/c winds by Chern integer C during the

cycle, the number of up-crossing minus the number of
down-crossing surface bands in the edge bandstructure
must equal C in order to satisfy charge conservation.
The argument also generalizes to 3D Chern insulators. If
the WCC sheet structure is computed in the ẑ direction,
the Chern indices along x and y (that is, corresponding
to Berry curvatures Ωyz and −Ωxz) are evident in the z-
windings of the WCC sheets as k⊥ is cycled in the ky and
kx directions respectively. In each case, a similar surface
state crossing necessarily must also occur in the surface
bandstructure, following the arguments given above.

Turning now to TR-invariant insulators, the Chern
number always vanishes, being odd under TR-symmetry,
but the WCC structure and surface band structure still
share their topological properties. Recall that TR sym-
metry leads to double degeneracy in both the the WCCs
and the surface energy bands at TRI points in BZ. Here
we show that the WCCs connect the TRI points in the
same manner as the energy bands do, and can be used in
a similar way to deduce the Z2 index of the system.

Consider the simple case of a 2D Z2 insulator in the
y-z plane with two occupied bands. The TR symmetry
relates the WCCs and the surface energy bands in the
second half of the BZ to the ones in the first half by
z(ky) = z(2π/b − ky) and ε(ky) = ε(2π/b − ky), as il-
lustrated in Figs. 1(c-d), so we only need to study their
behavior in the first half [0, π/b]. In the absence of spin-
mixing terms, the system decouples into two indepen-
dent insulators with equal and opposite Chern numbers
for spin-up and spin-down electrons. If these are ±1, the
system is Z2-odd. This implies both that the WCCs must
switch partners as ky evolves from 0 to π/c, as shown in
Fig. 1(c), and that the surface energy bands zigzag, as
shown in Fig. 1(d). More precisely, an arbitrary horizon-
tal line in Fig. 1(c) intersects the WCC curves just once
(or, in general, an odd number of times) in the half-BZ,
as does an arbitrary Fermi level for the surface energy
bands in the half-BZ in Fig. 1(d). One unit of up spin,
relative to down spin, is pumped to the edge during this
half-BZ evolution, corresponding to the “TR polarization
pumping” discussed by Fu and Kane.18 For a Z2-even in-
sulator, the number of crossings is, instead, an even in-
teger (typically zero) for both the WCCs and the surface
energy bands.

In more realistic Z2 insulators, the spin-orbit interac-
tion mixes up and down spins such that the energy bands
are no longer perfectly spin-polarized and a spin-Chern
classification of the system is no longer guaranteed. How-
ever, as long as the bulk energy gap remains open as
these spin-mixing terms are adiabatically turned on, nei-
ther the even/oddness of the number of WCC crossings,
nor the even/oddness of the number of surface energy
band crossings, can change. Therefore, it remains true
that the Z2 index deduced from the WCC evolution is
the same as that deduced from the surface energy bands,
i.e., they both contain the same topological information.

The weak and strong topological indices of a 3D TR-
invariant insulator can be determined from the 2D indices
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on the six TRI faces k̃j={0, π} of the 3D BZ (where k̃x=

kxa, k̃y=kyb, k̃z=kzc), which are negative if the WCCs
have a non-trivial connectedness on that face and positive
otherwise. Assigning an index ν(k̃i) to each of these faces,
the four Z2 invariants [ν0, ν1, ν2, ν3] that uniquely specify
the topological phase of a TR-invariant insulator can be
determined from these ν(k̃i) as follows. The three νi ≡
ν(k̃i = π), which are known as weak topological indexes,

are determined from the WCC behavior on the k̃i = π
faces, while the strong topological index ν0 ≡ ν(k̃i =

0)ν(k̃i = π) is only negative if the topological indices
of opposing TRI faces are opposite, i.e., if the WCCs
on the k̃i = 0 and k̃i = π faces have different behavior.
The indices could similarly be deduced from the behavior
of the surface energy bands. For both the WCC and
surface problems, we have to choose a particular axis ẑ to
define z̄ or as the surface normal, and in this case we are
only sensitive to four of the six TRI-face indices, defining
whether WCCs (or surface states) zigzag or not along
the four edges of the quarter 2D BZ. This determines
the strong index ν0 and two of the three weak indices (ν1
and ν2); the procedure has to be repeated with a different
choice of axis to obtain the third weak index ν3.

