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1 Introduction

In these supplementary notes, we spell out some details of the definitions of the
various electric energy functionals introduced in the main text, and of the Legendre
transformations that connect them.

2 Basic relations between energy functionals

2.1 Units

We use Gaussian units so that D = E + 4πP, etc. In the present Sec. 2 energies like
E are energy densities, i.e., energy per unit volume, until specified otherwise. (We
change this convention in Sec. 3.)

2.2 Legendre transformations

If the concave-up function f(x) and the concave-down function g(y) are related by

g(y) = min
x

[
f(x) − yx

]
⇔ f(x) = max

y

[
g(y) + yx

]
(1)

they are said to form a Legendre-transform pair. We have dg = −x dy, df = y dx, so
that

y =
df

dx
, x = −

dg

dy
. (2)

2.3 Legendre transform between E(P) and F(E)

We start with E(P), the energy as a functional of polarization, which is

E(P) = min
v→P

E(v) (3)

where v refers to all internal degrees of freedom (atomic displacements and wave-
function coefficients) and the minimization is carried out over the restricted set of
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v having their polarization equal to P. It is not entirely straightforward to com-
pute E(P) in the context of Kohn-Sham (KS) density-functional theory (DFT), but
methods for doing so have been introduced by Diéguez and Vanderbilt [1]. To clarify
exactly what is, and is not, included in E(P), we note that the local electric field
can be decomposed into its macroscopic average, which we denote by E, and the
remainder

Emic(r) =
∑

G 6=0

E(G) eiG·r , (4)

which is the part that would come from solving Poisson’s equation ∇2φ = 4πρ with
periodic boundary conditions on φ. In particular, Emic(r) is defined by Gauss’s equa-
tion

∇ · Emic(r) = 4πρ(r) , (5)

which in reciprocal space reads

E(G 6= 0) = −i4πρ(G)
G

G2
, E(G = 0) = E . (6)

E(P) contains the usual ingredients of the KS energy including kinetic and exchange-
correlation terms, and its electrostatic part is computed as

Eelec(P) =
1

8π

∑

G 6=0

E(G)2 = 2π
∑

G 6=0

ρ(G)2

G2
. (7)

Note that the G = 0 term is absent from this sum. Then, only the part of the field
energy coming from the integral of Emic(r)

2/8π is included in Eelec(P). This is just
the definition of the energy that is implicit in all ordinary KS DFT calculations.

The Legendre transformation (LT) leading to the electric enthalpy functional
F(E) is then

F(E) = min
P

[
E(P) − E ·P

]
⇔ E(P) = max

E

[
F(E) + E · P

]
(8)

with

P = −
dF

dE
, (9)

E =
dE

dP
. (10)

The field energy E2/8π is still not included in F(E). In the KS context (E = EKS),
calculations at finite electric field are performed by carrying out the minimization

F(E) = min
v

F(E , v) = min
v

[EKS(v) − E · P(v)] (11)

where the dependence on the internal degrees of freedom v (atomic coordinates and
electronic wavefunctions) has been made explicit. Such an approach has been intro-
duced in Refs. [2] and [3] based on the Berry-phase formulation of the polarization
P(v) [4]. Ordinary KS DFT calculations, which implicitly assume a vanishing electric
field, just corresponding to minimizing EKS(v).
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2.4 Legendre transform between F̃(E) and U(D)

Next, starting with F(E), we want to do a LT such that the conjugate variable will
turn out to be not P, but D. To this end, we define

F̃(E) = F(E) −
1

8π
E2 (12)

and also introduce a factor of 4π in the definition of the conjugate variable, leading
to the LT pair

U(D) = max
E

[
F̃(E)+

1

4π
D ·E

]
⇔ F̃(E) = min

D

[
U(D)−

1

4π
D ·E

]
(13)

with

E = 4π
dU

dD
, (14)

D = − 4π
dF̃

dE
. (15)

Using F̃(E) = E − E ·P−E2/8π, this last equation gives D = E + 4πP as it should.
The functional U(D) is known as the internal energy. When expressed in terms of

E it takes the form U = F̃ +D ·E/4π = E +E2/8π. The last term E2/8π is precisely
the field energy coming from the uniform part of the field, which was absent in E,
F , and F̃ . Thus, the the electrostatic part of U(D) is simply

Uelec(D) =
1

8π

∑

G

E(G)2 (16)

where the sum now runs over all reciprocal lattice vectors including G = 0. In the
KS context context, one carries out the minimization

U(D) = min
v

U(D, v) = min
v

[
EKS(v) +

1

8π

(
D − 4πP(v)

)2
]

. (17)

where the dependence on the internal degrees of freedom v has again been made
explicit.

