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Electric displacement as the fundamental variable in electronic-structure calculations
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Finite-field calculations in periodic insulators are technically and conceptually challenging, due to
fundamental problems in defining polarization in extended solids. While significant progress has been
made recently with the establishment of techniques to fix the electric field E or the macroscopic
polarization P in first-principles calculations, both methods lack the ease of use and conceptual
clarity of standard zero-field calculations. Here we develop a new formalism in which the electric
displacement D, rather than E or P, is the fundamental electrical variable. Fixing D has the intuitive
interpretation of imposing open-circuit electrical boundary conditions, which is particularly useful
in studying ferroelectric systems. Furthermore, the analogy to open-circuit capacitors suggests an
appealing reformulation in terms of free charges and potentials, which dramatically simplifies the
treatment of stresses and strains. Using PbTiO3 as an example, we show that our technique allows
full control over the electrical variables within the density functional formalism.

The development of the modern theory of polariza-
tion [1] has fueled exciting progress in the theory of the
ferroelectric state. Many properties that could previ-
ously be inferred only at a very qualitative level can now
be computed with quantum-mechanical accuracy within
first-principles density-functional theory. Early ab-initio

studies focused on bulk ferroelectric crystals, elucidating
the delicate balance between covalency and electrostat-
ics that gives rise to ferroelectricity. Over time, these
methods were extended to treat the effects of external
parameters such as strains or electric fields [2, 3]. Of
particular note is the recent introduction by Diéguez and
Vanderbilt [4] of a method for performing calculations at
fixed macroscopic polarization P. The ability to compute
crystal properties from first principles as a function of P

provides an an intuitive and appealing link to Landau-
Devonshire and related semiempirical theories in which
P serves as an order parameter.

Despite its obvious appeal, however, the constrained-P
method has found limited practical application to date.
One reason for this is that the procedure to enforce a con-
stant P during the electronic self-consistency cycle is rel-
atively involved; this hampers the study of complex het-
erostructures with large supercells, where computational
efficiency is crucial. There are also physical reasons. In
particular, fixing P does not correspond to experimen-
tally realizable electrical boundary conditions (Fig. 1).
Moreover, in an inhomogeneous heterostructure, the lo-
cal polarization can vary from one layer to another, and
its average is therefore best regarded as a derived, not
a fundamental, quantity. In the following we show that
considering D as the fundamental electrical variable over-
comes these physical limitations, and that constraining
D rather than P leads to a simpler implementation.

Formalism. We consider a periodic insulating crystal
defined by three primitive translation vectors ai, with Ω
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FIG. 1: Electrical boundary conditions within different meth-
ods. a) The fixed-E method corresponds to adopting closed-
circuit boundary conditions with a constant applied bias V .
b) Constraining D corresponds to a capacitor in open-circuit
conditions with a fixed value of the free charge Q on the plates.
c) constraining P does not correspond to a clear experimental
set-up.

the unit cell volume, and we introduce the new functional

U(D, v) = EKS(v) +
Ω

8π
[D− 4πP(v)]2 . (1)

U(D, v) depends directly on an external vector parameter
D, and indirectly on the internal (ionic and electronic)
coordinates v through the Kohn-Sham energy EKS and
the Berry-phase polarization P [1]. (For the moment we
fix the lattice vectors; strains will be discussed shortly.)
The minimum of U at fixed D is given by the stationary
point where all the gradients with respect to v vanish,

∂U

∂v

∣

∣

∣

D

=
∂EKS

∂v
− Ω (D − 4πP) ·

∂P

∂v
= 0 . (2)

Comparing with the fixed-E approach of Ref. [2, 3] in
which the electric enthalpy F is given by

F(E , v) = EKS(v) − Ω E ·P(v) , (3)

we see that

∂F

∂v

∣

∣

∣

E

=
∂U

∂v

∣

∣

∣

D

(4)
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provided that we set E = D − 4πP. We thus discover
that D = E + 4πP is the macroscopic electric displace-
ment field. The functional in Eq. (1) takes the form
U = EKS +(Ω/4π)E

2, which is the correct expression for
the internal energy of a periodic crystal when a uniform
external field is present (details are given in Supplemen-
tary Section 2.4). Eq. (1) thus provides a framework
for finding the minimum of the internal energy U(D)
with respect to all internal degrees of freedom at speci-
fied electric displacement D. This is the essence of our
constrained-D method.

