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First-principles modeling of ferroelectric capacitors presents several technical challenges, due to
the coexistence of metallic electrodes, long-range electrostatic forces and short-range interface chem-
istry. Here we show how these aspects can be efficiently and accurately rationalized by using a
finite-field density-functional theory formalism in which the fundamental electrical variable is the
displacement field D. By performing calculations on model Pt/BaTiOs/Pt and Au/BaZrOs/Au
capacitors we demonstrate how the interface-specific and bulk-specific properties can be identified
and rigorously separated. Then, we show how the electrical properties of capacitors of arbitrary
thickness and geometry (symmetric or asymmetric) can be readily reconstructed by using such in-
formation. Finally, we show how useful observables such as polarization and dielectric, piezoelectric
and electrostrictive coefficients are easily evaluated as a byproduct of the above procedure. We ap-
ply this methodology to elucidate the relationship between chemical bonding, Schottky barriers and
ferroelectric polarization at simple-metal/oxide interfaces. We find that BO2z-electrode interfaces
behave analogously to a layer of linear dielectric put in series with a bulk-like perovskite film, while

a significant non-linear effect occurs at AO-electrode interfaces.

PACS numbers: 71.15.-m 73.30.+y 73.61.-r 77.22.-d 77.65.-j 77.80.-e 77.84.-s

I. INTRODUCTION

Capacitors based on ferroelectric perovskites hold
promise for substantial advances in nanoelectronics,
with potential applications in non-volatile random-access
memories and high-permittivity gate dielectrics.t Thin-
ner devices, which are mandatory for optimal efficiency
and speed, are strongly influenced by the electrical and
mechanical boundary conditions imposed by the inter-
face.2 While there has been significant progress in the un-
derstanding of strain effects,? the electrostatics of metal-
ferroelectric interfaces still remains a challenge, and is
widely recognized as a central issue in the scaling of fer-
roelectric devices.

Interface electrostatics is generally modeled, within
Landau-Ginzburg theories, by a hypothetical thin layer
of standard dielectric (“dead layer”) interposed between
an ideal electrode and the active, bulk-like ferroelectric
film. The dielectric dead layer is arranged in series with
the film, and therefore the small interfacial capacitance
associated with it tends to suppress the polarization of
the film via a depolarizing field. It was postulated a long
time ago® that, even in the absence of an extrinsic inter-
facial layer, a small interfacial capacitance can originate
from the finite penetration length of the electric field in
a real electrode. The imperfect-screening model and the
dead-layer model are mathematically equivalent and lead
to the same consequences, regardless of the microscopic
nature of the effect.

Owing to the complex structure and chemistry of a re-
alistic interface, however, it is difficult to infer the mag-
nitude of this interfacial capacitance based on macro-
scopic considerations. Moreover, the usual assumption

that the capacitance (or equivalently, the effective screen-
ing length) is constant as a function of the ferroelectric
displacement might not be justified in some cases. For
example, it was shown very recently by means of first-
principles calculations that chemical bonding across the
junction profoundly influences the ferroelectric proper-
ties of the device.” This is likely to introduce nonlin-
earities in the electrical response of the interface that
are neglected within most phenomenological approaches.
In order to achieve a quantitative model of the elec-
trode/ferroelectric interface there is therefore the clear
need for a theory that complements Landau free-energy
expansions with a microscopically reliable description of
local chemistry and electrostatics.

A strategy for modeling the ferroelectric behavior
of symmetric and asymmetric capacitors that combines
Landau theory with first-principles calculations was re-
cently proposed by Gerra et al.2 Their strategy has the
advantage of exploiting the power of the ab-initio ap-
proach to gain quantitative insight into the coefficients
that describe the behavior of the interface. In particu-
lar, the interface enters the free energy through two dis-
tinct quadratic terms, a depolarizing effect which pro-
vides a uniform electric field and is the main contribu-
tion, and a short-range chemical bonding effect which
provides a much smaller correction. These coefficients
are then input into a standard Landau free-energy expan-
sion and used to predict the behavior of devices of macro-
scopic thicknesses, which are not directly tractable from
first principles. This model was shown to describe the
SrRuO3/BaTiO3/SrRuO;3 system quite accurately. The
results were consistent with the seminal work of Junquera
and Ghosez,2 who demonstrated how the main impact of
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the electrodes is embodied in the depolarizing field in an
otherwise bulk-like BaTiOg3 film.

Some authors, however, have questioned the general-
ity of such an assumption, postulating that in some cases
the electrodes can have a much more profound impact on
the ferroelectric film. The authors of Ref. [10, for exam-
ple, claimed that SrRuOg electrodes can destroy the po-
lar soft mode of ferroelectric KNbOg films, producing a
head-to-head domain wall a few unit cells from the inter-
face. Furthermore, in Ref. [11, Pt electrodes were found
to induce a “ferrielectric” dipole pattern in the whole vol-
ume of a BaTiOj3 film. Such effects, which are nonlocal
in nature, cannot be described by the simple models of
Refsl8 andd. To account for (and clarify the nature of)
these “exceptions”, it would be very desirable to have a
rigorous methodological framework that treats the elec-
trical properties of a given capacitor heterostructure fully
from first-principles, without any a priori assumptions.

Such a methodological framework was recently devel-
oped for the case of purely insulating perovskite super-
lattices. By performing the calculations at a fixed value
of the electric displacement field D, Wu et al12? were able
to separate the long-range electrostatic interactions be-
tween layers from the short-ranged compositional depen-
dence. Based on this separation, the electrical properties
of a given layer were shown to depend on the chemical
nature of a small number of first and second neighbors
only. This allowed for a first-principles description of
dielectric, ferroelectric and piezoelectric properties of ar-
bitrary superlattice sequences in terms of very few pa-
rameters, appropriately arranged in the form of a cluster
expansion.

It is the main scope of this work to extend these ideas
to the case of ferroelectric films with metallic electrodes.
Such an extension is now possible, as there are well-
established methods for treating polarization and electric
fields in metal/insulator heterostructures, and these can
readily be combined with recently-developed approaches
for treating the electric displacement field D as the con-
trolled electric variable.”12:13 Using an extensive analy-
sis of several Pt/BaTiO3/Pt and Au/BaZrOs/Au capac-
itor heterostructures to illustrate the power of this ap-
proach, we show that a film-electrode interface behaves
analogously to an insulator-insulator interface in a fer-
roelectric superlattice (assuming that there is no Schot-
tky breakdown), in that the same “locality principle”12
holds. This means that the film is in a bulk-like state
except for the two or three oxide monolayers which lie
closest to the boundary. Moreover, all the complexity
of interfacial chemical bonding and electrostatics can be
incorporated in a single energy contribution, which we
define as the interface electric equation of state. Tak-
ing advantage of the constrained-D technique, we fur-
ther show how to extract in practice (from calculations of
compositionally symmetric capacitors) such an interface
equation of state, and represent it in terms of a potential
drop which is in general a nonlinear function of the elec-
tric displacement field. Then, we use this information,

together with the bulk equation of state of the ferroelec-
tric, to predict, with full first-principles accuracy, the
electrical properties of capacitors of arbitrary thickness
and geometry (symmetric or asymmetric). Finally, we
show how useful observables such as polarization and di-
electric, piezoelectric and electrostrictive coefficients are
easily evaluated as a byproduct of the above procedure.

Our results demonstrate the validity of D as a fun-
damental electrical variable to study ferroelectric capaci-
tors within an “imperfect screening” regime. (The appro-
priateness of such an approach was recently questioned,
although in a slightly different context, in Ref. |14.)
From the practical point of view, our detailed study of
Au/BaZrO3/Au capacitors also yields important insight
into the similarities and dissimilarities of AO-terminated
versus BOs-terminated perovskite films in contact with
simple-metal electrodes. On the one hand, the relatively
high interfacial capacitances we obtain for both interface
types corroborate the ideas of Ref. [7, where weak inter-
face bonding was found to be favorable for the overall
dielectric (or ferroelectric) response of the device. On
the other hand, at the BaO-Au interface we find signifi-
cant non-linear effects, which do not fit into a “constant
interfacial capacitance” model. We correlate these effects
with the formation and breaking of the interfacial Au-O
bonds upon polarization reversal. (This same mechanism
was already found to strongly influence the ferroelectric
instability in Ref. [7.)

The manuscript is structured as follows. In Section [II
we review the methodological background and present
the new developments which are specific to this work. In
Section [Tl we discuss the structural and electronic prop-
erties of ferroelectric Pt/BaTiO3/Pt capacitors, which
we then use to model their dielectric and piezoelectric
properties as a function of thickness and applied bias. In
Section [[V] we focus on the Au/BaZrOs/Au model sys-
tem. First we compare the electrical properties of the
Au-BaO and the Au-ZrOy interface structures; then we
show how to reconstruct the behavior of asymmetric ca-
pacitor configurations starting from the interfacial and
bulk equations of state. Finally, in Section [V] and Sec-
tion [VIl we discuss our results in light of the existing
literature and present our conclusions.

II. METHODS
A. Polarization
1. Bulk insulators

We shall consider superlattices and capacitor struc-
tures stacked along Z, so that we are interested in po-
larizations and fields only along this direction. We start
with the case of a bulk insulator, either a single bulk unit
cell or a supercell representing an insulating superlattice,
but with a formulation chosen for convenient later gen-
eralization to the case of a capacitor structure.



We thus consider a periodic insulator described by
three real-space lattice vectors R;, where for simplic-
ity of notation we impose that Rs = (0,0,¢) is per-
pendicular to Rj 2 (the latter two lie therefore in the
zy plane); the corresponding reciprocal-space vectors are
Gi23. We choose a discrete k-point sampling of the
form k = jb 4k, where the vector b = G3/N|| spans
a regular one-dimensional mesh of dimension N, and k .
belongs to a set of N special points in the perpendicular
plane. The electronic ground state is defined by a set of
one-particle Bloch orbitals, u,x; our goal now is to define
the polarization along Gs.

To that end, we first seek a localized representation of
the electronic wavefunctions along the direction Gg for
each given k. We do this by constructing a set of max-
imally localized “hermaphrodite” orbitals wpy, (r) that
are Wannier-like along z while remaining Bloch-like in
the zy plane!®16 using a parallel-transport procedure.?
The center zpk, of wyx, is then defined asi®

enter = (ney [£lt0nie, ) = / e, (B)22dr®, (1)

and the contribution of k; to the polarization is

Pky) = é( 20z, + ) Qaza), (2)

where z, and @, are the ionic coordinate and bare pseu-
dopotential charge, respectively, of the atom «; the factor
of two refers to spin-paired orbitals. The total polariza-
tion P is then obtained by averaging k; over its 2D Bril-
louin zone, while being sure that the branch choice of
P(k,) is continuous in k; .

Our Wannier-based definition of P, Eq. (), lends itself
naturally to a local decomposition in terms of the dipo-
lar contribution of individual oxide layers, as proposed
in Refs!19 andl2. In particular, given that in typical
perovskite insulators the centers z,x, cluster themselves
around the oxide layers they formally “belong” to, one
can define the layer polarization (LP) of the j-th layer as

pitks) = 5(=2) 2 + Y QaZa). ()
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In the above equation the sums are restricted to atoms
o and Wannier centers ¢ that are “in” the layer j, and S
is the cell surface area; again, the overall p; is calculated
by performing a 2D Brillouin zone average. p; is well
defined as long as (i) the oxide layers are charge-neutral,
and (ii) the assignment of a specific atom or wavefunc-
tion to a given layer is clear-cut and unambiguous. Both
conditions are satisfied in typical II-IV perovskite ferro-
electrics such as PbTiO3 and BaTiOs3.

2. Capacitor superlattices

Ideally one would like to study a capacitor in the form
of a number of layers of insulator sandwiched between

semi-infinite metallic contacts. However, we adopt here
the standard approach of constructing supercells consist-
ing of alternating insulating and metallic regions stacked
along z, just as is normally done when studying ferro-
electric superlattices. We adopt the same notations and
conventions as in the previous subsection, with ¢ being
the superlattice repeat distance along z. We set N =1
(and henceforth write k| = k); this is by no means a lim-
itation, since we are only interested in capacitors that are
thick enough so that tunneling is insignificant, in which
case the one-particle bands will have negligible disper-
sion along the z direction. We further require a rectify-
ing (rather than ohmic) contact at the oxide/electrode
interface. This means that both the valence-band max-
imum (VBM) and conduction-band minimum (CBM) of
the film are located far enough in energy from the Fermi
level that they are not appreciably populated/depleted
by the tails of the smearing function (e.g., Fermi-Dirac,
Gaussian, etc.).