2.5 Additional comments

In a similar way, defining Ẽ(P) = E(P) + 2πP 2 and Ũ(D) = U(D) − D2/8π, it is
possible to set up a LT that directly connects Ẽ(P) ⇔ Ũ(D). We shall not pursue
this further here.

For the special case of a linear dielectric medium of polarizability χ > 0 and
ǫ = 1 + 4πχ, it follows that

E(P) = E0 +
1

2χ
P 2 , (18)

F(E) = E0 −
χ

2
E2 , (19)
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F̃(E) = E0 −
ǫ

2
E2 , (20)

U(D) = E0 +
1

8πǫ
D2 . (21)

From this it is clear that E(P) and U(D) are concave-up functions, while F(E) and
F̃(E) are concave-down.

3 Hellmann-Feynman forces

Here we need to separate v into atomic coordinates R and electronic coordinates w,
and minimize only with respect to w. Thus, F(E , R) = minw F(E , R,w), U(D, R) =
minw U(D, R,w), etc. The Hellmann-Feynman argument for F proceeds by writing

dF

dRj

=
∂F

∂Rj

+
∑

i

∂F

∂wi

∂wi

∂Rj

(22)

and noting that since ∂F/∂wi is already zero at the electronic minimum, we can drop
the second term, getting

dF

dRj

=
∂E

∂Rj

− E ·
∂P

∂Rj

. (23)

This formula was derived in Refs. [2, 3]. The first term on the RHS is just the
force as calculated in ordinary KS theory. In the case of a plane-wave basis and
norm-conserving pseudopotentials, the second term is given just by multiplying the
electric field by the bare ionic charge of the atom in question, while in ultrasoft-
pseudopotential (USPP) and projector-augmented-wave (PAW) approaches, augmen-
tation terms are also needed. A similar argument works for U(D), yielding in the end
the same Eq. (23). The same formula can also be derived from the E(P) context, but
this time the second term on the RHS of Eq. (23) arises as a constraint force with
the electric field E playing the role of a Lagrange multiplier [2].

4 Strains and strain derivatives

4.1 Introducing reduced field variables

For treating variable strain, it is strongly advantageous to change to internal variables.
For energies, this means that the energy functionals like E, F , and U will be energies

per unit cell with units of energy (not energy/volume). Thus, an equation like Eq. (8)
becomes F(E) = minP[E(P) − Ω E · P], where Ω is the cell volume, and similarly
elsewhere.

To define internal variables for the fields, we let aj be the lattice vectors, and
gij = ai · aj be the metric. We also let bi be dual vectors defined as in the main
manuscript, in which the conventional factor of 2π is not included, so that ai ·bj = δij

and bi · bj = (g−1)ij. There are now two choices of reduced variables. Referencing
to the reciprocal vectors, we get reduced variables

pi = Ωbi ·P ⇐⇒ P =
1

Ω

∑

i

pi ai , (24)
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εi =
Ω

4π
bi · E ⇐⇒ E =

4π

Ω

∑

i

εi ai , (25)

di =
Ω

4π
bi · D ⇐⇒ D =

4π

Ω

∑

i

di ai . (26)

where the inverse relations are given to the right. The relation D = E +4πP becomes
di = εi +pi. The reduced variables di, εi, and pi have units of charge, and are related
to the free charge, total charge, and bound charge, respectively, found on a surface
of orientation b̂i if the fields vanish in the vacuum. Note that, aside from a factor of
e/2π, the pi are nothing other than the Berry phases φi as given, e.g., in Eq. (23) of
Ref. [5].

The other choice is to refer to the real-space lattice vectors, i.e.,

p̄i = 4π ai · P ⇐⇒ P =
1

4π

∑

i

p̄i bi , (27)

ε̄i = ai · E ⇐⇒ E =
∑

i

ε̄i bi , (28)

d̄i = ai · D ⇐⇒ D =
∑

i

d̄i bi . (29)

The relation D = E + 4πP becomes d̄i = ε̄i + p̄i. The reduced variables p̄i, ε̄i, and d̄i

have units of electric potential (energy/charge), and are related to the potential drop
across the unit cell in direction âi arising from the displacement field, the total field,
and the depolarization field, respectively. They are related to the unbarred quantities
by

p̄i =
4π

Ω
gij pj , ε̄i =

4π

Ω
gij εj , d̄i =

4π

Ω
gij dj , (30)

where an implied sum notation is used.
The reduced field variables introduced here are closely related to those discussed

in Ref. [2] (see, e.g., Eq. (5) therein) and in Sec. II.C.3 and the Appendix of of Ref. [6].
Eqs. (A4) and (A5) of Ref. [6] introduce field variables that are reminiscent of pi and
ε̄i here, but there they were defined in such a way as to coincide with the ordinary
P and E in the absence of strains or rotations. More closely related are the P

′ and
εµ variables defined in (A13) and (A14) of Ref. [6], which are identical to our pi and
ε̄i except for a factor of the charge quantum e.