As a consequence of Eq. (4), the method is analogous to
a standard finite-E-field calculation [2, 3]. In particular,
the Hellmann-Feynman forces are computed in the same
way. The only difference is that the value of E , instead of
being kept constant, is updated at every iteration until
the target value of D is obtained at the end of the self-
consistency cycle (or ionic relaxation). This implies that
the implementation and use of the constrained-D method
in an existing finite-E-field code is immediate; in our case
it required the modification of two lines of code only.

The effect of constraining D, rather than E, essentially
corresponds to the imposition of longitudinal, rather than
transverse, electrical boundary conditions. For exam-
ple, as we shall see below, the phonon frequencies ob-
tained from the force-constant matrix computed at fixed
D are the longitudinal optical (LO) ones, while the usual
approach yields instead the transverse optical (TO) fre-
quencies. Furthermore, the longitudinal electrical bound-
ary conditions are appropriate to the physical realization
of an open-circuit capacitor with fixed free charge on
the plates, while the usual approach applies to a closed-
circuit one with a fixed voltage across the plates (Fig. 1).

Stress tensor. This analogy with an open-circuit ca-
pacitor suggests an intuitive strategy for deriving the
stress tensor, a quantity that plays a central role in piezo-
electric materials. In particular, the electrode of an iso-
lated open-circuit capacitor cannot exchange free charge
with the environment. This suggests that the flux of the
vector field D through the three independent facets of
the primitive unit cell should remain constant under an
applied strain, These fluxes are ai × aj · D = Ωbi · D,
where the bi are duals (ai ·bj = δij) differing by a factor
of 2π from the conventional reciprocal lattice vectors. We
then rewrite the functionals in terms of the “internal” or
“reduced” variables di = (Ω/4π)bi · D. It is also use-
ful to define the reduced polarization pi = Ωbi · P and
the “dual” reduced electric field ε̄i = ai · E . Additional
details are provided in the Supplementary Section 4.

By Gauss’s law, di = −Qi, where the Qi are the free
charges per surface unit cell located on the cell face nor-
mal to bi. With these definitions, the internal energy
can be rewritten as

U({d}) = EKS +
2π

Ω

∑

ij

(

di − pi

)

gij

(

dj − pj

)

(5)

where we have introduced the metric tensor gij = ai ·aj .
We then define the fixed-{d} stress tensor as

σµν =
1

Ω

(

dU

dηµν

)

{d}

(6)

where ηµν is the strain tensor. By a Hellmann-Feynman
argument (see Supplementary Section 4.3) the total
derivative in Eq. (6) can be replaced by a partial deriva-
tive. Using dgij/dηµν = 2aiuajv, we find

σµν = σKS
µν + σMax

µν + σaug
µν , (7)

where σKS
µν is the standard zero-field expression,

σMax
µν =

2EµEν − δµνE
2

8π
(8)

is the Maxwell stress tensor (which originates from the
derivative acting on gij and Ω−1), and

σaug
µν = −

(

4π

Ω

)2
∑

i

ε̄i

∂pi

∂ηµν

(9)

is the “augmented” part. If the internal variables v are
chosen as reduced atomic coordinates and plane-wave co-
efficients in a norm-conserving pseudopotential context,
neither the ionic nor the Berry-phase component of pi

has any explicit dependence on strain, and σaug
µν vanishes.

The name thus refers to the fact that σaug
µν is nonzero only

in ultrasoft pseudopotential [5] and projector augmented-
wave [6] contexts. We note that, as a consequence of
fixing the reduced variables di rather than the Cartesian
D, the proper treatment of piezoelectric effects [7, 8] is
automatically enforced.

