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We construct a general metric-tensor framework for treating inhomogenous adiabatic deformations
applied to crystalline insulators, by deriving an effective time-dependent Schrödinger equation in
the undistorted frame. The response can be decomposed into “static” and “dynamic” terms that
correspond, respectively, to the amplitude and the velocity of the distortion. We then focus on
the dynamic contributon, which takes the form of a gauge field entering the effective Hamiltonian,
in the linear-response limit. We uncover an intimate relation between the dynamic response to
the rotational component of the inhomogeneous deformation and the diamagnetic response to a
corresponding inhomogeneous magnetic field. We apply this formalism to the theory of flexoelectric
response, where we resolve a previous puzzle by showing that the currents generated by the dynamic
term, while real, generate no bound charges even at surfaces, and so may be dropped from a practical
theory of flexoectricity.
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I. INTRODUCTION

Mechanical deformations are among the most basic
perturbations that can be applied to a crystalline solid,
and their response is at the origin of many basic materials
functionalities, such as elasticity or piezoelectricity. The
development of theoretical approaches to calculate and
predict these properties from first principles has marked
notable milestones for modern electronic-structure the-
ory, paralleling the equally important development of
density-functional perturbative approaches to lattice dy-
namics. In the case of uniform deformations, methods
to compute the relevant response coefficients are now
well established, and part of the most popular simulation
packages that are available to the public. Yet, with the
rising interest in flexoelectricity, and more generally in
functionalities that depend on the gradient of the strain
field rather than on the strain itself, the existing compu-
tational approaches are of limited applicability, and their
generalization to cases where the deformation is inhomo-
geneous appears far from obvious.

Flexoelectricity, describing the polarization response of
a crystalline insulator to a strain gradient, has received
considerable attention in the past few years because of its
fundamental interest and potential relevance to energy
and information technologies. Recent advances in first-
principles methods have given a considerable boost to the
field. The theoretical understanding of flexoelectric phe-
nomena, however, still presents daunting conceptual and
practical challenges, many of which are still unresolved.
The purely electronic (clamped-ion) contribution to the
flexoelectric response, for example, is riddled with sub-
tleties, and proper methodologies to compute it in the
most general case are still missing. (Lattice-mediated
effects are comparatively much simpler to understand,
both conceptually and computationally – they consists
in the dynamical dipoles produced by the internal re-

laxations of the primitive cell, and bear many analogies
to the point-charge model proposed by Tagantsev1 long
ago.)

The main issue resides in that, in order to define the
transverse components of the clamped-ion flexoelectric
tensor at the bulk level, one needs, in principle, to access
the microscopic polarization response to a variety of lat-
tice distortions (e.g., long-wavelength acoustic phonons,
or displacements of an isolated atom). Indeed, treat-
ments based on the Berry-phase formula are ruled out
because a strain gradient breaks translational periodic-
ity; charge-density based theories are not viable either,
as they yield only partial information on the flexoelectric
tensor components. Calculating the microscopic polar-
ization response implies establishing a time-dependent
perturbative framework, where the quantum-mechnical
probability current is monitored in the course of a slow
distortion of the crystal. Such a procedure, however,
falls outside the capabilities of the publically available
electronic-structure packages. An implementation of the
current-density based theory of flexoelectricity has only
very recently been presented in Ref. 2. This implemen-
tation required the resolution of some challenging formal
issues regarding the current-density response to a macro-
scopic deformation. A brief account of those issues was
given in Ref. 2, but are described more thoroughly and
in greater depth in the present manuscript.

The first, obvious, question concerns the physical rep-
resentation of a microscopic observable, such as the elec-
tronic probability current, in a context where the bound-
ary conditions of the Hamiltonian change in the course
of the transformation. In a nutshell, even if we limit our
attention to the simplest case of a uniform strain (these
issues become all the more severe if the deformation is
inhomogeneous), the atomic distortion pattern that one
needs, in principle, to apply in order to strain the crystal
grows linearly with the distance from the origin. (Re-
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call that the macroscopic strain is related to the first
gradient of the displacement field.) This has two un-
desirable consequences: (i) the perturbation (and hence
all the microscopic response functions associated to it) is
nonperiodic and origin-dependent, even if both the initial
and the final state enjoy translational periodicity; (ii) the
perturbation is never small at the boundaries of a large
crystallite, which complicates its treatment within linear-
response theory. In Ref. 3 the above problem was ele-
gantly solved by combining the macroscopic deformation
with a simultaneous coordinate transformation. This
way, one can encode the strain field as a change in the
metric of space while the atoms remain at their original
locations, thereby removing the need for a nonperiodic
and unbound lattice distortion. Also, the transformed
coordinate system naturally leads to a sound definition
of microscopic response functions, such as polarization,
charge density and local electric fields.

The second conceptual issue is even more subtle, and
consists in making sure that the fundamental response
quantities of interest (e.g. the flexoelectric polarization)
are well defined, i.e., that they are independent of the
rotations or translations that were applied to the crystal
in the course of the deformation. This is required by a
proper4 theory of electromechanical phenomena, which
should depend on physically meaningful changes in the
relative distances between neighboring material points,
and not on their absolute position with respect to some
arbitrary coordinate frame. In order to make the problem
tractable, in Refs. 3 and 5 we had to make some simpli-
fying assumptions on how the electronic currents, J(r),
respond to a rigid rotation or translation of the crystal
lattice, by postulating that

J(r) = v(r)ρ(r),

where ρ is the charge density and v is the velocity of the
material point r imposed by the rototranslation. This
is akin to assuming that the electronic cloud behaves as
a classical charge distribution that is equal to the true
quantum-mechanical one. As we shall see, this is indeed
correct in the case of translations, but not in the case
of rotations, where there is a further contribution to the
current that we neglected in earlier works. It turns out,
however, that this additional piece is curl-free, so it is
unclear whether it affects the results. Settling this point
appears as a clear priority: the theory of flexoelectricity,
as it stands, crucially relies on this assumption in order
to define3 and calculate6 the transverse components of
the bulk flexoelectric tensor. A fundamental theoretical
framework, where the microscopic polarization currents
are derived within a proper quantum-mechanical treat-
ment of deformations, is needed in order to firm up the
results obtained so far, and thereby pave the way towards
future developments in the field.