In summary, we expect that the flow and connected-
ness of the WCC sheets and the surface energy bands
should always show the same qualitative features. Not
surprisingly, similar considerations apply to the case of
crystalline TIs as well. Numerous examples will be pre-
sented below which amply illustrate this principle.

III. MODELS AND CALCULATIONS

We study the properties of WCCs in different topo-
logical phases using simple tight-binding (TB) models
as well as realistic density-functional theory (DFT) de-
scriptions of known materials. In particular, we use a
Haldane-like28 TB model of spinless electrons on a hexa-
gonal lattice to study the properties of the WCC sheets
in a 3D Chern insulator; the model of Fu, Kane, and
Mele (FKM)4 to study the WCCs of trivial, weak, and
strong topological phases; and the the tetragonal TB
model of Fu6 to study a crystalline TI. These TB models
are described in Sec. III A. We then compute the behav-
ior of the WCC sheets in the Z2-even Sb2Se3, weak Z2-
odd KHgSb, and strong Z2-odd Bi2Se3 insulators using
first-principles DFT calculations. These materials and
their crystal structure are described in Sec. III B, and
the details of our computational approach are presented
in Sec. III C.

A. TIGHT-BINDING MODELS

A TB model of a 2D Chern insulator was first intro-
duced by Haldane on a honeycomb lattice.28 This spin-
less model is constructed by starting with real first and

TABLE I: Topological phase of the FKM model4 as a function
of parameter α specifying the relative strength of the [111]
bond according to t111 = t(1 + α).

α [ν0; ν1ν2ν3] Topological phase
(−∞,−4) [+; + + +] Trivial insulator
(−4,−2) [−;−−−] Strong topological insulator
(−2, 0) [+; + +−] Weak topological insulator
(0, 2) [−; + +−] Strong topological insulator
(2,∞) [+; + + +] Trivial insulator

second-neighbor hoppings, but the time-reversal symme-
try is then broken by introducing local magnetic fluxes in
a pattern that respects the symmetry of the lattice and
sums to zero in each unit cell. This magnetic flux has the
effect of multiplying the second-neighbor hoppings by a
unimodular phase factor λ = eiϕ. We then stack these
2D layers in the normal direction to make a 3D TB model
of a Chern insulator:

H = t1
∑
l,<ij>

c†ilcjl + t2
∑

l,�ij�

λc†ilcjl

+t′1
∑
li

c†ilci,l+1 + t′2
∑
l,<ij>

c†ilcj,l+1 + H.c. (7)

Here l is the layer index, single and double brackets label
first- and second-neighbor in-plane pairs with hoppings t1
and t2 respectively, and t′1 and t′2 are (real) vertical and
nearest-diagonal interlayer hoppings respectively. The
hoppings included explicitly in the second term of Eq. (7)
are those for clock-wise hoppings around the hexagon;
counterclockwise ones are accounted for by the Hermitian
conjugation and have phases λ∗. With t1 = −1.0, t′1 =
−0.45, t2 = 0.15, t′2 = 0.015, and ϕ = 0.5π the occupied
band has a Chern number of one.

The FKM model4 is a four-band TB model of s states
on a diamond lattice in 3D with a spin-orbit interaction,
and takes the form

H = t
∑
<ij>

c†i cj + i(8λso/a
2)
∑
�ij�

c†is · (d
1
ij ×d2

ij)cj . (8)

Here the first and second terms describe spin-
independent first-neighbor and spin-dependent second-
neighbor hoppings respectively; λso is the spin-orbit
strength, and a is the cubic lattice constant, which is
set to one. The second-neighbor hopping between sites i
and j depends on spin and on the unit vectors d1,2

ij de-
scribing the two first-neighbor bonds that make up the
second-neighbor hop. For t = 1 and λso = 0.125, the
model has a gap closure at the high symmetry X point
in the Brillouin zone.