Because the capacitor superlattice is metallic, one
might wonder whether it is possible to define a polar-
ization P. However, the superlattice is only metallic in
the x and y directions, whereas we are interested only in
computing P along z, and only in applying fields along
z. The methodology for computing P in such cases was
developed in Ref. 20. The electronic states are classified
into three energy windows:

e The completely empty states (upper window) are
discarded from the computation, since they do not
contribute to P or to other ground-state properties.

e The partially occupied states (middle window) ly-
ing in the range W = [Ep — ¢, Er + §] around
the Fermi level Ef are considered as conduction
states. Since these states fall in the energy gap of
the dielectric film, they are confined to the metallic
slab, and the dipole moment of their overall charge
distribution is thus well defined. To make sure
that this conduction charge distribution decays fast
enough in the insulating film, it is useful to define
its planar average

pona() =g 3w [ dedylina)P . (0
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where €,k and f,x are the eigenvalue and occu-
pancy of the state, wy is the k-point weight, and S
is the cell cross-sectional area.

e The lower states, which are all fully occupied, are
transformed to yield a set of hybrid Wannier func-
tions wy, that are maximally localized along z
while remaining extended (and labeled by k =k )
in the x and y directions. The contribution of
each Wannier function to P is then defined through
the center of the corresponding charge distribution

Picn (@) = Jwin (7).
The center of charge of peond(z) (middle window) is com-
puted by integrating against a linear sawtooth function



whose discontinuity is placed in the middle of the in-
sulating region. Similarly, the center of each Wannier
charge (lower window) is computed from its py, using a
sawtooth function whose discontinuity is chosen far away
from its center. For the systems considered in this work,
the pk, are typically very well localized, and the main
source of error comes from the slower decay length of p.
in the insulator. This means that in very thin capacitors
(few oxide layers) the polarization becomes ill-defined;
rather than a defect of the algorithm, this is a signature
that the system becomes metallic, and the polarization
cannot be defined.

Note that there is an inherent arbitrariness in the sep-
aration of the total charge density into lower and middle
windows (i.e., in the choice of the parameter § above).
This arbitrariness indeed affects both pcong and those
pkn, Which lie closest to the electrode; the total value of
P, however, is not affected by this choice, and is there-
fore well defined. Far enough from the electrode, the pyy,
themselves are unaffected by this choice, and can there-
fore be used to construct meaningful layer polarizations,
analogously to the case of an insulating superlattice. This
point will be demonstrated in practice in the applications
sections.

We are generally concerned with capacitor structures
in which a finite bias is applied across the capacitor. In
our approach, this is treated by applying a finite macro-
scopic electric field £ along the z direction of the super-
lattice, and identifying £c as the bias applied between
successive metallic segments. The formulation above ap-
plies equally well to this case, where it is understood that
the electric field couples to peond (middle window) and to
all the Wannier charges (lower window). Note that the
presence of a finite macroscopic field implies that there is
effectively an infinite number of regularly spaced Fermi
levels, one for each repeated image of the metallic slab
along the field direction. The “transition” between two
adjacent Fermi levels takes place deep in the insulating
slab, where the system is locally insulating and a shift in
Ef within the gap does not produce any physical conse-
quence.

B. Constrained-D method
1. General theory

We summarize here the details of the constrained
displacement-field method that are most relevant for this
work (see Ref. [13 for the full derivation). For consistency
with the previous sections, we restrict our analysis to the
case of a monoclinic system, with the polarization axis, z,
parallel to the heterostructure stacking direction and per-
pendicular to the xy plane; we shall further assume that
R, 2 are fixed, and only ¢ (together with the ionic and
electronic coordinates, {v}) is allowed to vary. Within
these assumptions, the constrained-D method!3 reduces
to a simpler formulation, where only the z components of

the macroscopic fields D, P and £ are explicitly treated.
Thus, we define the internal energy functional

U(D, {v},c) = Exs({v}, c)+§ [D—47P({v},¢)]°, (5)

which depends directly on the external parameter D,
and indirectly on the internal ({v}) and strain (c¢) vari-
ables through the Kohn-Sham total energy Exs and the
macroscopic polarization P; S = |R; x Ra| is the con-
stant cell cross-section. We then proceed to minimize the
functional with respect to v and ¢ at fixed D:

U(D) = g}l%gU(Dv {v} o), (6)

which yields the equilibrium state of the system as a func-
tion of the electric displacement D.

D can also be expressed in terms of the reduced vari-
able d = SD /4w, which has the dimension of a charge
and can be interpreted as d = —Qfree, Where Qfree is the
free charge per surface unit cell stored at a hypothetical
electrode located at z = 400.2! Since the surface areas
of the parallel plate capacitors considered in this study
are not allowed to vary, constraining D or d is completely
equivalent. However, for reasons of convenience, we shall
adopt d as our electrical variable in the remainder of this
work.

This method is equally valid for bulk insulators, in-
sulating superlattices, and capacitor superlattices, once
the polarization is defined as explained in Sec. [TAl For
the capacitor case, our adoption of the definitions of
Sec. [TA2 implies that the metallic electrode layer is
treated as an infinitely polarizable dielectric, and the free
charges on its surfaces are reinterpreted as polarization
charges coming from the metal. While such a choice may
seem unnatural from the point of view of textbook elec-
trostatics, it is in fact the most natural one in the con-
text of first-principles electronic-structure calculations,
where it is not easy to draw a distinction between free
and bound charges. For example, the metal-insulator in-
terface is typically rather diffuse, with the conduction
states of the metal mixing strongly with the states of the
insulator across several interatomic spacings, so that a
spatial distinction is not meaningful, and we have seen
in Sec. that a distinction based on energy windows
is also arbitrary to some degree.

The reduced electric field &€ = £¢, which is minus the
potential step across the supercell, € = —V | is related to
the internal energy by

_ dU (d)
d) = ——=. 7
(D) = = (7)
This corresponds to the fundamental relationship
Q [P
UDy) - Uy = - [ “emap. ()
T D1

of classical electrostatics, but expressed in differential
form using the reduced variables appropriate to the



variable-cell case. The connection to classical electrostat-
ics can be made even more apparent by recalling the rela-
tionship between the reduced variables and free charges
and potentials

Q2

da
Uwg—an:/ awm:/ V(Q)dQ.  (9)

d1 1

Having established the functional relationships be-
tween the active degrees of freedom (both electrical and
structural), it is relatively easy now to extract from a
calculation all functional properties of a material or de-
vice that involve a coupling between them. For example,
the proper piezoelectric strain constant can be readily
obtained as

de dc(dé)—l'

=3 = ad\dd (10)
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Note that in the above equation dz/dd has the dimension
of an inverse capacitance and is related to the free-stress
dielectric constant of the crystal; with the notation of
Ref. 22 we have

() _ dme(dey T
-5 (@) - ()

2. Practical procedure

We typically span the range of relevant polarization
states by repeating the structural and electronic relax-
ations for a number (five to ten) of equally spaced d
values, d = dy,ds,...,d,. For each d;, we tabulate the
energy U;, (cell-averaged) electric field &;, and equilib-
rium out-of-plane lattice constant ¢;; we use the latter
two to compute the reduced field &; = &;¢;.

In order to obtain &; with sufficient accuracy it is im-
portant to perform well-converged structural relaxations,
by imposing sufficiently stringent thresholds on residual
forces and stresses. A useful indicator of the overall
numerical quality of the calculations is the fundamen-
tal relationship Eq. (@), which in principle should be
exactly satisfied. To check the validity of Eq. () we
first perform a polynomial fit to the calculated (&;,d;)
points. This yields a continuous function, £(d) that we
integrate analytically to obtain U(d) modulo a constant;
we choose this constant as the one that best matches
the first-principles internal energies (U;, d;). Any residual
discrepancy between U; and U(d;) points to a numerical
issue that must be addressed before proceeding further in
the analysis. Usually the most important source of error
concerns the relaxation of the cell volume and shape; we
shall discuss this issue further in Section [[I[El

For convenience, we also perform a polynomial fit to
the (¢4, d;) points, which yields a continuous curve ¢(d)
that is relevant for the piezoelectric response of the crys-
tal, as stated in the previous subsection.

FIG. 1: (Color online) Sktech showing conservation of longi-
tudinal component of displacement field D, but not electric
field £ or polarization P, in an insulating superlattice com-
posed of three dielectric constituents A, B and C.

C. Locality principle and spatial decomposition

According to classical electrostatics, in the absence of
free charge the normal component of the electric displace-
ment field is preserved at a planar interface between two
insulators,

(Dy —Dy) -2 =0. (12)

This means that, for an insulating superlattice in elec-
trostatic equilibrium, D is the same in all participating
layers, unlike the electric field £ and the polarization P,
whose local values generally vary from layer to layer (see
Fig. ). Therefore, using D (or d) as the fundamental
electrical variable is extremely practical for modeling the
behavior of ferroelectric capacitors, because it makes it
possible to decompose the equation of state of a layered
structure into the sum of the individual building blocks.
For example, we can write the internal energy as

U(d) = > Ui(d), (13)

where U; refers to the internal energy of an appropri-
ately defined sub-unit. For a capacitor with metallic elec-
trodes, it is natural to decompose the internal energy as

U(d) = Uy, + UL(d) + NUy(d) + Ur(d) + Ur ~ (14)

where NNV is the number of bulk cells comprising the in-
sulating film and Uy, is its bulk internal energy per cell,
UL(d) and Ug(d) are the left (L) and right (R) interface
internal energies, and Up, and Uy are the internal energies
of the left and right metallic electrodes. (In our capacitor
supercells, U, and Ur are combined into NpetalUmetal,
where Npetal is the number of cells of bulk metal and
Unnetal is its internal energy per cell, which is independent
of d as appropriate for a metal.) Taking the derivative of

Eq. (I4) according to Eq. () yields

&(d) = &r(d) + Néy(d) + er(d), (15)



where &pyx is the potential drop across a unit cell of the
bulk insulator at a given value of d, and &r, g = dUr, r/dd
contains the interface-specific information.

The potentials and the energies contain the same infor-
mation, apart from a constant of integration, and one can
choose to work with one or the other as a matter of prac-
tical convenience. Indeed, when analyzing the electrical
properties of a capacitor, one is generally interested in
energy differences between two different electrical states,
rather than in the total energy of the device. There-
fore, the constant of integration that gets lost in going
from Eq. (I4) to ([IH) is not important for the scope of
our discussion. Thus, we shall assume henceforth that
U(0) = 0, which also implies that the constant energies
UL in Eq. ([d) have been set to zero.

D. Decomposition of the interface contribution
1. Partial decomposition

Since U(d) and &(d) in Eqgs. (I4HIH) can be obtained
from supercell calculations, while Uy (d) and &(d) can be
obtained from bulk insulator calculations, it is straight-
forward to extract the quantities

Uint(d) = Ur(d) + Ur(d) (16)
and
Eint(d) = EL(d) + ér(d) (17)

representing the total impact of both electrodes on the
electrical equation of state of the capacitor. Explicitly,
we take

Eint(d) = En(d) — N&p(d). (18)

Often, this is all that is needed, e.g., for modeling the
polarization and dielectric response of a given device as
a function of the oxide film thickness (we shall demon-
strate this in our first application to Pt/BaTiO3/Pt ca-
pacitors). The number N of cells of insulating material
should be kept small enough to avoid an undue computa-
tional burden, while remaining large enough to decouple
the two electrode interfaces, so that the center of the
oxide slab should behave like the bulk material within
the same mechanical (in-plane strain) and electrical (d)
boundary conditions.

2. Full decomposition

There are, however, situations in which it may be valu-
able to obtain the individual terms in Eq. (), i.e., to
define the individual interfacial potential steps &1, and g
which occur at the left and right electrode interfaces re-
spectively. However, instead of using quantities defined
as offsets of the average electrostatic potential across the
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FIG. 2: Schematic model of the decomposition of the poten-
tial into bulk and interface contributions. An electron trav-
eling from the left (L) electrode to the right (R) electrode
experiences potential variations of —¢r,, Népux and ¢r; the
total variation is € = Ef(R) — E¢(L).

interface, we find it more physical to use variables ¢1, and
¢r that are the offsets of the metal Fermi levels F¢(L)
and Ff(R) relative to the VBM just inside the insula-
tor, as illustrated in Fig. 2l With this choice, ¢, and ¢gr
are just the p-type Schottky barrier heights (SBH) at the
metal/insulator interface. (It would be equally viable to
adopt the CBM as the reference, corresponding to n-type
Schottky barriers, but we do not do so here.) As long as
both electrodes are made from the same material, 2% the
total potential step is just & = E¢(R) — F¢(L). This dif-
ference can be decomposed by following the hypothetical
path in Fig. [2 of an electron traveling from the left elec-
trode through the insulator and into the right electrode,
and we obtain

€= —¢L+ Nép + or. (19)

In the remainder of this section, we make some of the
above definitions more precise, and discuss how in prac-
tice to extract accurate values of the SBH at a polar-
ized metal/insulator interface. The main issue here is
that, whenever &, is non-zero, the SBH is somewhat ill-
defined because the VBM does not have a well-defined
asymptotic value deep in the oxide. (Instead, it varies
linearly with depth, with a slope corresponding to the
internal electric field &,). In the next few paragraphs,
we propose a procedure that provides a reasonable yet
sharp definition of ¢1, and ¢gr even when &, # 0.