Legendre transformation. The transformation from
variables D to variables E can be regarded as part of
a Legendre transformation. We spell out this connection
here, working instead with reduced variables (d1, d2, d3)
and (ε̄1, ε̄2, ε̄3). First, we note that

dU

ddi

=
∂U

∂di

= ε̄i . (10)

Recall that ε̄i = ai · E, so that −ε̄i is just the po-
tential step Vi encountered while moving along lattice
vector ai, while Qi is just the free charge on cell face
i. Thus, when the system undergoes a small change
at fixed (ε̄1, ε̄2, ε̄3), the work done by the battery is
−

∑

i Vi dQi = −
∑

i ε̄i ddi. We therefore define

F̃(ε̄1, ε̄2, ε̄3) = min
d1,d2,d3

[

U(d1, d2, d3) −
∑

i

ε̄i di

]

, (11)

where the potentials ε̄i have become the new indepen-
dent variables and di are now implicit in the minimum
condition. The energy functionals U({di}) and F̃({ε̄i})
thus form a Legendre-transformation pair.
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All the gradients with respect to the internal and strain
degrees of freedom are preserved by the Legendre trans-
formation and need not be rederived for F̃ . The physical
electrical boundary conditions, however, have changed
back to the closed-circuit case. It is therefore natural to
expect the functional F̃ to be closely related to the fixed-
E enthalpy F of Eq. (3). Indeed, it is straightforward to
show that

F̃ = U −
Ω

4π
E · D = F −

Ω

8π
E2 . (12)

At fixed strain and ε̄i, the ΩE2/8π term is constant, and
thus does not contribute to the gradients with respect to
the internal variables, consistent with Eq. (4). However,
the stress derived from F differs from the one derived
from F̃ by the Maxwell term σMax

µν , which is absent in F
(details of the derivation are provided in Supplementary
Section 4.3). Although the Maxwell stress is tiny on the
scale of typical first-principles calculations (e.g. 108 V/m
produces a pressure of 44.3 KPa), for reasons of formal
consistency we encourage the use of F̃ in place of F in
future works.

Partial Legendre transformations. It is also possible
to define hybrid thermodynamic functionals via partial
Legendre transformations that act only on one or two of
the three electrical degrees of freedom. Of most interest
is the case of two fixed V and one fixed Q, i.e., func-
tions of variables (ε̄1, ε̄2, d3). The special direction is de-
noted by unit vector q̂ which is along direction b3. When
ε̄1 = ε̄2 = 0, this applies to two common experimental
situations: the case of an insulating film sandwiched in
the q̂ direction between parallel electrodes in open-circuit
boundary conditions, and the case of a long-wavelength
LO phonon of wavevector q where the q → 0 limit is
taken along direction q̂.

This latter case of LO phonons exemplifies the phys-
ical interpretation of our method and its usefulness.
While the gradients of U and its partially Legendre-
transformed partner are identical, the force constant ma-

trices, which are second derivatives, are not. Indeed, the
force-constant matrices are found to differ by

∆KIα,Jβ =
4π

Ω

(ZI · q̂)α(ZJ · q̂)β

q̂ · ǫ∞ · q̂
, (13)

where Iα labels the atom I and its displacement di-
rection α, ZIα is the corresponding dynamical charge,
and ǫ∞ is the purely electronic dielectric tensor. This
is readily identified as the non-analytic contribution to
the LO-TO splitting of a phonon of small wavevector q

in the theory of lattice dynamics [9]. Thus, it becomes
straightforward to obtain zone-center LO frequecies by
direct finite-difference calculations at fixed D, as will be
demonstrated shortly.