By varying the relative strength of the nearest-
neighbor bond in the [111] direction, t111 = t(1 +α), the
cubic symmetry is broken and the system can be switched
between trivial, weak and strong topological phases, as
shown in Table I. These insulating phases are separated
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from each other by gap closures at α=−4, −2, 0, and 2.
For α<−4 and α>2, the t111 bond is stronger than the
other bonds and the system can be adiabatically trans-
formed to a system of dimers, which is toplogically equiv-
alent to a trivial atomic insulator. For −2< α < 0, on
the other hand, the t111 bond is weaker than the oth-
ers, and the system can be considered as a collection
of 2D spin-Hall layers stacked along the [111] direction.
Thus, the system is a weak TI in this range of α. For
−4<α < −2 and 0<α<2, t111 is stronger than the other
first-neighbor bonds, but not strong enough to push the
system into the topologically trivial phase. As a result,
the 3D KM model is a strong Z2 TI for these values of
α.

For studying the WCC sheet behavior in a topological
crystalline insulator, we adopted the TB model of Fu,6

consisting of a tetragonal lattice with two inequivalent A
and B atoms stacked above one another, each carrying
px and py orbitals, forming bilayers that we index by n.
The total system Hamiltonian can be written as

H =
∑
n

(
HA
n +HB

n +HAB
n

)
, (9)

where HA and HB are the contributions describing in-
tralayer hoppings while HAB describes interlayer ones.
The former are given by

HX
n =

∑
ij

tX(ri−rj)
∑
α,β

c†Xα(ri, n)eijα e
ij
β cXβ(ri, n) (10)

and the latter by

HAB
n =

∑
ij

t′(ri − rj)
∑
α,β

[
c†Aα(ri, n)cBα(ri, n) + H.c.

]
+ t′z

∑
i

∑
α

[
c†Aα(ri, n)cBα(ri, n1) + H.c.

]
. (11)

Here r = (x, y) labels the coordinate in the plane, X =
{A,B} labels the sublattice, α and β label the {px, py}
orbitals, and eijα is cosine of the angle between the bond
(ri−rj) and orbital pα. We choose the nearest- and next-
nearest-neighbor hopping amplitudes to be tA1 = −tB1 = 1
and tA2 = −tB2 = 0.5 in HA and HB , and t′z = 2, t′1 = 2.5
and t′2 = 0.5 in HAB .

Note that this TB model is spinless, as the spin-orbit
coupling plays no role in the non-trivial topology of crys-
talline TIs. Instead, the topological classification is based
on certain crystal point-group symmetries and TRI, lead-
ing to robust surface states on those surface that respect
the symmetries in question. In the tetragonal Fu model,
these topological surface states exist on the (001) surface,
where the fourfold Cz4 rotational symmetry of the crystal
is preserved.

B. MATERIAL SYSTEMS

We carry out first-principles calculations of the WCC
sheet structure for Sb2Se3, KHgSb, and Bi2Se3 as pro-

totypical realizations of trivial, weak, and strong topo-
logical phases, respectively. Bi2Se3 has a rhombohedral
layered structure with space group D5

3d(R3̄m). It con-
sists of quintuple layers (QLs) formed by stacking Se and
Bi triangular-lattice planes in the order Se-Bi-Se-Bi-Se,
with two identical Bi atoms, two identical Se atoms and
a third Se atom at the center. These QLs have strong in-
ternal covalent bonding, but the interaction between QLs
is much weaker, being largely of van der Waals type. The
states near the Fermi energy come from the

Bi 6p and Se 4p orbitals. The strong SOC leads to
a band inversion at the Γ point and makes this mate-
rial a strong Z2 insulator with a band gap of 0.3 eV.9,29

Sb2Se3 shares the same rhombohedral layered structure
as Bi2Se3, but the weaker SOC in this material leaves it
in a topological trivial phase.

KHgSb consists of layers of HgSb in a honeycomb lat-
tice, with hexagonal layers of K atoms stuffed between
them. In a single layer of KHgSb, the valence bands near
the Fermi energy are composed of the Hg 6s and Sb 5s
and 5p states, while the K 4s band is considerably higher
in energy. The strong SOC in the honeycomb HgSb layer
leads to a band inversion at the Γ point in the 2D BZ and
makes an isolated KHgSb layer a 2D TI. These 2D TI lay-
ers can be stacked along the z direction to form a 3D lat-
tice, but the inter-layer coupling is very weak and there
is little dispersion along the Γ-Z direction. These honey-
comb layers can either be stacked in an AA sequence to
make a “single-layer” form, or in an ABAB sequence to
make a “double-layer” form, where B is rotated by 60◦