For the moment we assume an interface configuration
with the semi-infinite electrode at right and the film at
left. The situation is sketched in Fig. Bl which also il-
lustrates the following discussion. We first compute the
planar average of the local electrostatic potential, Vi (r),
further convoluted with a Gaussian filter of width « to
suppress the short-range oscillations,

V(d,2) = —— /v (d,x/)e~ ==/ g3y (20)
T maS A '

Next, we identify two z coordinates on either side of the

interface, zr in the film and zp; in the metal. Both zg

and zps must be located far enough from the interface

that the short-range structural distortions related to in-

terface bonding have already relaxed back to the regular
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FIG. 3: (Color online) Illustration of proposed procedure
for evaluating the p-type Schottky-barrier height ¢ at a per-
ovskite/metal interface when a macroscopic field is present in
the insulating layer. Light blue circles correspond to B-site

cations, red circles to oxygens, and gold circles to the metal
electrode atoms.

bulk-like spacings of the respective material (oxide film
or metal electrode). As a further requirement, we im-
pose that the interface-related perturbations in the local
electrostatic potential V' (z) (schematically indicated in
the figure by the strong oscillations near the metal/film
boundary) are also negligible in the neighborhood of both
zp and zyr. This implies that V(d, 2) is a linear function
near zp with a finite slope given by the bulk internal field
Epuk(d), and V(d, z) is a constant near zj;. We gener-
ally find that three perovskite unit cells on the film side
and five monolayers on the electrode side are sufficient
for both requirements (on the structure and V(z)) to be
satisfied accurately. We therefore set zp as the z coordi-
nate of the 4-th B-site cation in the film (numbering as
1 the B cation which lies adjacent to the interface), and
zy as the z coordinate of the 6-th metallic layer in the
electrode.

Now, using these two reference points in the lattice,
we extract V(d,zy) and V(d, zr), which are indicated
in the figure as black circles. On the film side, we use

V(d, zr) to estimate the VBM at the interface,

EVBM (d) = V(d, ZF) + A‘/F (d) + 3§bulk(d)7 (21)

where AV (d) is the relative position of the VBM to the
average electrostatic potential in the bulk (techniques for
calculating this are detailed in the following subsection).
On the metal side we compute the Fermi energy as

Ef(d) = V(d, ZM) + AV, (22)

where AV}, (independent of d) is again a bulk property,
i.e., the relative position of the Fermi level to the average
electrostatic potential of the metal. Finally, we define the
p-type Schottky barrier as

#(d) = Er(d) — Evem(d). (23)

It is easy to verify that this definition reduces to the
standard technique for calculating Schottky barriers at
metal /semiconductor interfaces?? whenever the macro-
scopic field in the oxide vanishes. Note that the above
construction provides, as a byproduct, structural pa-
rameters that are relevant for accessing the piezoelectric
properties of the device. In particular, starting from the
same zp and zps, we define an interfacial expansion

e(d) = |zpr — zr| — Nepu(d) — 50, (24)

where & is the bulk interlayer distance of the metal (see
Fig. B).

Note that, while there is an intrinsic arbitrariness in
the definition of ¢(d) and c(d) (several choices are pos-
sible for zp), the arbitrariness always cancels out in the
final equation of state of the entire capacitor because
of the way these functions are always summed up in
pairs (a capacitor always has two electrodes). We also
note that these functions, by construction, transform
properly under spatial inversion, so that for a capacitor
having a centrosymmetric reference structure, we have

(bR(d) = ¢L(_d) and CR(d) = CL(—d).

3. AVF and AV]\/[

AVy; can be calculated with high precision for the
bulk metal by extracting the Fermi level and the aver-
age electrostatic potential from the structural and elec-
tronic ground state. To define AVp(d) we start from
a constrained-D calculation of the bulk oxide. Since a
macroscopic electric field is generally present, the values
of both the VBM and the average electrostatic potential
are not directly obvious from the eigenvalue spectrum
(strictly speaking, the energy eigenvalues themselves are
ill-defined). The effect of an electric field is to induce
a linear ramp in the electrostatic potential, and a cor-
responding linear “tilting” of the energy bands. For a
given value of the macroscopic electric displacement, the
VBM and the average electrostatic potential will there-
fore have the same linear z-dependence, and the differ-
ence AVp = Vypm(z) — Viz(z) will be independent of z.
In practice we compute AV by first relaxing the struc-
tural and electronic degrees of freedom in the finite field,
using the usual convention that the electrons feel a peri-
odic electrostatic potential having zero unit-cell average,
plus a coupling to the field through the Berry-phase po-
larization. AVp is then obtained by diagonalizing the
zero-field Hamiltonian operator in the subspace spanned
by the wavefunctions, which form the “ground state” of
the finite-field calculation, and finding its maximum over
the wavevectors in the Brillouin zone.

Note that this procedure is to some extent arbitrary,
and it is certainly possible to adopt alternative strategies.
Whatever choice is made, the only important require-
ment is to have a well-defined reference energy in the
insulating lattice as a function of D; the arbitrariness in



the specifics of this choice cancel out anyway when we
consider a complete capacitor heterostructure.

E. Computational parameters

Our calculations are performed within the local-
density approximation of density-functional theory and
the projector-augmented-wave method2? as implemented
in an “in-house” code. We used a planewave basis cutoff
energy of 40 Ry in Section [[II] and of 80 Ry in Section
V1 the higher value in the latter case is intended to min-
imize the Pulay error in the stress and the numerical
noise in the energies which are due to the discrete na-
ture of the basis set.26 In all cases we fix the in-plane
lattice parameter to a constant value and we enforce a
tetragonal P4mm symmetry constraint; the out-of-plane
lattice parameter, as well as the internal coordinates, are
allowed to relax fully. The Brillouin zone integrations
of the capacitor heterostructures are performed with a
6 x 6 x 1 mesh, where k, = 0 and the grid is shifted
in-plane according to the Monkhorst-Pack?? prescription
for two-dimensional sampling; the Gaussian smearing en-
ergy is set to 0.15eV. In the bulk calculations we use a
6 x 6 x 6 Monkhorst-Pack mesh, which is sufficient to
converge both the structural and the dielectric response
of the crystal to an accuracy comparable to that of the
capacitor calculations. To relax the structure (both in-
ternal coordinates and the out-of-plane strain) at each d
value we use a steepest-descent approach, optimally pre-
conditioned by inverting the force-constant matrix and
the elastic constant calculated in the centrosymmetric
d=0 configuration. Generally, five to ten iterations were
sufficient to relax the geometries to a stringent conver-
gence threshold for both forces (1072 eV /A) and stresses
(10 MPa). (To ensure excellent accuracy of the calculated
energies and potentials, we further enforce a threshold of
1% convergence in the internal electric field.)

Correcting for the Pulay error in the stress is crucial to
accurately model the strain-polarization coupling effects
discussed in this work. We use a technique similar in
spirit to the prescription of Ref. 26. In particular, we
define the corrected stress o;; as

O
oij = o5 + Qua (25)
where a?j is the calculated stress tensor (analytical

derivative at fixed number of plane waves), €2 is the cell
volume, and C' is a constant (dependent on the cell stoi-
chiometry and plane-wave cut off). To evaluate C' several
techniques are possible. A possible strategy is to fit the
dependence of the total energy on the plane-wave cut off,
as discussed in Ref.26. In our calculations, we infer C' by
imposing 0;; = 0 in Eq. (25) for a particular configura-
tion of a given system that has been structurally relaxed
using a different technique (e.g., a Murnaghan fit to the
energy/volume curve).

III. RESULTS: Pt/BaTiO3;/Pt CAPACITORS

A. Motivation

Our goals in this section are threefold. First, we shall
introduce our methods for computing the macroscopic
polarization in short-circuited ferroelectric capacitors,
separating the different contributions that we discussed
in Section [lTA2l Second, we shall analyze the structural
and electrical properties as a function of the thickness
of the short-circuited film, identifying those aspects that
are common to ferroelectric single-crystal BaTiOg, and
those that depart from the bulk behavior. Third, we
shall demonstrate with a quantitative model that even
these thickness-dependent perturbations can be under-
stood in terms of the bulk properties of BaTiO3, once
the interface contribution is properly taken into account.
This analysis is primarily aimed at verifying in practice
our “locality principle,” which allows us to separate the
equation of state of a capacitor into two interface contri-
butions and a bulk-like term. We shall show that, in the
case of Pt/BaTiOg3/Pt, this separation works with excel-
lent accuracy down to a thickness of only two BaTiOs
unit cells.

The choice of Pt and BaTiOs, and more specifically of
the BaO-terminated interface, is motivated by the recent
prediction? of a chemical bonding mechanism that en-
hances the ferroelectricity of the film beyond the bulk
BaTiO3 value. Because of this effect, it was found
that Pt/BaTiO3/Pt capacitors remain ferroelectric down
to a single unit cell of BaTiOs, i.e., there is no criti-
cal thickness below which the polar instability is sup-
pressed. Given the practical interest in overcoming the
usually deleterious size effects in ferroelectric devices, the
Pt/BaTiO3/Pt system is therefore an appealing test case
for the present study. We warn the reader, however, that
the above-mentioned features of the Pt/BaTiO3/Pt sys-
tem are to some extent anomalous, i.e., they depart from
the usual understanding of depolarizing effects in thin-
film ferroelectrics. For this reason, the results presented
in this section should not be understood as an example
of the most typical ferroelectric capacitor. Instead, this
application to Pt/BaTiO3/Pt illustrates how the general
strategy developed in this work (free from apriori as-
sumptions) is particularly effective at capturing the pe-
culiar physics of a highly non-standard case. The TiO»-
terminated interface of BaTiO3 with Pt would perhaps
have provided a more “regular” example, which in princi-
ple could have allowed us to trace a closer link with earlier
first-principles and phenomenological results. However,
this system is inappropriate because it suffers from the
band-alignment issues mentioned in Ref.|4. In particular,
we find that the TiOg-terminated BaTiO3z/Pt interface
has charge-spillage problems already when the capacitor
is in the paraelectric reference structure, thwarting at-
tempts at defining a polarization or even introducing an
external bias potential. In Section [V] we consider a dif-
ferent ferroelectric/electrode combination (BaZrO3z/Au)
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FIG. 4: (Color online) Layer rumplings, defined as cation
displacements relative to oxygens, for oxide layers in relaxed
short-circuited Pt/BaTiOs/Pt capacitors containing 7 (cir-
cles), 5 (squares), 3 (diamonds), 2 (left triangles), or 1 (up
triangles) perovskite unit cells. Odd and even layer numbers
refer to BaO and TiO2 layers respectively, with Layer 1 be-
ing the BaO layer that is chemically bonded to the Pt. Bulk
values are shown for comparison as filled symbols connected
by dashed lines. The polarization is along +2.

whose BOs-type interface is free from band-alignment
problems; in that case we are able to compare two differ-
ent interface types and discuss the differences between a
“standard” and a “non-standard” case.

B. Structural and dielectric properties at zero bias

We start by analyzing the polar ground state at zero
bias of 7, 5, 3, 2 and 1-unit cell thick BaTiO3 films with
compositionally symmetric (the overall spatial symme-
try is broken upon FE off-centering) BaO terminations
and Pt electrodes. (N-unit cell capacitors are actually
“N + 1/2” perovskite cells thick; e.g., N=1 means Pt-
BaO-TiO3-BaO-Pt.) The Pt electrodes are modeled by
a 9-layer Pt slab in periodic boundary conditions. We
fix the in-plane lattice constant to ap = 7.276a.u., the
theoretical equilibrium value for cubic SrTiO3, and we
allow the out-of-plane lattice parameter of the tetrago-
nal supercell, as well as the internal coordinates, to relax
fully. We shall present our results starting from a com-
parative analysis of the relaxed atomic positions in our
short-circuited Pt/BaTiO3/Pt capacitors; then we shall
gradually introduce the ingredients that enter the defini-
tion of the polarization and its coupling to an external
field.

1. Structural properties

We plot in Fig. @ our calculated results for the layer
rumplings of the relaxed capacitors at zero bias, defined

as the cation displacement relative to the oxygens in the
same oxide layer; in the same figure we report the calcu-
lated rumpling values for bulk BaTiO3 as a comparison.
The most striking feature at all thicknesses is the strong
bucking of layer 1, which is the BaO layer directly in
contact with the Pt surface on the negatively polarized
end of the films. (The BaO buckling is also enhanced at
the positively polarized end, but the effect there is signif-
icantly smaller.) Quite interestingly, the rumplings of all
the films are systematically larger than the bulk values;
furthermore, the enhancement in the structural distor-
tions becomes more important in thinner films. This is
unexpected, as the depolarizing effect is known to sup-
press polarization and symmetry-breaking distortions in
the ultrathin limit. The mechanism leading to such an
enhancement is related to the interfacial chemical bond-
ing effect discussed in Ref. [7; we shall clarify this point
in the following.