4.2 Energy functionals and Legendre transformations

The equation analogous to Eq. (8) is

F(ε̄) = min
p

[
E(p) −

4π

Ω
gij εi pj

]
= min

p

[
E(p) − ε̄i pi

]
. (31)

Note that the natural variable of function F is ε̄, not ε. That is, the variable conjugate
to pi is (4π/Ω)gijεj = ε̄i, and this should be the natural variable of the Legendre-
transformed function. We also have

ε̄i =
dE

dpi

, pi = −
dF

dε̄
. (32)
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Then Eq. (12) becomes

F̃(ε̄) = F(ε̄) −
1

8π
(g−1)ij ε̄i ε̄j (33)

and Eq. (13) becomes

U(d) = max
ε̄

[
F̃(ε̄) + ε̄i di

]
(34)

with

di = −
dF̃

dε̄i

, ε̄i =
dU

ddi

. (35)

U = E +
2π

Ω
gij εi εi = E +

1

2
ε̄i εi . (36)

Thus, the sequence of LT’s transforms the natural variables from pi to ε̄i to di.
This is consistent with physical interpretations, in the following sense.

For the electric enthalpy function, we can imagine a large number N of crystalline
cell layers sandwiched between capacitor electrodes with a voltage V applied across
the electrodes. If the cell is strained as a result of the applied voltage or for any other
reason, the voltage drop per cell will remain V/N , corresponding to a fixed ε̄. It thus
makes sense that this is the natural variable for this kind of problem. On the other
hand, the variable ε would change with strain, and so is not an appropriate choice of
variable in this context.

On the other hand, instead of a capacitor with fixed voltage across the plates,
we can imagine a slab with fixed free charge on the surfaces. More specifically, it
would be fixed free charge per surface cell, not per unit area, under general strain
deformations. This corresponds to fixed d, and so it is natural that U(d) has natural
variable d, not d̄.

4.3 Strain, strain derivatives, and the stress tensor

Let ηµν be the strain tensor, and define the stresses σE
µν = Ω−1dE/dηµν , σF

µν =

Ω−1dF/dηµν , σF̃
µν = Ω−1dF̃/dηµν , and σU

µν = Ω−1dU/dηµν . Then

dΩ

dηµν

= Ωδµν (37)

and

dgij

dηµν

= aiµ ajν + ajµ aiν . (38)

The Hellmann-Feynman theorem applied to the electric enthalphy is
(

dF(ε̄, η; v)

dηµν

)

ε̄

=
∂F(ε̄, η; v)

∂ηµν

+
∂F(ε̄, η; v)

∂v

dv

dηµν

(39)
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but since ∂F/∂v = 0 at the equilibrium state of the internal variables {v}, the second
term vanishes. Using F(ε̄) = E(p) − ε̄i pi we find

dF(ε̄, η)

dηµν

=
∂E(p, η)

∂ηµν

− ε̄i

∂pi

∂ηµν

. (40)

But if we assume that the internal variables are atomic coordinates in lattice-vector
units and coefficients of plane-wave basis functions in a norm-conserving context, it
follows that ∂pi/∂ηµν = 0. Thus

σF
µν =

1

Ω

dF

dηµν

=
1

Ω

∂E

∂ηµν

= σE
µν (41)

which is just the stress tensor appearing in the usual KS theory. In the case of USPP
or PAW approaches, ∂pi/∂ηµν does not vanish, and augmentation terms need to be
included.

For the internal energy, we again use the Hellmann-Feynman argument to write
dU/dηµν = ∂U/∂dηµν . Now the natural variable being held fixed is d, and again p is
unchanged under a homogeneous strain if the internal variables are chosen properly,
and since di = εi + pi, this means ε is also fixed (while ε̄ is not). We choose to write
Eq. (36) as

U(η, d) = E +
2π

Ω
gij εi εj (42)

so that, using Eqs. (37) and (38),

σU
µν =

1

Ω

dU

dηµν

=
1

Ω

∂E

∂ηµν

+
2π

Ω2

[
2 aiµ ajν εi εj − δµν gij εi εi

]
(43)

or

σU
µν = σKS

µν +
1

8π

[
2 Eµ Eν − δµν E

2
]

(44)

where the second term is just the Maxwell stress tensor arising from the macroscopic

electric field. It is straightforward to show that σF̃ = σU . Thus, there are basically
two stress tensors, one (σF

µν = σE
µν) that does not include the Maxwell stress, and

another (σF̃ = σU ) that does.
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