with respect to A. In the latter structure, which is experi-
mentally observed, the primitive cell contains two honey-
comb layers. Thus, two band inversions occur and cancel
each other out at Γ, and the same happens at Z, making
the compound a trivial insulator.30,31 In the hypothetical
single-layered structure, which is proposed as an exam-
ple of a weak TI,31 there is only one honeycomb layer in
the primitive cell, and a single band inversion happens at
Γ and another at Z. Thus single-layered KHgSb can be
viewed as a stack of weakly coupled 2D TIs and belongs
to the weak Z2-odd topological class. Here, we focus on
single-layered KHgSb, and we compare its WCC sheets
to the weak topological phase of the FKM TB model in
Sec. IV C.

C. COMPUTATIONAL METHODS

Our first-principles calculations of WCC sheets are
based on DFT calculations using the PBE exchange-
correlation functional32 performed with the Quantum
Espresso package.33 We use fully-relativistic optimized
norm-conserving pseudopotentials from the Opium pack-
age, with the semicore Bi 5d, Sb 4d, Hg 5d, and K 3s3p
states included in the valence. The self-consistent cal-
culations are carried out for the experimental structures
using a 10 × 10 × 10 Monkhorst-Pack34 k-mesh. The
plane-wave energy cutoff is set to 70 Ry.
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In principle one could include all occupied bands in the
WCC construction. However, taking Bi2Se3 as an exam-
ple, the occupied Bi 5d semicore states and the shallow
Bi 6s and Se 4s bands have an obvious atomic charac-
ter and remain well separated from the active valence
p bands, so they are clearly trivial and do not need to
be included in the topological analysis. Therefore, we
concentrate on constructing WCC sheets only for the re-
maining upper valence bands. As these are the lowest
18 of the 30 bands of Bi 6p and Se 4p character, we
do this by constructing a Wannier representation in this
30-band space using the Wannier90 package35 to gener-
ate an ab initio TB Hamiltonian from the DFT calcu-
lation. The frozen window in which the first-principles
band structure is exactly reproduced extends from 2 eV
below to 2 eV above the Fermi level EF . From the outer
energy window, which extends to 20 eV above EF , 80
Bloch bands are used to produce 30 WFs for the Bi, Sb,
and Se p bands in Bi2Se3 and Sb2Se3. The orbital po-
sitions and hopping parameters between them are then
used to construct the effective tight-binding Hamiltoni-
ans. Similarly, for KHgSb we carry out the Wannier con-
struction for the ten Bloch bands of K 4s, Hg 6s and Sb
5p character, of which the bottom six are the highest va-
lence states. The outer window is chosen at 14 eV above
EF for KHgSb, with ten WFs constructed from 20 Bloch
bands.

We have implemented the calculation of the WCC
sheets into Version 1.6.2 of the open-source PythTB
tight-binding code package.36 The Wannierized Hamil-
tonians are imported into the PythTB code to calculate
the WCC sheets using the parallel-transport approach
explained in Sec. II A.

IV. RESULTS

In this section, we present the WCC sheets for the
different topological phases we have studied. For the 3D
Chern insulator in Sec. IV A, the WCC sheets are plotted
over the entire 2D BZ, while for the TR-invariant systems
of Secs. IV B-IV D the sheets are plotted over one quarter
of the BZ, i.e., between the TRI momenta [0, 0], [0, π],
[π, π], and [π, 0].

The axis of highest rotational symmetry in each TB
model or material system is chosen as the z axis. This
axis in the FKM model is along the bond with altered
strength (t111); the model has a 3-fold symmetry around
this axis, which when combined with TR-symmetry re-
sults in a 6-fold rotational symmetry in the 2D BZ. In
Sb2Se3 and Bi2Se3 the z axis is normal to the quintuple
layers, which is the axis of 3-fold symmetry. In KHgSb
the z-axis is chosen normal to the honeycomb HgSb lay-
ers, and in the Fu tetragonal TB model it is along the
tetragonal axis.