In Fig. Bl we plot the interlayer distances between ions
belonging to the same sublattice, focusing here on the 3,
5 and 7-cell thick capacitors only. (Atoms are grouped in
different sublattices according to their chemical identity.
Pt and O atoms are further split into three and two sub-
lattices, respectively, as shown schematically in the right
panel of Fig.[Bl) The atomic layers closest to the interface
undergo strong distortions, both on the electrode and on
the insulator side. The largest effects are located again
on the negatively polarized end of the film. Here, the
surface Pt atoms and the BaO ions strongly buckle, with
the overall effect of reducing the Pt-O distance (which
ranges from 2.01 A to 2.04 A in the capacitors consid-
ered) and increasing the Ba-Pt distance (~ 2.9 A). These
features are consistent with the oxygen binding chemi-
cally to the Pt surface, while the Ba atom repels the Pt
atom that lies directly underneath. Such a picture was
proposed, from an analysis of the centrosymmetric ref-
erence structure, in Ref. [7; here we can see its impact
on the properties of the fully polarized state of the film.
At the positively polarized end of the film, the structural
distortions of the Pt surface are relatively minor, and the
oxide film does not appear to be chemically interacting
with the electrode; the Pt-O distances in all capacitors
are larger than 3.3 A, and the metal-oxide bonding ap-
pears to be of purely electrostatic nature. Two mono-
layers away from the interface, the interlayer distances
of the BT'O film converge to a uniform value, which can
be understood as the relaxed strain state of the film in
the capacitor heterostructure. In all cases this value is
larger than in the equilibrium value of the strained bulk,
which is indicated in the same figure as a dashed hori-
zontal line. (The bulk out-of-plane strain was calculated
by imposing the same in-plane strain as in the capacitor
calculations; therefore, the effect shown in Fig.[Blis not of
mechanical origin.) Remarkably, the tetragonality of the
film increases for thinner capacitors. Since ferroelectrics
have a strong coupling between polarization and strain,
this provides additional evidence to the enhancement of
polarity we already pointed out earlier while discussing
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FIG. 5: (Color online) Relaxed interlayer distances of short-circuited Pt/BaTiO3/Pt capacitors with oxide thickness of 7, 5
and 3 unit cells and 9 Pt layers. Black (left) and colored (right) symbols/lines correspond to Pt and oxide layers respectively.
Vertical axis indicates distances between neighboring cations belonging to the same sublattice (see right panel); horizontal axis
is the mid-point coordinate. Dashed line indicates the calculated equilibrium out-of-plane lattice parameter of bulk BaTiOs3
strained to the STO in-plane lattice constant. The code for the symbols and colors is schematically explained in the right
panel, where the relaxed structure of the bottom interface (located at x ~ 10 A) is shown. Each color corresponds to a different
sublattice: Pt1 (light grey), Pt2 (white), Pt3 (dark grey), Ba (red), Ti (light green), O1 (blue), and O2 (dark green).

the layer rumplings.

Note that such a strong coupling makes the results
very sensitive to the accuracy in the relaxation of the
out-of-plane lattice constant. To this end, it is crucial to
properly take into account the effect of the Pulay stress,
as explained in Section [TEl In order to check that this
procedure was effective, we monitored in all capacitors
the interlayer distance in the center of the Pt slab, i.e.,
the black circle at = 0 in the three panels of Fig.[5l The
maximum deviation in this value was less than 1073 A,
confirming that our structural relaxations are very well
converged.

In the next subsection we shall investigate the electri-
cal properties of the Pt/BTO /Pt capacitors, and demon-
strate the ferroelectric nature of the enhanced structural
distortions discussed above.

2. Polarization and electrical properties

Our goal now is to evaluate the macroscopic polariza-
tion of the capacitor heterostructures discussed in the
previous section. Since all the capacitors are relaxed
within standard short-circuit electrical boundary condi-
tions, the macroscopic electric field is zero and the polar-
ization is equal to the electric displacement field D.

First we assess the level of accuracy we can expect
for the value of the polarization computed according to
the technique discussed in the methods section. To that
end, we analyze the planar-averaged conduction charge

Peond (), as defined in Eq. (@) by setting the width of the
middle energy window & = 0.5 eV. Given the Gaussian
smearing of ¢ = 0.15eV, [F¢ — 8, Ex + 0] encompasses all
partially occupied states within an occupancy threshold
of 107%. In other words, at the bottom of the window the
smearing function f(E; — §) is equal to 1 — 10~°, while
at the top f(Er + ) = 107°. Recall that all states lying
higher in energy are discarded; all states lying below this
window are treated as fully occupied and transformed
into Wannier functions, as we shall discuss shortly.

To define the dipole moment of pcona(z) it is essential
that this function be small in the middle of the insulat-
ing region. Whenever the film is not thick enough for
Peond () to decay to zero, this introduces an error in the
definition of the macroscopic P which can be roughly
estimated by

AP ~ peond(L/2)dz. (26)

Here L/2 corresponds to the center of the insulating film,
and dz is a length that takes into account the arbitrari-
ness in the positioning of the discontinuity of the saw-
tooth function used to define the dipole moment of peond-
We shall assume dx to be half an oxide layer, or 2 bohr
units.

To give an idea of how the conduction charge decays in
the oxide films, we plot in Fig.Blthe calculated pcona(z) in
the five structures considered. While the thinnest capac-
itor (1-cell thick, dark green curve) is clearly metallic, in
all other structures the conduction charge decays almost
to zero in the central oxide layer. The estimated accuracy
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FIG. 6: (Color online) Conduction charge density pcond ()
(Eq. M) for five Pt/BaTiOs /Pt capacitors of Fig. [l

using the above formula is of the order of 0.5uC/cm?
for the 2-cell thick capacitor, decreases by roughly one
order of magnitude in the 3-cell thick capacitor, and is
essentially zero in the 5- and 7-cell structures. In the re-
mainder of this section, therefore, we shall drop the 1-cell
structure from our discussion and focus on the remain-
ing four structures, where the value of the macroscopic
P can be accurately defined.

The fully occupied states are transformed, separately
for each k-point, by means of the parallel transport algo-
rithm.A” This yields a set of orthonormal orbitals which
sum up to the same charge density and are maximally
localized along the polarization direction (their Bloch-
like character is preserved in plane). Note that the ac-
tual number of states differs for each k-point. Therefore,
when performing the Brillouin zone averages of the po-
larization, particular care must be taken in order not to
introduce by mistake a fraction of the quantum of polar-
ization into the final value. In order to ensure that this
issue is properly taken care of, it is useful to analyze how
the Wannier centers distribute in space for each k-point.
Upon visual inspection, we find that the Wannier centers
are characterized by a significant degree of disorder in the
metallic region, as might be expected by recalling that
the band structure of the metallic slab is not constituted
by full energy bands, and in our algorithm it is abruptly
“cut” at Er — §. Conversely, in the insulating region, we
find that the Wannier centers cluster nicely around the
oxide layers, analogously to what happens in purely in-
sulating superlatticest?; to demonstrate such a behavior
we plot in Fig. [7l the calculated Wannier centers for the
2-cell capacitor. The total number of orbitals shown in
Fig. [ for each k-point matches exactly the “nominal”
number of valence orbitals of the oxide ions. This means
that the oxide film can be identified as a charge-neutral
and spatially confined subsystem, whose dipole moment
can be computed with high accuracy, and potential is-
sues with the quantum of polarization are therefore com-
pletely avoided. (Note the increased k-space dispersion
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FIG. 7: Wannier centers in the 2-unit-cell BaTiO3 film as a
function of in-plane k-point in the irreducible 2D Brillouin
zone, labeled as (i,7) according to ky = (i +1/2,j + 1/2)/6.
Second and fourth groups of centers correspond to TiO lay-
ers; others are BaQ, of which the first and fifth are in contact
with Pt. P points up.

in the Wannier centers associated with the bottom BaO
layer; this is due to the strong perturbation induced by
chemical bonding with Pt.)

By combining the ingredients discussed in the above
paragraphs, we now compute the electric displacement
D of the films, which is plotted as a function of film
thickness in Fig. B In the thickest 7-layer film D =
46.1 uC/cm?, which is 17% larger than the spontaneous
polarization of bulk BTO within the same mechanical
boundary conditions (shown as a horizontal dashed line
in the same plot). This indicates that the electrical
boundary conditions induce an enhancement in the po-
larity of the film; this is unlike the vast majority of cases,
where generally a suppression of P due to depolarizing
effects is observed. The enhancement in P is due to the
chemical bonding at the negatively polarized end of the
film to the Pt surface. Such an effect was discussed for the
centrosymmetric geometry in Ref. |7; the present study of
the fully relaxed capacitors in short circuit demonstrates
that the effect persists in the polar structure. In fact
an analysis of the local electrostatic potential shows that
there is, instead of the usual depolarizing field (which
would oppose the spontaneous P), a strong “polarizing”
field; its magnitude is in excess of 200 MV /m, and drives
the film significantly more polar than the bulk.

In such a “negative dead-layer” regime one would ex-
pect thinner films to be even more polar. This is nicely
confirmed by our results, shown in Fig. [8, where the po-
larization enhancement attains values as large as 35%
in the 2-cell thick capacitor; also the tetragonal ratio
and the internal electric fields (not shown) steadily in-
crease with decreasing thickness as expected from the
above qualitative arguments.
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FIG. 8: (Color online) Calculated values of the electric dis-
placement field (or surface density of free charge stored on the
plates) for short-circuited BaTiOs capacitors (black solid line
and star symbols). The calculated bulk spontaneous polar-
ization of BaTiO3 at the SrTiOgs in-plane lattice parameter is
shown as a horizontal dashed line. Red squares are the values
of the macroscopic polarization Pnac of the 5-unit cell and
7-unit cell capacitors, as defined in Eq. ([Z1).

3. Layer polarizations and macroscopic polarization

While it is not a necessary step to computing the
macroscopic P, it is nonetheless interesting to push fur-
ther the analogy to insulating superlattices, and compute
the layer polarizations (LP) as defined in Ref. [19. This
involves grouping the Wannier centers of Fig. [l into the
separate clusters corresponding to the individual oxide
layers, which are obvious from the plot, and computing
the individual dipole moment p; per surface unit (see
methods section). We plot in Fig. [0l the results for the
Wannier-based layer polarizations. In all cases the dipole
moment of the first BaO layer is about three times larger
than the LP values in the rest of the films. This qual-
itatively reflects the strong structural distortion, due to
the chemical interaction with the Pt surface, which was
discussed in the previous subsection. Otherwise, the LPs
display qualitative features which are remarkably simi-
lar to bulk BaTiOgs. In particular, the LP of both layer
types (BaO and TiOq) have the same positive sign (con-
sistent with the positive displacement of all cations with
respect to the O sublattice), with the LPs of the BaO lay-
ers systematically larger than the TiOq values (approx-
imately by a factor of 1.6). Note that in all cases the
LPs are larger than the corresponding bulk values, and
uniformly increase as the film becomes thinner. This con-
firms that the enhanced structural distortions discussed
in the previous section correspond indeed to an enhanced
polarization of the films.

It is interesting to note that the LPs converge rather
quickly to a uniform bulk-like sawtooth pattern two or
three oxide layers away from the interface, which indi-
cates that the perturbations induced by the electrode are
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FIG. 9: (Color online) Calculated Wannier-based layer po-
larizations for the capacitors discussed in the text. Even-
numbered layers are TiO2; odd layers are BaO. Bulk val-
ues are reported for comparison as filled circles connected by
dashed lines.

rather local. This contrasts sharply with the picture pro-
posed in a recent work!! for the same system. We defer
a detailed discussion of this issue to Sec. [Vl

The local LP values in the middle of the ferroelectric,
pBao and prio,, together with the average out-of-plane
strain cavg inferred from the data of Fig. [5] provide an
accurate estimate of the macroscopic P inside the film as

Paim = (PBa0 + PTIO, ) (27)

avg

We plot Pgiyn of the 5- and 7-unit cell capacitors as
square symbols in Fig. & here Py, can be directly com-
pared to the calculated values of the electric displace-
ment D. First, the values of D and Pz, are very close,
as can be expected from their relationship (in SI units)
D = €y&fim + Paim: Indeed, g€ << P in typical ferro-
electrics. Next, the fact that D is slightly larger than P
is consistent with the electric field’s being collinear with
P in the capacitors considered here, i.e., the interface in-
duces a polarizing effect instead of a depolarizing one, as
we already discussed extensively.