Dielectric tensor and linear response. This scheme
lends itself naturally to the perturbative linear-response
analysis of the second derivatives of the internal energy

as described in Ref. [8], with two important differences.
First, in our scheme the derivatives at constant D become
the elementary tensors, while the derivatives at constant
E are “second-level” quantities; this is an advantage,
since using D as independent variable is very convenient
in ferroelectric systems. Second, the use of the reduced
field variables di and ε̄i in place of the macroscopic vec-
tor fields P and E makes the discussion of strains under
an applied field much more rigorous and intuitive.

As an example of the relationship between constrained-
ε̄ and constrained-d tensors it is useful to introduce the
inverse capacitance, γ = C−1, in matrix form as

γij =
d2U

ddiddj

. (14)

Incidentally, while this expression is fully general and
well-defined in the non-linear regime, for the special case
of a linear medium we can write

U = U0 +
1

2

∑

ij

γij Qi Qj, (15)

which generalizes the textbook formula U = Q2/2C to
the case of three mutually coupled capacitors. It can be
shown that the same information can be obtained within
the constrained-ε̄ approach by means of the relationship

(γ−1)ij =
d2F̃

dε̄idε̄j

. (16)

The matrix γij can be thought of a “reduced” represen-
tation of the macroscopic dielectric tensor,

(ǫ−1)αβ =
Ω

4π

∑

i,j

γij bi,α bj,β , (17)

or equivalently

ǫαβ =
4π

Ω

∑

i,j

(γ−1)ij ai,α aj,β . (18)

We will consider, in addition to the total static ca-
pacitance above, the closely related frozen-strain γη

ij and
frozen-ion γ∞

ij tensors. The remainder of the response
functions discussed in Ref. [8] can be similarly defined in
terms of the second derivatives of U({d}, u, η).

Applications. In the following we illustrate our method
by computing the electrical equation of state of a pro-
totypical ferroelectric material, PbTiO3. Our calcula-
tions are performed within the local-density approxima-
tion [10] (LDA) of density-functional theory using norm-
conserving [11] pseudopotentials and a planewave cutoff
of 150 Ry. The tetragonal unit cell contains one formula
unit, and a 6 × 6 × 6 Monkhorst and Pack [12] grid is
used to sample the Brillouin zone. The finite electric
field is applied through a Wannier-based real-space tech-
nique [13], which converges quickly as a function of k-
point mesh resolution [14]; indeed, tests made with finer
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FIG. 2: Potential step and internal energy as a function of
d. Symbols, calculated using constrained-D method: (a) re-
duced electric field ε̄ (squares); (b) internal energy U (circles).
Solid curves: (a) numerical cubic spline fit to the symbols; (b)
numerical integral of the spline fit in (a). Inset: enlargement
near the minimum, also showing magnitude of the error made
if Pulay stresses are neglected (dashed curve).

meshes showed no differences within numerical accuracy.
We obtain an equilibrium lattice constant of a=3.879 Å
for cubic paraelectric PbTiO3, in line with values previ-
ously reported in the literature. Due to the tetragonal
symmetry, the state of the system is fully determined
by six parameters: the electric displacement d, the cell
parameters a and c, and three internal coordinates de-
scribing relative displacements along z.

Starting from the relaxed cubic structure in zero field,
we calculate the equilibrium state for ten evenly spaced
values of the reduced displacement d, ranging from
d=0.1 e to d=1.0 e (where −e is the electron charge), and
relaxing all the structural variables at each d value. We
set a stringent accuracy threshold of 10−5 Ha/bohr for
atomic forces and 10−7 Ha/bohr3 for stresses. First we
check the internal consistency of the formalism by veri-
fying that our calculated potential drop ε̄ coincides with
the numerical derivative of U with respect to d as ex-
pected from Eq. (10). The comparison is shown in Fig. 2,
where the discrepancies, of order 10−6 Ha, are not even
visible. This confirms the internal consistency of the for-
malism and the high numerical accuracy of the calcula-
tions. The minimum in Fig. 2 (b) [which coincides with
the zero-crossing in (a)] at d = 0.725 e corresponds to a
spontaneous polarization of Ps = 0.78 C/m2.