The WCC sheets are computed along both z and y and
plotted versus (kx, ky) and (kx, kz) respectively. (Hence-
forth we shall not be careful about the distinction be-

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2: (Color online) Surface energy bands and WCC sheets
for the TR-broken Chern insulator model. (a-c) Surface nor-
mal and WCCs along ẑ vs. (kx, ky). (d-f) Surface normal and
WCCs along ŷ vs. (kx, kz). Surface states for a 24-layer slab
in (a) and (d); WCCs around 2D BZ boundary in (b) and
(e); WCCs in 2D BZ in (c) and (f). Dashed and solid surface
states in (d) reside on the top and bottom of the (010) slab
respectively. The WCC sheets and surface bands wind by one
unit in the ky-kz plane, but not in the kx-ky plane.

tween kx and k̃x = kxa, etc.; the meaning should be clear
from the context.) Plotting the WCC sheets along these
two perpendicular directions is especially important to
reveal the topological behavior in the 3D Chern, weak
Z2, and topological crystalline phases, where, as we shall
see, the topology of the WCC sheets may look trivial in
one direction but topological in another.

The WCC sheets for the TR-broken Chern insulator
phase are discussed next. WCC sheets for the TR-
invariant trivial, weak, and strong Z2 phases are dis-
cussed in Secs. IV B-IV D, using the FKM model and
its material system analogues in each phase. The WCC
sheets for the crystalline topological phase are discussed
in Sec. IV E.

A. TR-broken Chern insulator

We first consider the TB model for a TR-broken Chern
insulator phase that was introduced in Sec. III A. It is
composed of 2D Chern layers stacked along the z direc-
tion with weak interlayer coupling, so we do not expect
an (001) slab of the 3D model to show any topological
surface states. This is confirmed in the surface projected
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3: (Color online) Surface energy bands (15-layer slab)
and WCC sheets for the TR-invariant FKM model in the
trivial phase (α=2.5). (a-c) Surface normal and WCCs along
ẑ vs. (kx, ky). (d-f) Surface normal and WCCs along ŷ vs.
(kx, kz). The WCC sheets and surface bands show a trivial
behavior in all directions.

bandstructure plotted in Fig. 2(a), where the shaded re-
gion indicates the region of bulk energy bands. No sur-
face states are visible in this case, consistent with the
trivial topology for this orientation. By the same token,
the WCC sheets computed along the z direction from the
single occupied band remain localized in the vicinity of
the z positions of the layers, with no topological evolu-
tion along kx or ky. This is shown in Fig. 2(b-c), where
the WCC sheets are plotted around the boundary, and
throughout the interior, of the 2D projected BZ respec-
tively.

In contrast, any slab of the 3D system that cuts
through the 2D Chern layers will reveal the topological
nature of the 3D crystal by displaying a surface energy
band traversing the bulk gap on each surface, as shown
in Fig. 2(d) for a (010) slab. The corresponding ȳ(kx, kz)
WCC sheets are shown in Figs. 2(e-f). While these WCCs
do not vary strongly along kz, they wind by one unit as
they evolve along kx, pumping one electron per unit cell
from the (01̄0) to the (010) surface. The pumped charge
is restored on each surface as the surface bands cross the
Fermi level in the bulk energy gap.

B. TR-invariant trivial insulator

In general, the broken translational symmetry at the
surface of a band insulator allows for the existence of

(a) (b)

FIG. 4: (Color online) First-principles WCC sheets along ẑ
for topologically trivial Sb2Se3, plotted on (a) the boundary
and (b) the interior of the 2D quarter BZ. The WCCs show
trivial behavior as expected.

surface states in the bulk band gap. In a topologically
trivial insulator, these surface states, if present, are prone
to localization by disorder and can be removed from the
gap by an adiabatic transformation of the Hamiltonian.
An example of such unprotected surface states can be
seen in Fig. 3(a), which shows the surface states on the
(001) surface of the FKM model in its trivial insulat-
ing phase. The surface bands are doubly degenerate at
the TRI momenta as required by Kramer’s theorem, but
nothing protects them from being adiabatically pushed
to the valence or conduction band. (The model also hap-
pens to have a particle-hole symmetry which is respon-
sible for the mirror symmetry along the energy axis, but
we do not consider this as an imposed symmetry here.)
The surface energy bands on the (010) surface, Fig. 3(d),
show the same trivial behavior, indicating that this is a
topologically trivial insulator.