Note that the electric field Egim, as Pgim, is the macro-
scopically and planar-averaged value of £(x) inside the
film and far from the interfaces. Therefore, we iden-
tify Eqim and Pam, as, respectively, the internal field and
the polarization that are typically discussed in Landau-
Ginzburg models of thin-film ferroelectrics. As will be-
come clearer in the following sections, the relationship
between Egim, Paim and D is an intrinsic property of bulk
BaTiOg3, and does not depend on the interfaces, electrical
boundary conditions or applied bias potential. This point
is crucial to the development of our modeling strategies,
and therefore we consider the above definitions of Pgim
and Eaim to be very convenient. Other authors2®2?2 de-
fined P by averaging the dipoles over the whole volume
of the film, including the interface region. Such a choice
is less convenient for modeling, as i) it does not provide



a clear separation between bulk and interface effects; ii)
it introduces a degree of arbitrariness, as the “bound”
dipoles near the interface are strongly mixed with the
metallic free carriers.

Summarizing the above results, we have shown that,
in thin-film capacitor configurations with Pt electrodes,
BaO-terminated BaTiOs films display many features
that are typical of a bulk-like crystal within the same
mechanical boundary conditions (in-plane strain). How-
ever, in addition to these similarities, there are also a few
remarkable departures from the bulk behavior that are
fully consistent with an interface-induced polarization en-
hancement. The effect is stronger in thinner films, which
is at odds with the common belief that realistic electrodes
would systematically induce a polarization suppression
due to imperfect screening.

In the following we shall use the constrained-D method
to understand the origin of this effect. In particular,
we shall demonstrate that the “locality principle” is re-
stored once the long-range electrostatic interactions are
properly rationalized. In particular, we shall show that a
simple model of this system with full ab-initio accuracy
can be constructed in terms of the electrical properties
of bulk BaTiO3 and of the BaO-terminated Pt/BTO in-
terface.

C. Electrical equation of state

In order to model the electrical behavior of the
Pt/BTO capacitors considered in this work, we now use
the fixed-D method to sample the equation of state of the
5-cell thick capacitor; this is the thinnest one in which
Peond 1S essentially zero in the middle of the oxide film,
which ensures a high level of accuracy. For the scope of
the present discussion, it is enough to restrict our investi-
gation to a range of D that encompasses the equilibrium
values calculated for different thicknesses in short circuit,
ie., 0.4e < d < 0.5e. Subsequently, we shall show how
this information can be combined with the bulk equa-
tion of state to predict the properties of capacitors of
arbitrary thickness. We shall start by calculating the
electrical equation of state of bulk BTO.

1. Bulk BaT:03

As in the capacitor structures, we fix the in-plane lat-
tice constant to ag = 7.276a.u., the theoretical equilib-
rium value for cubic SrTiO3, and we let the out-of-plane
lattice parameter, as well as the internal coordinates of
the five-atom tetragonal unit cell, relax as a function of
the reduced electric displacement d. We use twelve val-
ues of d, equally spaced between d=0.0 and d = 0.55.
We extract from the calculation the values of the po-
tential and the c lattice parameter for every value of d;
then we use splines to interpolate these values and we
finally integrate the potential to recover the internal en-
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ergy U. The results are plotted in Fig. Note the
perfect match between the values of U calculated ab ini-
tio (orange plus symbols) with the integrated potential
(green curve); such a good match is a consequence of ac-
curately compensating the Pulay stress with a fictitious
constant negative pressure of m = —2.61 GPa. The Pu-
lay error is high (due to the relatively low plane-wave cut
off of 40 Ry), and neglecting it would produce significant
errors; with this simple correction, the numerical values
are highly accurate.

The relaxed ferroelectric ground state (£=0) is at
do=0.364, which corresponds to P=39.4 uC/cm?, an en-
ergy AU=—-28.6meV/cell, and ¢/a =1.061. Note that
this is considerably larger than the value, ¢/a =1.038,
in the strained centrosymmetric geometry. We can un-
derstand the c/a ratio of the epitaxially constrained fer-
roelectric phase as a result of two distinct contributing
factors. One effect comes from the elastic properties
(Poisson ratio) of the centrosymmetric crystal; straining
BaTiOj3 to the SrTiOg lattice constant (—2.1%) produces
a tetragonality of ¢/a =1.038 even in the absence of a po-
lar distortion. The second effect, related to polarization-
strain coupling, bring this value to ¢/a =1.061 once the
unstable “soft” mode is condensed. For more details
about the relationship between polarity and epitaxial
strain we direct the reader to Ref. [30.

2. Capacitor structures

We shall write the electrical equation of state of the
5-unit cell capacitor as &5(d), the d-dependent reduced
electric field. Since we already have one data point from
the calculation in short circuit (d=0.478 e, £=0), and we
expect the potential to be a rather smooth function of
d, it is likely that two additional points lying at the ex-
tremes of the interval will be enough for constructing our
model. Therefore, we repeat the calculation of the 5-cell
capacitor twice with d set to 0.4e and 0.5e, respectively.
(In both cases the ionic positions and out-of-plane lattice
parameter are relaxed to the same convergence thresholds
used in the zero-field cases.) The smoothness of the po-
tential is confirmed by our results, plotted as black circles
in Fig. Il which lie almost on a straight line.

To account for the small curvature, we interpolate the
points with a second-order polynomial expanded around
the spontaneous reduced displacement dy of the bulk.
To establish notation, we do this first for a simple bulk
crystal. Recalling that internal energies are related to
the reduced electric fields by Eq. (@), &(d) = dU/dd, and
anticipating an expansion of the internal energy up to
third order in d — dy,

Ab Ab
Ub(d) = A + AY(d — do) + 72(51 —do)® + 3—,3(51 —dp)?,
. (28)
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FIG. 10: (Color online) Internal energy, reduced electric field, and ¢/a ratio vs. reduced displacement field (in units of e) for
coherently strained bulk BaTiOs. Ab-initio data are shown as symbols; dashed curves in the middle and right panels are spline
interpolations; continuous curve in the left panel is the numerical integral of the spline in the middle panel.

we expand &,(d) as

Ab
&b(d) = AY + A3(d — do) + 73(61—610)2- (29)
(Note that the expansion is carried out about the spon-
taneous displacement dy of the bulk, so that A} vanishes
by construction.) We then carry out similar expansions

for each N-cell capacitor, e.g., for N=5,

A(5) A(5)
Us(d) = A((J5) +A§5)(d—do)+ %(d—do)z'i‘% (d—do)?

(30)
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FIG. 11: (Color online) Calculated values of reduced elec-
tric field £ as a function of d in capacitors of various thick-
nesses (empty symbols). Solid lines correspond to the first-
principles—derived model described in the text. Dashed line
is the calculated bulk equation of state (from middle panel of
Fig.I0), which corresponds to the potential drop across a sin-
gle bulk unit cell. Star corresponds to the relaxed ferroelectric
state of the strained bulk crystal.

and

A(5)
ea(d) = AP + AT (d — do) + =—(d = do)*.  (31)

The fitted bulk expansion parameters AP, and the inter-
face parameters defined via

Ay, = AP =547, (32)

are reported in Table[Il

Focusing first on Eq. B1)) for the 5-cell-thick capacitor.
the fitted £5(d) is shown as the solid black line passing
through the circles in Fig. [[Il Using this together with
the bulk information encoded in Eq. (29), we can then
predict the equations of state for thinner or thicker ca-
pacitors according to the formula

en(d) = (N —5)én(d) + &5(d). (33)

Setting N to 2, 3 and 7 we obtain the colored solid curves
in Fig.[[Il The intersection of each curve with the £ =10
axis yields a well-defined value of d, which is the pre-
dicted polarization state of a capacitor with thickness N,
and can be directly compared to the first-principles data
already in hand. To that end, we take the d values from
Fig.Rland plot them as colored symbols on the & = 0 axis
of Fig. [l The agreement between the first-principles
points and the model predictions is extraordinarily good
(discrepancies are smaller than 0.1%). Surprisingly, this
holds true even for the thinnest (2-cell) capacitor, where
one would expect the estimation of d to be less accurate
(see previous sections). Also, apart from purely techni-
cal issues in defining d, one might expect the properties
of such a thin layer of oxide to depart somewhat from
what is calculated in thicker capacitors. The accuracy of
our model in this thickness regime is indeed encouraging,
and indicates that our methods for accessing the inter-
facial electrical properties are able to predict, with full
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FIG. 12: (Color online) Calculated energies, relative to corre-
sponding paraelectric state, for BaTiOs (BTO) capacitors of
various thicknesses and polarization states (symbols). Solid
curves correspond to the model discussed in the text. Verti-
cal dashed line indicates the spontaneous polarization of bulk
BaTiOs.

first-principles accuracy, the behavior of a wide range of
systems.

To further confirm the internal consistency of our
model, we perform a similar analysis for the energetics
of the capacitors. Let Un(d) be the difference in inter-
nal energy, for a given thickness NN, between the state
at specified d and the paraelectric structure at d=0. We
plot in Fig. [[2 the three values of Us(d) (black circles)
that we extracted for the 5-cell capacitor from the same
calculations described above. Expanding in d — dg ac-
cording to Eq. (B0), we note that all the coefficients have
already been determined from Eq. [BI) except for the

arbitrary constant of integration A((35). Adjusting this
one free parameter, we find an excellent match of the fit
(black curve) with all of the data (black circles). As was
done for the potential, we then predict the energy Uy (d)
for other N just by adding or subtracting bulk units,

Un(d) = (N —5)Us(d) + Us(d). (34)

Again, all of the needed bulk coefficients were already
determined from Eq. (29)) except for the constant term
AP = AU. The results for N=2, 3 and 7 are plotted as
the colored curves in Fig. Again, the minima of all the
Up(d) curves match very well the points explicitly cal-
culated in the short-circuit first principles calculations at
various thicknesses. The maximum discrepancy is about
1meV, which is comparable to the numerical noise in the
total energy values introduced by the discreteness of the
plane-wave basis set during variable-cell structural relax-
ations.

Two important details are apparent from Fig. 1] and
Fig. First, all curves in Fig.[[I] have a common inter-
section at d = dp; this is related to the fact that at d = dj
the internal electric field in the bulk vanishes: A} = 0 (we
shall come back to this point in Section [ITEl). Second,
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Electrical EOS Elastic EOS

Bulk Interface Bulk Interface
n AP AL & e
0 —0.0011 —0.0105 7.719 7.124
1 0 —0.0296 0.764 1.894
2 0.0501 0.0895 0.704 —3.745
3 0.0589 0.2245

TABLE I: Values, in atomic units, of the expansion coeffi-
cients used to model the bulk and interface contributions to
the electrical equation of state, Eqs. (2829]) and (36H3T), and
to the elastic equation of state, Egs. ([@0) and (@3)).

the relaxed internal energies of the capacitors considered
here are about one order of magnitude larger than the
depth of the bulk double well (see Fig. [2)). This indi-
cates that the chemical bonding mechanism discussed in
Ref. |7 has a substantial impact on the energetics, which
explains the strong tendency of the capacitors towards a
superpolar state.

D. Interfacial dielectric and piezoelectric response

Our goal now is to show how several useful interface-
specific observables can be directly linked to the electric
equations of state (EOS) discussed above. In addition to
the purely electrical variables, we shall further extend our
model by addressing also the elastic (i.e., piezoelectric)
EOS of both bulk and electrode interface.

1. Dielectric response

The polynomial expansion of the dielectric response
(electrical EOS) was essentially already determined in
Sec.[MIC2 Using the N = 5 as our model structure and
using Eq. (B3]), we single out the interface contribution
by defining the interface EOS to be that of a hypothetical
“zero-thickness capacitor”,

1(d) = &o(d) = &5(d) — bépuik(d), (35)

with a similar relation for the internal energy. The inter-
face potential and energy are then expanded as in analogy

to Eqs. (2829) and Egs. (B0BT) as

3 AI
Ui(d) =y —(d —do)", (36)
n=0 '
n AI
Ei(d) =) ;}““ (d — do)". (37)
n=0 ’

The coefficients AL, are determined once and for all from
a pair of calculations on the bulk and on the 5-cell capac-
itor superlattice using Eq. (82). The resulting bulk and
interface coefficients are reported in Table[ll
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The physical interpretation of the zero-order coefficient
Al is immediate, as it represents the interfacial contribu-
tion to the energy of the capacitor when a reduced dis-
placement dy is induced in the film (the energy zero is
set to that of the paraelectric d = 0 state). The first-
order coefficient is also physically transparent, as it cor-
responds to the interfacial potential drop at d = dy. As
we mentioned above, the bulk ground state at dy has zero
internal field, so an applied external bias of A} will al-
ways induce the same (bulk-like) polarization, regardless
of the thickness N of the film.