We note that this comparison is sensitive to the Pulay
stress, even in the present case where our conservative
choice of the plane-wave cutoff makes this error as small
as πP = 82 MPa. Neglecting such error corresponds to
applying a hydrostatic pressure of −πP , which leads to
a discrepancy between the integrated potential (dashed
curve in the inset of Fig. 2) and the calculated internal en-
ergy values. The agreement can be restored by plotting,
instead of U (circles), the correct functional U +πP Ω for
constant-pressure conditions (plus symbols). (Of course,
an analogous procedure can be used to simulate an arbi-
trary external pressure applied to the system.) As such,
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FIG. 3: Dielectric and lattice-dynamical properties. (a) Cal-
culated inverse capacitance in the free-stress γ (circles) and
fixed strain γη (squares) limits. The points were obtained by
extracting the symmetric 6 × 6 elementary response tensors
by finite differences (steps of ±0.001 were taken for each pa-
rameter) for each value of d; the continuous curve is the result
of numerical differentiation of the splined potential. (b) Lon-
gitudinal (filled symbols, continuous curves) and transverse
(open symbols, dashed curves) optical modes of Γ15 symme-
try as a function of d.

this comparison constitutes a stringent test that all nu-
merical issues have been properly accounted for, partic-
ularly in systems like PbTiO3 that are characterized by
a strong piezoelectric response.

Having verified the accuracy and consistency of our
method, we now demonstrate its utility by analyzing
the second derivative of the internal energy (or equiv-
alently the first derivative of the potential) as a func-
tion of d, which corresponds to the inverse capacitance
γ. The symbols in Fig. 3(a) show the linear-response
values of both γη and γ, which are identical in the non-
piezoelectric cubic limit. The numerical derivative of the
splined potential of Fig. 2(a) accurately matches γ, again
confirming the high numerical quality of our calculations.
Fig. 3(a) shows that the inverse capacitance is negative

for 0 < d < 0.395 [the zero-crossing point corresponds to
the inflection point of the U(d) curve of Fig. 2(b), and
to the minimum of ε̄(d) of Fig. 2(a)]. This is indicative
of the fact that cubic PbTiO3 is characterized by a fer-
roelectric instability, which means that the U(d) curve
has a negative curvature around the saddle point d = 0.
We suggest, therefore, that the constrained-D inverse ca-
pacitance at d = 0, while not accessible experimentally
(since it corresponds to an unstable configuration of the
crystal), is a useful indicator of the strength of the fer-
roelectric instability. As such, it can play an important
role in determining the critical thickness for ferroelectric-
ity in thin perovskite films; in particular, a material with
lower γ should be ferroelectric down to smaller thick-
nesses. Note that in our terminology one ferroelectric
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can be both stronger and less polar than another if it
has a more negative γ but a smaller |Ps|.

Finally, to further elucidate the capabilities of our
method, for each value of d we diagonalize both the
longitudinal (directly obtained by finite differences) and
transverse (obtained by using the additional ∆K term
as defined in Eq. 13) dynamical matrices, and plot in
Fig. 3 (b) the resulting normal mode frequencies. This
analysis shows very clearly the crossover point when the
frequency of the “soft” TO1 mode becomes imaginary,
which corresponds to the zero-crossing of γη in Fig. 3(a).

Summary. In conclusion, we have presented a formal-
ism that provides full control over the electrical degrees of
freedom in a periodic first-principles electronic-structure
calculation. A novel and powerful aspect of the present
approach is the ability to carry out calculations at fixed
electric displacement field, which has important applica-
tions to the study of ferroelectric materials. Our pro-
cedure, developed and tested within a density-functional
background, is very general and can be readily applied to
any (quantum-mechanical or classical) theory of insula-
tors in which the polarization can be rigorously defined.
Using calculations on PbTiO3 as a test case, we demon-
strate that the method can be implemented efficiently
and accurately, thus setting the stage for the theoreti-
cal study of polar instabilities in complex and large-scale
ferroelectric systems, including technologically relevant
heterostructures and capacitors.
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