The trivial topology of this material is equally evident
from the WCC sheets, plotted along ẑ and ŷ in Figs. 3(b-
c) and (e-f) respectively. The WCC sheets are plotted
around the boundary of a quadrant of the 2D projected
BZ in Figs. 3(b) and (e), and throughout its interior in
Figs. 3(c) and (f). Here there are two WCC sheets per
unit cell (vertical axis) because there are two occupied
energy bands in the four-band model, but the band pairs
remain well separated from their periodic images above
and below. The WCC sheets touch at the TRI points at
the corners of the quarter BZ, as required by Kramers’
theorem, but these Kramers pairs are connected in all
directions in a topologically trivial way. As a result, the
topological index is νµ = +1 on all six TRI faces, sig-
nalling a fully trivial topological phase.

A similar trivial behavior is seen in the first-principles
WCCs computed for Sb2Se3 as shown in Fig. 4. The
18 WCC sheets in the quintuple layer come mainly from
the Sb 5p and Se 4p orbitals. While having substan-
tial Sb 5p character, they are nevertheless centered on
the anion Se sites located at z ' −0.3c, 0, and 0.3c in
the figure. While the gap between WCC sheets associ-
ated with neighboring quintuple layers, centered at 0.5c
in Fig. 4(a), is not obviously larger than the other gaps,
it nevertheless remains open across the entire 2D BZ.
The WCC sheets plotted along the x and y directions
(not shown) display a similar trivial behavior. Thus, we
can conclude that this is a fully trivial insulator, without
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5: (Color online) Surface energy bands (15-layer slab)
and WCC sheets for the TR-invariant FKM model in the weak
topological phase (α=−1). (a-c) Surface normal and WCCs
along ẑ vs. (kx, ky). (d-f) Surface normal and WCCs along ŷ
vs. (kx, kz). Only the (kx, ky) TRI faces at kz =0 and kz =π
are Z2-odd.

having to carry out any surface-state calculation.

C. TR-invariant weak topological insulator

The FKM model with −2 ≤ α ≤ 0 is a weak Z2-odd
insulator, as illustrated by our results for α = −1 in
Fig. 5. In this case, the crystal can be thought of as
a series of 2D spin-Hall insulators stacked along the z
direction, i.e., the direction of the weakest bond. Thus,
a slab of the model cut normal to this direction shows no
robust surface states in the bulk energy gap, as shown in
Fig. 5(a), and the WCC sheets along this direction pair
up as they do in a trivial insulator, as can be seen in
Figs. 5(b-c).

On the other hand, a slab of a weak Z2-odd insula-
tor cut through the 2D spin-Hall sheets should host an
even number of Dirac cones on each surface. These sur-
face states are shown for an (010) slab of the same FKM
model in Fig. 5(d), where the Dirac cones are visible at
(kx, kz) = (0, 0) and (0, π). These surface bands have a
gap-crossing Z2-odd behavior vs. kx but not vs. kz, sug-
gesting that the (kx, ky) TRI faces of the 3D BZ are Z2-
odd at kz=0 and π, while those on the (ky, kz) faces are
Z2-even at kx=0 and π. This is confirmed in Figs. 5(e-f),
where the WCC sheets are seen to swap partners vs. kx
but not vs. kz.

The Z2 topological invariants νµ follow straightfor-
wardly from the above considerations. The invariants

(a)

(b)

(c)

(d)

FIG. 6: (Color online) First-principles WCC sheets for the
weak TI KHgSb. (a-b) Along ẑ. (c-d) Along ŷ. Only the
(kx, ky) TRI faces at kz =0 and kz =π are Z2-odd.

are +1 for the TRI faces at kx = 0 and π, +1 for the
TRI faces at ky = 0 and π, and −1 for the TRI faces
at kz = 0 and π. The conventional index set is then
[ν0; ν1ν2ν3] = [+; + + −], confirming that this is a weak
TI (ν0 = +1) corresponding to spin-Hall layers stacked
along z (ν3 = −1).