In order to interpret the higher-order coefficients, we
first derive an expression for the inverse capacitance that
is valid for bulk, interface and the full capacitor structure,

oxt ) = 0

= AF + AF(d—do),  (38)

where X=b,I,(N). Therefore, A¥ is the inverse capaci-
tance at d = dp. In the bulk case we can directly link this
coefficient!? to the static (free-stress) dielectric constant
of ferroelectric BaTiO3 through Eq. (),

(@) _ 4re
€35 = SAS'

(39)

Using the values reported in Tab. [l we obtain eég) = 37.
In the capacitor case the physical meaning of C(_ ]\}) (d)

is obvious; note that this is an inverse capacitance per
surface unit cell and must be multiplied by .S to obtain
an inverse capacitance density. Finally, C|° 1(d) is the
inverse interface capacitance that was discussed, for in-
stance, in Ref. [1. (Note that here C; is the combined
effect of both interfaces, unlike the C; defined in Ref. [7.
We shall present a general strategy for separating this
quantity into two individual contributions later, in Sec-
tion [[Vl) By using the values of Table [l we obtain an
interfacial capacitance density Cy(do)/S = 0.44 F/m?;
this value, due to the dielectric non-linearity contained
in the third-order coefficient A%, is reduced by half near
the right end of the d interval considered here (d ~ 0.55).

2. Piezoelectric response

In order to describe piezoelectric effects, we consider
the bulk lattice parameter ¢}, and the interfacial distance
¢! as functions of d. In the same spirit as before, we first
perform a quadratic fit of ¢y, as

b
C
en(d) = e + B (d —do) + g(d —do)?.  (40)

Here cf is the equilibrium lattice parameter of the epi-
taxially strained tetragonal state, and c? is related to the
piezoelectric constant by Eq. (I0),

dey, fdeéN 1 cb
dsz = —= =2(= ’ =1 41
33 d=dy  dd (dd) d=dy A} (41)
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FIG. 13: Calculated interfacial distance c¢’(d) of Eq. @2) for
capacitors of various thicknesses and polarization states (sym-
bols); solid curve is a quadratic fit.

With the calculated values, we obtain dss = 30 pm/V.
(Note that in our calculations we kept the in-plane lat-
tice parameters fixed; this value might change upon full
relaxation of the crystal.)

Next, we define the interface contribution c!(d) as
CI(d) = LN (d) - Ncbulk(d) - npt(Spt. (42)

where Ly (d) is the total thickness of the relaxed capaci-
tor for a given value of d, and N and npt are the number
of oxide and metal bulk cells in the capacitor superlattice.
Note that dpg, the relaxed interlayer distance in bulk Pt
(strained in plane to the same lattice parameter), is inde-
pendent of d. Using this formula, we extracted c!(d) for
all the capacitor structures considered so far, and plotted
the values in Fig. In the same figure the solid line is
a quadratic fit using the formula

I
! (d) = cf +cl(d—do) + Fd—do)®.  (43)

The zeroth-order coefficient ¢} has the meaning of a com-
bined effective interface distance for both top and bottom
bottom electrodes. (It may look larger than expected be-
cause there are actually N +1/2 oxide cells in our capaci-
tors, not IV, and because the Pt/BTO interface distances
are typically somewhat larger than the bulk interlayer
spacings of either Pt or BTO.) The linear coefficient, in
analogy to the bulk case, is related to the electrode con-
tribution to the piezoresponse of the capacitor. All the
coefficients defined in the text are reported in Tab. [Il

In summary, our simple model is able to predict, within
the numerical accuracy of a full first-principles calcula-
tion, the energy, polarization, dielectric and piezoelectric
response of a Pt/BTO/Pt capacitor of arbitrary thick-
ness (from two unit cells to infinity).



E. Band lineup and ferroelectricity

The simple model derived above allows us to inter-
pret the physics behind the polar enhancement from yet
another point of view. If we go back to Fig. [[T] it is ap-
parent that the solid lines converge to the same point
at a value of d corresponding to the spontaneous po-
larization of bulk BaTiOg (dy = 0.364). The reason is
that the potential is zero in BaTiO3 at that value of d,
because the bulk crystal is at electrostatic equilibrium;
hence, adding or subtracting bulk units does not change
the value of &x(dg). Therefore, £;(dy) = En(dp), inde-
pendent of N, is an intrinsic interface property related
to the band lineup between the metal electrode and the
fully polarized ferroelectric film,

Er(do) = Al =¢T — ¢, (44)

where ¢T are the respective Schottky barrier heights
at the positively and negatively polarized ends of the
film. Since the symmetry is broken upon ferroelectric
off-centering, these two values generally differ.

Based on typical assumptions of phenomenological the-
ories and on a large body of experimental data, one would
expect a positive interface potential £7(dy) > 0; in short
circuit this would yield a depolarizing field that opposes
the polarity of the film (recall that € = —V'). This means
that generally one needs to apply a positive bias in or-
der to reach (and sustain) bulk values of d in a thin
film; when the bias is switched off, the polarization is
either reduced or relaxes to zero by transitioning to a
multidomain state.2! The Pt/BTO/Pt system analyzed
in this work displays a rather different behavior, in that
gr(dp) ~ —0.8 V is negative. This is a signature of the
strong polarizing field discussed earlier in the context of
our calculations in short circuit.

Note that in our calculations so far we never extracted
¢T and ¢~ separately, since in the case of compositionally
symmetric capacitors only their difference matters for the
electrical properties of the device. Analogously, we con-
sidered only a total interfacial distance c; that takes into
account both the top and bottom ends of the film. In the
following sections we shall use the techniques described
in Section [ITD2 to single out the potential lineup and
distances of either interface individually as a function of
d. We shall demonstrate, as an example, how this in-
formation allows one to accurately model the electrical
behavior of truly asymmetric devices starting from calcu-
lations performed on systems having a centrosymmetric
paraelectric geometry.

IV. RESULTS: Au/BaZrOs;/Au CAPACITORS

A. Motivation

As a model system for studying the electrical behavior
of asymmetric capacitors we choose ferroelectric devices
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with Au as the electrode and BaZrO3 (BZO) as the ac-
tive film. This choice is motivated by issues of compu-
tational practicality. As mentioned in the introductory
sections, an essential prerequisite for defining and con-
trolling the polarization in a metal /insulator heterostruc-
ture is its insulating character along the direction perpen-
dicular to the interface. This can only be true if there
are non-vanishing Schottky barriers at both interfaces,
and if those barriers are preserved upon ferroelectric off-
centering. The wider band gap of BZO makes this prop-
erty much easier to satisfy than with more conventional
ferroelectric oxides such as PbTiO3 and BaTiO3. Then,
given the larger lattice parameter of BZO, we decided to
use Au as the electrode instead of Pt in order to avoid
unrealistically large strains in the electrode slab. (Pt is
more popular in the ferroelectrics community because it
matches better the lattice parameter of many Ti-based
perovskites.) This combination of materials yields large
Schottky barriers for both BOs- and AO- terminated in-
terfaces and is therefore ideally suited to the scope of the
present study. An interesting aspect of this study is that
we are able to compare the electrical behavior of BOo-
and AO-terminated interfaces.

One important issue is that BZO is not ferroelectric.
Experimentally it has a stable cubic structure down to
very low temperatures, while theoretically there have
been several reports of zone-boundary instabilities asso-
ciated with rotations of the oxygen octahedra.2? In or-
der to induce a polar instability in BZO, we set the in-
plane lattice parameter to a fixed value of 7.60a.u. (a
compressive strain of —3.0% with respect to the theo-
retical equilibrium lattice parameter of 7.38a.u. of the
cubic structure).32 Note that we did not check for possi-
ble competing non-polar states, as such an analysis would
require doubling the size of the simulation cell, substan-
tially raising the computational cost. For this reason,
our setup should not be understood as a direct prediction
of ferroelectric behavior in epitaxially strained BaZrOs.
Rather, we intend it primarily as a tractable computa-
tional model, which we expect may be representative of
the behavior of a typical perovskite with a tetragonal fer-
roelectric ground state (e.g., PbTiO3 or BaTiO3 at room
temperature).

B. Computational model

Our model heterostructures consist of (001)-oriented
BZO films with symmetrical ZrO, or BaO terminations
and a thickness of 8.5 unit cells, interfaced with a metal
electrode slab of 11 Au monolayers. Our first goal is
to study the full equations of state of these structurally
symmetric capacitors, to establish the similarities and
the differences arising from the dissimilar (ZrOy/Au vs.
BaO/Au) bonding configurations. Next we extract the
interface-specific information and use it to predict the full
equation of state of an asymmetric configuration (with
BaO and ZrOs terminations at opposite ends). Then, we
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FIG. 14: (Color online) Internal energy, reduced electric field, and c¢/a ratio vs. reduced displacement field (in units of e) for
coherently strained bulk BaZrOs. Ab-initio data are shown as symbols; dashed curves in the middle and right panels are spline
interpolations; continuous curve in the left panel is the numerical integral of the spline in the middle panel.

verify that our procedure yields the desired result by com-
paring this prediction with the explicitly computed U(d)
curve for an asymmetric capacitor having 8 unit cells of
BZO and 12 layers of Au. Before going into details about
the capacitor structures, however, we first briefly summa-
rize the electrical properties of bulk BaZrOs within the
symmetry and mechanical constraints described above.

C. Bulk BaZrO3

As in the capacitor structures, we fix the in-plane lat-
tice constant to ag = 7.60a.u. and let the out-of-plane
lattice parameter, as well as the internal coordinates of
the five-atom tetragonal unit cell, relax as a function of
the reduced electric displacement d. We use seven evenly
spaced values of d ranging between d=0.0 and d=0.276 €.
We extract from the calculation the values of the reduced
field € and the lattice parameter ¢ for each value of d, use
splines to interpolate these values, and finally integrate
&(d) with respect to d to recover the internal energy U (d).
The results are reported in Fig. T4l As for the BaTiOg3
case, the match between the values of U calculated di-
rectly (red ‘plus’ symbols) with those obtained by inte-
grating £(d) (black curve) is excellent. Both the sponta-
neous polarization P; and the double-well potential depth
AU are significantly smaller than in BaTiOs. The re-
laxed ferroelectric ground state is at d=0.2076, which cor-
responds to P=20.5uC/cm?, AU=-3.05meV /cell, and
¢/a =1.052 (compared to ¢/a =1.0475 in the strained
centrosymmetric geometry).

D. Schottky barriers

In Fig.[[5we plot, as a function of the reduced displace-
ment d, the Schottky barrier heights (SBH) extracted

from the symmetric BaO- and ZrOs-terminated capaci-
tors using the techniques of Sec. [ID2l All values lie be-
tween about —1.2eV and —1.7eV. Considering that the
calculated LDA gap for centrosymmetric bulk BaZrOs is
3.12eV, this indicates that in all cases the Fermi level
of Au lies close to mid-gap, and that our BZO/Au ca-
pacitors are thus free from Schottky-breakdown issues.?
Both curves shown in Fig. have considerable curva-
ture, although with dissimilar features. In the case of
ZrOy/Au this curvature is found to be dominated by
the bulk AVy(d): If we remove such a dependence from
¢zr0(d), we obtain a roughly linear function (red dashed
curve, which is related modulo a constant shift to the in-
terfacial step in the electrostatic potential). By contrast,
removal of the bulk contribution AVr(d) (black dashed
curve) does not restore linearity in the BaO/Au case.

Incidentally, we note that our method may be of gen-
eral use for the computation of Schottky barriers34:3% (in-
dependently from their relationship to dielectric proper-
ties), which are extremely important for many technolog-
ical applications. Recall that the SBH has a truly unique
definition only when the macroscopic electric field van-
ishes in the insulator, since then one can identify the
valence and conduction band edges precisely. For non-
centrosymmetric insulators such as wurtzite oxides or
spontaneously polarized ferroelectrics, such a condition is
not easily obtained in ordinary first-principles supercell
calculations. However, our approach makes it extremely
easy to do such calculations. For example, we have indi-
cated with large ‘star’ symbols in Fig. [[3l the “physical”
values of the SBH, i.e., those corresponding to the spon-
taneously polarized ferroelectric film in the absence of
any internal field.
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FIG. 15: (Color online) Solid curves: Interfacial p-type Schot-
tky barrier values extracted from the symmetric capacitor
configurations for BaO-terminated (black circles) and ZrO-
terminated (red squares) films. Dashed curves: Same, except
that the bulk dependence of the VBM on the electric dis-
placement has been subtracted out. The sign of d follows the
convention that the electrode lies at z > 0.

E. Interfacial equation of state: ZrO:/Au

The discussion in the previous section suggests that
there might be important qualitative differences between
the behavior of BaO/Au and ZrOy/Au interfaces. How-
ever, it is not immediately obvious how to interpret the
@(d) curves directly, as their relationship to the physical
electrical response of the capacitor contains some aspects
of arbitrariness. Such arbitrariness does, of course, cancel
out when the final equation of state of the entire capaci-
tor is constructed. Therefore, in order to obtain quanti-
ties that have a direct physical meaning, we proceed by
combining the above ¢(d) curves in pairs as appropriate
for the capacitor structures of interest. There are four
such structures that we denote as ‘AB,” where A and B
are variables that specify, for the bottom and top inter-
faces respectively, whether the interface is BaO/Au or
ZrOz/Au. Then the interface contribution to the equa-
tion of state of the specified capacitor structure is

er,aB(d) = —pa(—d) + ¢B(d), (45)

in terms of which the the equation of state of the entire
N-cell capacitor is then €y ap(d) = &1, ap(d) + Nép(d).
The four resulting functions & ap(d) are plotted in
Fig. The most striking feature is the almost per-
fect linearity of the symmetric ZrOy/ZrO2 configuration.
This means that the description of the interfacial equa-
tion of state in terms of a constant interfacial capaci-
tance (i.e., replacing the interfaces by a layer of linear
dielectric in series with a bulk-like BaZrOg film) is ap-
propriate in this case. The slope of the &1(d) curve yields
a combined capacitance density of C1/S=1.73 F/m? for
both interfaces, so that each interface is associated with
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FIG. 16: (Color online) Interfacial equations of state, re-

constructed from the Schottky barrier values of Fig. I8 for
a symmetric BaO- (black circles) or ZrOs-terminated (red
squares) capacitor. The blue upward-oriented triangles re-
fer to an asymmetric arrangement with the BaO termination
on top; the green downward-oriented triangles have the BaO
termination at the bottom.

a capacitance density of 3.46 F/m?2. This value is re-
markably high when compared to the typical range of
~0.4-0.6 F/m? calculated?3¢ for oxide electrodes such as
SrRuOgs. This result corroborates the ideas proposed in
Ref. [7 that weak electrode-oxide bonding is beneficial to
the ferroelectric properties of a capacitor. Here we in-
deed find that a chemically inert electrode material such
as Au yields excellent screening and only a marginal per-
turbation to the polar response of the film. Using the
formalism developed in Ref. [7, we find a “critical thick-
ness for ferroelectricity” Nt = 3 for both symmetric
geometries (ZrOy/ZrOs and BaO/BaO).

F. BaO/Au and bonding properties

Interestingly, the BaO/BaO curve is almost exactly
overlapping with the ZrOs/ZrOs one in the interval
—0.15e¢ < d < 0.15e, while a strong departure from the
linear regime occurs for values of d lying outside this in-
terval. A significant non-linearity was indeed expected
from the ¢(d) curves in Fig. [[0} the fact that this non-
linearity cancels for —0.15e < d < 0.15e and yields a
quasi-linear behavior is probably coincidental. The non-
linearity of the BaO/Au interface emerges most clearly
in the case of an asymmetric capacitor (green and blue
curves in Fig.[I6 which are correctly related by a mirror
symmetry operation).

To trace the origin of the qualitative difference between
ZrO3/Au and BaO/Au interfaces (linear vs. non-linear
behavior), it is useful to follow the evolution of the Au-O
bond length as a function of electric displacement, plot-
ted in Fig. [[7 While the bond length varies only weakly
and follows a linear trend for ZrOs/Au, it covers a much
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FIG. 17: (Color online) Interfacial Au-O bond distance as a
function of electric displacement field. The sign of d follows
the convention that the electrode lies at z > 0.

wider range of distances (2.2 to 3.1A) and displays a
strong nonlinearity for BaO/Au. We interpret the latter
behavior as indicative of breaking and reforming of the
Au-O bond upon polarity switching. Clearly, the break-
ing of a bond is a highly non-linear event, helping to
explain the calculated features of the electrical response.
This picture agrees fully with the arguments of Ref. [,
where the bond stability (instability) was correlated with
the suppression (enhancement) of the tendency to polar
instability of the capacitor structure. The present results
corroborate these ideas and provide further evidence for
the strong correlation between interfacial chemistry and
electrical response.

Interestingly, while in the case of Pt/BaTiO3/Pt the
interface bonding mechanism strongly enhances ferro-
electricity, in the present case of Au/BaZrOs/Au the
overall effect is a slight suppression. We shall briefly dis-
cuss the origin of this dissimilar behavior in the following
subsection.

G. Enhancement or suppression?

Why do certain AO-terminated interfaces (e.g.,
BaTiO3/Pt, BaTiO3/Au) enhance the ferroelectric in-
stability of the film, while others (especially PbTiO3/Pt
but also, to a smaller extent, the BaZrOs/Au one dis-
cussed here) suppress it instead? While a definitive an-
swer is not yet available, some qualitative trends can be
explained in terms of the frustrated bonding-environment
model of Ref. 7. According to this model, a flat AO layer
in contact with the electrode produces a competition be-
tween the A-metal repulsion and the O-metal attraction.
The buckling of the AO layer caused by a bulk ferroelec-
tric distortion of one sign or the other shifts the balance,
causing the bonding or the repulsive force to prevail. In
fact, even in the centrosymmetric capacitor geometry, the

interface AO layer is not flat, but exhibits a certain de-
gree of buckling (with the A cation typically displacing
toward the oxide film) due to the broken-symmetry en-
vironment. One can therefore expect some difference in
behavior between perovskite AO-terminated films that
show different degrees of “natural buckling” at the sur-
face of their cubic reference phase. We computed the
values of the AO rumpling of the free PbTiO3, BaZrOg3
and BaTiOg surfaces, finding values of 0.136, 0.121, and
0.022 A, respectively. Indeed, these results indicate that
the film with the much flatter surface (BaTiOs3) displays
a strong enhancement of the polar instability, while those
that are significantly buckled (PbTiOs and BaZrOgz) do
not. While this is only a rough indication, and other fac-
tors are most likely at work, it suggests a correlation that
may help to explain our detailed numerical results.

H. From symmetric to asymmetric

We claimed earlier that it should be possible to use
the interface equations of state extracted from calcula-
tions on symmetric capacitors to predict the equation
of state for the asymmetric case. We demonstrate this
now. Our “asymmetric” geometry is comprised of an 8-
unit-cell BaZrOgs film and a 12-layer Au slab, where the
bottom and top interfaces (relative to the oxide) are of
Au-BaO and ZrOs-Au type respectively. Thus, a positive
d corresponds to the polarization pointing towards the
ZrOsz-Au interface. The interface-specific contribution to
the reduced electric field, £7(d) = —¢1.(d)+¢r(d), is plot-
ted as the green curve in Fig. Note that the curve is
linear for d > 0, while it shows a significant non-linearity
for d < 0, where the Pt-O bond breaks, in agreement
with the discussion of the previous sections. We now use
this function to reconstruct the £(d) curve of the whole
capacitor by adding an appropriate number of bulk units

as in Eq. ([9),
&(d) = &r(d) + Népux(d), (46)

with N = 7.5.37 Then we numerically integrate £(d) to
obtain the U(d) energy curve, which is plotted as the
dashed green curve in Fig. I8

In the same figure we plot two other curves correspond-
ing to the symmetric geometries, which were obtained
from the symmetric curves in Fig. [[6]) in the correspond-
ing way (with N = 8). For all three curves we also plot,
as symbols, the values of U extracted directly from the
first-principles calculations. The match is almost per-
fect for the symmetric cases, as expected since the po-
tentials and energies were taken from the same calcu-
lation; their agreement is just a test of internal consis-
tency. (Incidentally, note the close agreement between
red and black curves in Fig. [I8 especially in the cen-
tral region, which is inherited from the similarity of the
corresponding red and black curves in Fig. [[6l) The
acid test, however, concerns the asymmetric structure:
the points were extracted from a direct calculation on



N
o

o

Energy [meV]

0 0 10 20 30
D [uC cm’]

30 20

FIG. 18: (Color online) Electric equation of state U(D) for
three capacitor configurations discussed in the text. Curves
correspond to integrating Eq. (I9) [or Eq. (6))], where ¢r..r(d)
were extracted from the symmetric capacitor calculations
(solid curves in Fig. MHl), and &pu(d) was extracted from
the bulk calculation (middle panel of Fig. [[4). Points corre-
spond to the U(d) values explicitly calculated for symmetric
BaO:BaO (black squares), symmetric ZrO2:ZrOgz (red circles)
and asymmetric BaO:ZrO2 (green diamonds) capacitors.

the asymmetric structure, while the curve was inferred
from the data on symmetric capacitors using our model
of Eq. (I9). The match is excellent, with less than a 1%
discrepancy in the spontaneous polarization at the mini-
mum in Fig.[I8 corresponding to short-circuit boundary
conditions. (The predicted and calculated D values are
—22.1 and —22.2 uC/cm? respectively.) Note that the
spontaneous D is significantly enhanced (~ 8%) com-
pared to the bulk value. This is a consequence of the
nonlinearity discussed above, which induces a positive &1
for d < 0 (see green curve in Fig. [[6). The prediction
and the actual calculation also nicely agree regarding the
absence of a secondary minimum at positive d. Inter-
estingly, both strategies would yield such a minimum if
the capacitor were just one unit cell thicker; this further
confirms the accuracy of our model.

While all these physical aspects compare very favor-
ably, Fig. [[8 shows also some discrepancies in the actual
values of the internal energy U, in particular concerning
the depth of the energy minimum (predicted and cal-
culated AU values of -38.4 and -41.4meV respectively).
We shall briefly discuss this discrepancy in the following
Section.

I. Accuracy issues

We demonstrated in Section [[Illthat the “locality prin-
ciple” established in Section [T holds very accurately, al-
lowing one to predict the electrical properties and ener-
getics of capacitors of varying thickness with excellent
fidelity. In this respect the discrepancy in the energy
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curves of Fig. [[]is somewhat surprising, and it is worth
discussing its origin to make sure that all aspects of the
method are under control.

We find that the cause of the discrepancy is rooted
in the treatment of the Au electrode in the simulations,
rather than in numerical (or formal) errors. In the sym-
metric calculation, we used an 11-layer Au slab, and from
this data we constructed the green curve in Fig. I8 On
the other hand, we had to choose an even (12-layer) Au
slab in the asymmetric calculation, which yielded the
green diamond symbols. It is well known that quantum
size effects associated with Fermi-surface nesting can per-
sist to substantial thicknesses in thin metal films.28 Thus,
it is not unreasonable to expect the surface of a 12-layer
slab to behave slightly differently from that of an 11-
layer slab. To prove this point, we calculated the work
function of two free-standing slabs of 11 and 12 layers,
and we found a difference of about 60 mV — enough to
produce non-negligible discrepancies in the capacitor cal-
culations. The use of a finite electronic temperature (to
accelerate convergence with respect to k-point sampling)
helps, in that it makes the one-particle density matrix of
the metal short-ranged in space. However, further explo-
ration of these issues falls outside the main scope of the
present work, and we satisfy ourselves with advising the
reader of this issue so that it can be kept in mind when
performing future calculations.

V. DISCUSSION

In the following, we discuss the implications of our
work by comparing our techniques and results to the rel-
evant literature.

A. Locality

One of the crucial aspects of our work concerns the use
of the “locality principle” in the simulation of capacitor
structures. As we mentioned in the introduction, at least
two recent theoretical works have reported phenomena
which do not appear consistent with this assumption.
We shall briefly discuss them here.

First, the authors of Ref. [11 reported, for BaO-
terminated Pt/BaTiOs/Pt capacitors (structurally anal-
ogous to those considered in Section [[TI)), a “ferrielectric”
layer-polarization (LP) pattern, with profound quali-
tative deviations from the bulk pattern, affecting the
whole volume of the oxide film. This in principle im-
plies a sharp, qualitative, deviation from the “locality
principle” mentioned above. While we cannot provide
a definitive explanation for the origin of the disagree-
ment with our results, we believe it might lie in the
subtleties involved in the LP construction for an over-
all metallic system such as the ferroelectric capacitors
under consideration. In contrast with our work, where
localization of the Wannier states is imposed in one di-
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mension separately for each k-point (as in the origi-
nal LP formulation in Ref. [19), the authors of Ref. [L1
used fully three-dimensional maximally-localized Wan-
nier functions. Furthermore, they treated the metallic
states rather differently than here, in that they adopted
a preliminary disentanglement®? procedure before local-
izing the states by means of the Marzari-Vanderbilt algo-
rithm. A7 Finally, the authors of Ref. 11 might have taken
different prescriptions for the assignment of the Wannier
functions to the individual oxide layers, possibly intro-
ducing the LP equivalent of the quantum of polarization
in their reported values. Regardless of which of the above
factors may be responsible for the discrepancy, the effect
proposed in Ref. [11 appears likely to be a consequence
of the details of the Wannier localization/grouping pro-
cedure, and we therefore suggest that its physical signif-
icance should be judged with some caution.