We see the same kind of weak topological behavior in
our first-principles calculations of the WCC sheets for
KHgSb shown in Fig. 6. As explained in Sec. III B, this
material is composed of honeycomb HgSb layers that be-
have as 2D spin-Hall insulators, stacked along the z di-
rection, and separated by hexagonal layers of K stuff-
ing atoms. The pictures look more complicated because
there are now six occupied bands per cell, and thus six
WCCs per lattice constant, and some of the artificial
symmetries of the FKM model are now absent. How-
ever, the topological behavior is similar to that of Fig. 5.
The weak coupling between the HgSb layers is reflected
in the trivial behavior of the WCC sheets along the (001)
direction, Figs. 6(a-b), but plotting the WCCs in a di-
rection cutting across the honeycomb HgSb layers reveals
the topological behavior, as seen in Figs. 6(c-d). These
WCC sheets change partners on the (kx, ky) TRI faces
at both kz = 0 and π, indicating ν3 = −1 and ν0 = +1,
giving the same [+,+ +−] set of indices as for the FKM
model in its weak topological phase. These results are
entirely consistent with the existence of Dirac cones at
the Γ and Z points in the surface bands of an (010) slab
as shown in Ref. 31. However, we again emphasize the
convenience of our approach, in which only primitive-cell
bulk calculations are needed.

D. TR-invariant strong topological insulator

In contrast to weak TIs, the non-trivial behavior of the
WCC sheets in strong Z2 insulators should be evident
no matter what direction is chosen to construct them;
there would be switching of partners for one of the TRI
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 7: (Color online) Surface energy bands (15-layer slab)
and WCC sheets for the TR-invariant FKM model in the
strong topological phase (α = 1). (a-c) Surface normal and
WCCs along ẑ vs. (kx, ky). (d-f) Surface normal and WCCs
along ŷ vs. (kx, kz). The (kx, ky) TRI face at kz = π, the
(kx, kz) TRI face at ky = 0, and the (ky, kz) TRI face at
kx =0 are Z2-odd.

faces in any chosen direction. This behavior is illustrated
in Fig. 7, where the surface bands and WCC sheets are
presented for the FKM model in the strong Z2-odd phase
at α = 1. Both the surface bands and the WCC sheets
swap partners in the (kx, ky) plane at kz=π, the (kx, kz)
plane at ky = 0, and the (ky, kz) plane at kx = 0, but
not on the other three TRI faces. The set of topological
indices is therefore [ν0; ν1ν2ν3] = [−; + + −], and the
system is a strong TI. This is also consistent with the
existence of an odd number of Dirac cones on any surface
of a strong Z2 insulator, as is evident in Figs. 7(a) and
(d), where three Dirac cones are visible in each case.

We again confirm that our approach works in the first-
principles context by presenting the WCC sheets along
the z direction (rhombohedral-axis) in the strong TI
Bi2Se3, as shown in Fig. 8. There are now 18 WCC
sheets per cell; in most of the 2D projected BZ these are
clustered in groups of six, with each of the three clus-
ters located close to the z position of a layer of Se atoms
within the QL. This is reasonable, as the Bi and Se atoms
can be regarded as cations and anions respectively, and
it is natural to find the Wannier centers on the anions.
However, this behavior changes drastically near Γ, where
two of the six WCC sheets in each cluster split off and
form a Dirac point at Γ, signaling the strong TI nature
of this material. Clearly this results from the band in-

(a) (b)

FIG. 8: (Color online) First-principles WCC sheets for the
strong TI Bi2Se3, plotted on (a) the boundary and (b) the in-
terior of the 2D quarter BZ. The WCC sheets on parallel TRI
faces (e.g., at kx = 0 and kx = π) show opposite topological
behavior.

version near Γ in the 3D bulk BZ, and is consistent with
the existence of a single Dirac cone at Γ on the surface
of Bi2Se3, as has been amply demonstrated by angle-
resolved photoemission and other experimental probes.14

We can again read off the topological indices by noting
that the WCC sheets swap partners in the (kx, ky) plane
at kz = 0, the (kx, kz) plane at ky = 0, and the (ky, kz)
plane at kx=0, but not on the other three TRI faces, so
that [ν0; ν1ν2ν3] = [−; + + +].