Second, the authors of Ref. [10 considered
SrRuO3/KNbO3/SrRuO; capacitors and reported
an interface-induced disruption of the ferroelectric soft
mode of the film, with the appearance of a head-to-head
“interface domain wall” located three unit cells away
from the electrode. This was interpreted as an effect
of the strong bonding at the interface, which would
“clamp” the interface dipoles to a fixed value; this
constraint would then couple with the ferroelectric
instability of the film, producing the calculated inhomo-
geneous polarization pattern. The spatial variation in
P is strongly asymmetric, and takes place over approxi-
mately 6 unit cells at the positively polarized end of the
KNbO3 film A9 This contrasts with our results, where the
interface-induced distortions are extremely local and heal
completely within the first perovskite unit cell adjacent
to the interface. Even if the metal-insulator interactions
are somehow stronger for the SrRuO3;/KNbOj system
than for our cases, this should just be reflected in a
stronger functional dependence in the interface equation
of state, modifying the strength of the depolarizing field.
One should still expect a uniform polarization deep in
the insulator, unlike the inhomogeneous polar ground
state found by these authors. Therefore, it is difficult to
understand their findings unless one of the fundamental
prerequisites for the formalism developed in this work
might have broken down. For example, Junquera and
Ghosez? have emphasized the dangers of pathological
band alignments which, as an artifact of the band-gap
problem of density-functional theory, may lead to charge
spillage into the perovskite at certain perovskite-metal
interfaces. We suggest that such a possibility should
be investigated for the SrRuO3/KNbOj interfaces
considered in Ref. [10.

B. Relationship to Landau theory

Our approach has many points of contact with ear-
lier Landau-theory models of depolarization in thin-film
ferroelectrics. However, there are also some notable dif-

ferences that we shall emphasize in the following, in order
to avoid confusion or misunderstanding.

First, we note that our strategy is different in spirit
from what was done, for example, in Ref. 40. There,
the authors fitted the parameters of a Landau-like ex-
pansion to the calculated first-principles values of the
depolarizing field in short-circuited capacitors. In con-
trast, in our approach the first-principles engine works
as a stand-alone tool that yields the ground state en-
ergy and structure as a function of a well-defined elec-
trical variable (within a given set of specified mechan-
ical/symmetry constraints and thermodynamic ensem-
ble). These data can then be fitted a posteriori to a
polynomial, thus obtaining an expression that bears a
close resemblance to Landau-theory expansions, but the
latter is not a necessary step.

Another difference concerns our use of an interfacial
capacitance (or, equivalently, of an effective screening
length) that embodies all the physical ingredients con-
tributing to the electrostatics. Gerra et al.,* on the
contrary, made a distinction between purely electrostatic
screening and short-range chemical bonding effects, and
considered them separately in the capacitor equation of
state. While such a distinction appears desirable from a
conceptual point of view, implementing it in practice in-
volves a kind of chicken-and-egg problem. As we have
shown in Ref. [, screening and interface bonding are
strongly interrelated, and it is not obvious how to distin-
guish cause and effect. At first sight, our approach does
not appear to provide a solution to the above dilemma,
as we cast “everything” (chemical bonding and short-
and long-range Coulomb interactions) into a black box,
namely, the interface equation of state. However, on
closer inspection our method does implicitly provide such
a separation. In fact, by explicitly working as a func-
tion of a controlled field (here the D field), we auto-
matically ensure that only the ingredients that are elec-
trical in nature are included in the interface equations
of state, Vi(d). The non-polar contributions, which are
short-ranged and do not have any direct impact on the
electrostatics, merely enter the definition of the zero of
the energy, and are therefore implicitly (but rigorously)
singled out.

Finally, we would like to comment briefly on our choice
of D as electrical variable; such a choice is rather con-
venient, as we have shown in this work. Interestingly,
using D is frowned upon by some authors in the Landau-
theory community,%14 especially in cases where depolar-
izing effects are present. A detailed discussion of this is-
sue would bring us far from the main scope of our work.
We limit ourselves to noting that, by means of our fixed-
D approach, we seek the electronic and structural ground
state at a given D within a parameter space spanned by
all the microscopic degrees of freedom (which are implic-
itly present in our energy functional). This means that
our description fully accounts for the effects of the “back-
ground permittivity,” of hypothetical competing instabil-
ities, and of electromechanical couplings. For this reason,



it is free from the shortcomings described in Ref. [14. An
important point to stress is that, in well-behaved cases,
the electrical equation of state of a given system leads
to exactly the same description of the physics regard-
less of which independent variable (electric field £, po-
larization P, or electric displacement D) is used. This
point is obvious in linear dielectrics, where P = x& and
D = €€. Tt still holds in non-linear dielectrics that have
a single energy minimum as a function of the applied
field £. In more problematic cases, the equation of state
might become multivalued or even singular, depending
on the choice of independent variable. In our experience,
D tends to be a very convenient choice, especially in these
“difficult” situations.

C. Relationship to the effective-Hamiltonian
approach

One of the strengths of our approach is the ability to re-
cast all the complexity of the interface interactions into a
smooth function of a single electrical variable. This natu-
rally leads to powerful modeling strategies, as we demon-
strated in practice in Sections [[IIl and ¥l An obvious
next step would be to combine the interface information
derived from first principles with higher-level “effective
Hamiltonian” descriptions of the ferroelectric film 4242 in
order to describe phenomena that involve larger length
and/or time scales (e.g., ferroelectric switching).

Effective Hamiltonian approaches have been used quite
intensely in the past few years to investigate size effects in
ferroelectric nanostructures®42:46:47 gych as films, wires
and dots. Generally, the effective Hamiltonian is formu-
lated and fitted in order to describe bulk behavior, as
follows. One first identifies a reduced set of local-mode
variables to describe the amplitudes of the soft ferroelec-
tric mode and strains within each unit cell. Then a model
of the energy, written as an expansion in these local-
mode degrees of freedom, is constructed, and the param-
eters in the expansion are fitted to a database of first-
principles calculations. Among the parameters deter-
mined in this way are some that correspond to short- and
long-range dipolar interactions. The finite-temperature
statistical behavior of the system can then be simulated
using Monte Carlo or molecular-dynamics techniques.

In order to simulate a nanostructure, the effective
Hamiltonian description is typically applied without
modification to a 2D, 1D or 0D system. This approach
has allowed for important conceptual advances, for in-
stance by elucidating the properties of polarization vor-
tices in nanodisks and nanorods;2¢ in such configurations
the lower dimensionality is largely responsible for the pe-
culiar behavior. However, in the case of 2D systems such
as ferroelectric superlattices or thin-film capacitors, an
important conclusion of our work is that the fine details
of the interface bonding and electrostatics are crucial to
determining the overall physical behavior of the system.
In that sense, the simple abrupt truncation of the dipolar
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interactions?? which is assumed in the Heg simulations
discussed above may fall short of faithfully reproduc-
ing the overall response of a realistic device.” Including
the interface-specific information in a thin-film effective
Hamiltonian model would therefore be very desirable.

For example, for a given interface, one could evalu-
ate the interface EOS of the H.g at zero temperature
(T' = 0) and compare with the one computed ab-initio
using the methods described in this work. Omne could
then modify the parameters of the Heg in the vicinity
of the interface until the T = 0 interface EOS agrees
with the first-principles one. This would then enable
one to answer important questions that cannot be di-
rectly addressed from first principles. For example, what
is the temperature dependence of the interface equation
of state? Or, what is the impact of the electrode on the
stability of the monodomain state versus a polydomain
one? Finally, by making use of the “locality principle”
discussed in this work, it would be relatively easy to ana-
lyze the Heg results and compare them to the fully first-
principles values, with significant benefit for both theo-
ries. To substantiate these arguments, in the following
we shall briefly discuss two selected H.g works that are
particularly relevant in light of our proposed strategy.

In Ref. 47, Bin-Omram et al. investigate the impact of
electrical and mechanical boundary conditions on the po-
larization and strain of BaTiOg and Pb(Zr,Ti)O3 (PZT)
films. For a BaTiO3 film at a 2.0% compressive strain,
which roughly corresponds to the SrTiOj3 substrate as-
sumed in our calculations, the authors of Ref. |47 find a
spontaneous polarization that increases for thinner films,
with a value of 0.56 C/m? at a thickness of 6 unit cells.
This is qualitatively similar to the effects we discussed in
Section [[II] for Pt/BaTiO3/Pt capacitors, although sig-
nificantly larger in magnitude. We stress that such an
enhancement is far from being a systematic property of
electroded BaTiO3 films;? as we suggested above, the
surface terms in Heg should be adapted to the specific
electrode interface on a case-by-case basis.

In Ref. 48 the authors report that 2D, 1D and 0D fer-
roelectric nanostructures are characterized by “dielectric
anomalies” in the form of a negative internal suscepti-
bility x("). It is not unreasonable to think that the
surface-induced enhancement of the ferroelectric instabil-
ity, which is built into most Heg thin-film models, may
be largely responsible for the reported negative (") in
the 2D case. Note that x("®) is defined there as an av-
erage over the volume of the film, unlike our definition
of the local dielectric permittivity €(z),22 which was in-
troduced in Refs. [16 and [20. This further highlights the
conceptual advantage of rigorously separating bulk and
surface/interface effects by performing a local analysis,
rather than global averages.

Overall, we believe that the methods developed in this
work open interesting new avenues for the accurate sim-
ulation of ferroelectric nanostructures within the Hqg
framework.
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D. Interpretation of experimental data

In this section, we ask how one might best make con-
tact between an experimental set of electrical measure-
ments on a series of thin-film capacitors of varying thick-
ness on the one hand, and the analysis tools we developed
in Secs. [T and [[V] on the other. Of course, it is best if
the experiment can approach intrinsic conditions insofar
as possible. For example, the experimental film should
ideally be in a monodomain state. This may be hard to
achieve in short circuit, as depolarizing effects might in-
duce a multidomain state,5? but often may be obtained
by applying a DC bias to the capacitor as in Ref. 131.
Also, the film should be as free as possible from space
charges arising from charged defects or trapped carriers,
which may contribute to band-bending effects not con-
sidered in the theory.

Our first prediction is that there exists a value of the
external bias, Al  that yields the same value dy of the
spontaneous electric displacement regardless of the film
thickness (provided that the interfaces and the film qual-
ity are similar). Our second prediction is that, around
this bias value, the inverse capacitance of the films should
scale linearly with thickness, with the coefficient of pro-
portionality being directly related to the bulk permittiv-
ity. Assuming a small range of biases around A, we can
discard the third-order coefficients A3 and write

Vn(d) = AL + (d — do) A5 (47)
with
AN = AL 4 NAb. (48)

We end up with three coefficients that describe the elec-
trical properties of the capacitors and their dependence
on thickness.

To obtain this information, we believe it is best to rep-
resent the data in a (P, V) plot as in Fig. [Tl rather than
a (P,&) plot as is usually done. In this way, one ob-
tains direct visual insight into the existence of a common
intersection point (P, Al). Note that the bulk AY co-
efficient provides, as a byproduct, useful information on
the dielectric properties of the film through Eq. (39), as
it is independent of the specific interface. (In principle,
it depends only on the applied strain due to epitaxial
matching, and of course on the operating temperature.)
By combining Eqgs. (1) and (48]) we obtain, for the spon-
taneous polarization of a short-circuited capacitor of a

given thickness N,

(), p(b) _ (4T Al
Py~ Py — : 49
0 0 ( S ) AL + N AB (49)

Note that, in typical phenomenological models, the in-
terface is treated as a linear dielectric, which implies
Al = dyAL. Al is related to the interface capacitance
C7 and to the effective screening length Aeg by

1 4

545 =Cr' = (50)
The factor of one-half on the left-hand side relates to
the assumption of two equivalent interfaces with identical
electrical properties.

VI. CONCLUSIONS

We have developed a comprehensive methodological
framework for the computation and analysis of ferro-
electric capacitors with realistic electrodes. Our method
is based on density-functional theory, and on recently-
developed techniques for performing calculations at a
given value of the electric displacement field. By making
a rigorous separation between the interface and bulk con-
tributions to the electrical equation of state of a capac-
itor, we obtain a compact model, of full first-principles
accuracy, for the electrical (and piezoelectric) response
as a function of bias potential and thickness. We expect
these advances to facilitate the comparison of theory with
experimental data. We also hope that it will stimulate
a fruitful interaction with other theoretical approaches
based, e.g., on Landau theory or effective Hamiltonians.
Application of similar strategies to investigating the in-
terface coupling between electric polarization, magnetism
and other structural degrees of freedom (such as octahe-
dral tilting) that were not considered here are under way.
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