E. Crystalline topological insulator

In constrast to the systems studied above, Fu’s tetrag-
onal model for a crystalline TI6 is spinless, because the
non-trivial topology of a topological crystalline insulator
has its roots in the crystal symmetries rather than in TR
symmetry and spin-orbit interaction. The TR symmetry
in this scalar model does not guarantee double degener-
acy at the TRI momenta, but its combination with the
crystal C4 symmetry leads to a two-fold degeneracy of the
surface energy bands at Γ = (0, 0) and at M = (π/a, π/a)
for the (001) surface, where z is chosen along the tetrago-
nal axis. These surface bands can be seen in Fig. 9(a) for
an (001) slab of the model. The dashed and solid lines
show the surface states on the two surfaces of the slab.
These bands traverse the energy gap in a zig-zag man-
ner, and their protected degeneracy at the M point guar-
antees a robust metallic (001) surface. This non-trivial
behavior is clearer when considering the behavior of the
WCC sheets along the z direction, plotted in Figs. 9(b-c).
Over most of the 2D BZ, the z location of these sheets is
midway between the A and B atoms. The sheets touch
two-by-two at Γ, but they open up and switch partners
on approaching the M point. Thus, the WCC undergo
the same kind of switching, and so reflect the same topo-
logical properties, as in the surface energy bands. Even
the quadratic dispersion of the surface bands around M
is reflected in the WCCs.

The C4 symmetry is broken on any surface other than
the (001) surface, which means no robust surface states
are expected on these other surfaces. Fig. 9(d) confirms
this for the case of an (010) slab of the model. The energy
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 9: (Color online) Surface energy bands (24-layer slab)
and WCC sheets for tight-binding model of a crystalline TI.
(a-c) Surface normal and WCCs along ẑ vs. (kx, ky). (d-f)
Surface normal and WCCs along ŷ vs. (kx, kz). Dashed and
solid surface states in (a) reside on the top and bottom of
the (001) slab respectively. Quadratic band touching and
cross-linking in panels (a-c) signals the crystalline topolog-
ical phase.

bands approach each other near a point midway between
(kx, kz) = (π, π) and (0, π), but they do not touch. The
WCC sheets show a similar behavior in Figs. 9(e-f), re-
maining trivial except along the segment at kz=π; while
there is a non-avoided crossing along this line, this ap-
pears to be an artifact of some special symmetries of the
model, and is not relevant to the discussion at hand.41

Thus, both the surface bands and WCC sheets are con-
sistent with the trivial topology of an (010) slab of the
model.

V. SUMMARY

In this manuscript, we have explained how the hybrid
Wannier charge centers, or WCC sheets, can be calcu-
lated using a parallel-transport approach along a chosen
direction in a 3D insulator and plotted versus the other
k-space dimensions. We have shown that these sheets

contain the same topological information as the surface
energy bands, and thus provide an accessible means of
deducing the topological invariants of the insulator from
the bulk properties alone. We also show that the linear
dispersion of the surface energy bands at Dirac points in
Z2 TIs, and their quadratic behavior at the gap closure
in topological crystalline insulators, are replicated by the
WCCs. Moreover, the symmetry group of the WCCs in
the 2D BZ include all the symmetry operators of the sur-
face bands.

We have demonstrated the distinct behavior of the
WCC sheets in trivial, Chern, weak, strong, and crys-
talline TIs using various tight-binding models. In ad-
dition, we have used first-principles calculations to il-
lustrate the calculation of the WCC sheets in Z2-even
Sb2Se3, weak Z2-odd KHgSb, and strong Z2-odd Bi2Se3,
confirming the conclusions from the tight-binding mod-
els.

Admittedly, the topological invariants of Chern, TR-
invariant, and crystalline TIs can be deduced in other
ways. For example, for the TR-invariant case, parity
eigenvalues can be used if inversion symmetry is present;
if not, a calculation of 1D Wannier centers on each 2D
TRI face is sufficient.16,17 However, the WCC sheets pro-
vide a unifying description that works in all these cases,
allows for a more intuitive comparison of different kinds
of TIs, and provides deeper insight into the origins of the
non-trivial topology.

The evolution of the WCC sheets as the Hamiltonian is
varied through a trivial-to-topological phase transition,
or carried adiabatically around a loop that pumps the
Chern-Simons axion coupling by a quantum,37,38 would
be interesting targets for future studies. Other phases,
such as axion insulators39 and antiferromagnetic TIs,40

might also be good subjects for investigation with this
tool. Even in zero-gap Weyl semimetals, the WCC sheets
will be well-defined everywhere except at isolated pro-
jected Weyl points in the 2D BZ, and studying their dis-
tinct topological properties would be interesting. Finally,
it would be intriguing to explore whether the WCC con-
cept can be generalized to topological superconductors.
Thus, we are hopeful that the construction and inspec-
tion of the Wannier charge center sheets will prove to be a
useful tool for the characterization of topological matter
in general.
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