Here we attack this problem from its very root, by in-
corporating coordinate transformations directly into the
time-dependent Schrödinger equation. This allows us to
perform a formal analysis of the electronic probability

current that develops in the course of an arbitrary me-
chanical deformation, and thereby to identify the rele-
vant physical contribution to the polarization response
in the most general case. Interestingly, we find that
a non-uniform deformation is generally accompanied by
“gauge currents” produced by local rotations of the sam-
ple. These currents are divergenceless and correspond to
the circulating diamagnetic currents generated by an ap-
plied magnetic field (B). This result is explained heuris-
tically by recalling Larmor’s theorem, which relates the
Lorentz force on a charged particle in a uniform B-field to
the Coriolis force on a massive object in a uniformly ro-
tating frame. By performing a long-wavelength analysis
in the limit of small deformations, we demonstrate that
the bulk flexoelectric tensor has a contribution from these
gauge fields that is proportional to the bulk diamagnetic
susceptibility of the material. Remarkably, such a con-
tribution is exactly cancelled by an equal and opposite
surface term. One is therefore free to remove this term
from both sides, leaving a description of the flexoelectric
polarization that is consistent with the charge-density-
based strategy of Ref. 6.

The present results demonstrate, once more, the in-
timate connection between surface and bulk contribu-
tions to the flexoelectric effect, and the intriguing con-
nections between the latter phenomenon and other, ap-
parently unrelated, areas of research (in this case, or-
bital magnetism). In addition to providing a firm foun-
dation to the existing theory of flexoelectricity, we also
provide an explicit derivation of how a generalized (and
time-dependent) coordinate transformation of space is re-
flected in the most basic quantum-mechanical operators,
such as the Hamiltonian or the probability current. This
can be of immediate usefulness to a wide range of physi-
cal problems, within and beyond7 the specific context of
this work.

II. GENERAL THEORY

We shall consider a generic time-dependent deforma-
tion of the crystal lattice, where all atoms move from
their original location, R0

lκ, according to a continuous
vector function of space and time, r(ξ, t),

Rlκ(t) = r(R0
lκ, t). (1)

(Recall that κ and l are sublattice and cell indices, re-
spectively.) The physical effects of the deformation de-
scribed by r(ξ, t) are best treated by operating an anal-
ogous coordinate transformation that brings every atom
back to its original position.3 This means that the atoms
are immobile in the (generally curvilinear) ξ-frame, but
the frame itself evolves with respect to the Cartesian lab-
oratory frame. All the effects of the mechanical pertur-
bation are, in other words, encoded in the metric of the
deformation, rather than in an atomic displacement pat-
tern.
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To see how the metric change affects the electronic
Hamiltonian, it is useful to introduce a number of auxil-
iary quantities that will come handy later in the deriva-
tion. The first is the so-called deformation gradient,

hiα =
∂ri
∂ξα

. (2)

The determinant of the deformation gradient, h =
det(h), gives the local volume change with respect to the
unperturbed lattice configuration. From the deformation
gradient we can construct the metric tensor,

gαβ =
∂ri
∂ξα

∂ri
∂ξβ

= hiαhiβ = (hTh)αβ , (3)

which is another central quantity of the formalism; its
determinant is g = det(g) = h2. (Here and in the fol-
lowing we us an implicit sum notation on indices, with
Roman and Greek indices used for Cartesian and curvi-
linear frames respectively.)

We shall define the wavefunctions in the deformed
space in such a way that they comply with the basic
orthonormality requirements. This means writing

ψ(r) = h−1/2 ψ̃(ξ). (4)

It is easy to show that the wavefunctions ψ are orthonor-
mal in the Cartesian space provided that the “curvilin-
ear” wavefunctions ψ̃ are orthonormal in the ξ-space,∫

d3r ψ∗m(r)ψn(r) =

∫
d3r h−1 ψ̃∗m(ξ(r))ψ̃n(ξ(r))

=

∫
d3ξ ψ̃∗m(ξ)ψ̃n(ξ). (5)

Note that we shall work in a time-dependent context,
which is necessary in order to be able to discuss the po-
larization response. In doing so we assume

ψ(r, t) = h−1/2 ψ̃(ξ, t), (6)

i.e., the phase evolution of ψ̃ is locked to that of ψ. The
choice of the phase relation between ψ̃ and ψ is mostly
a matter of convention, and can be regarded as a “gauge
freedom” of the transformed wavefunctions. Indeed, one
could postulate ψ(r, t) = eiϕh−1/2 ψ̃(ξ, t), where ϕ is an
arbitrary function of space and time. While the physical
conclusions should not depend on ϕ, the specific form of
the time-dependent Schrödinger equation in the comov-
ing frame does. In particular, unfamiliar terms may arise
in the Hamiltonian whose physical interpretation needs
some caution; we shall briefly discuss an illustrative ex-
ample in Sec. II B 1

In the following Sections our goal will be to start from
a conventional Schrödinger equation, written in Carte-
sian r-space, and progressively work out the curvilinear
version in ξ-space, where the electronic wavefunctions are
described by ψ̃.

A. Time-dependent Schrödinger equation

The time-dependent Schrödinger equation can be writ-
ten in the original Cartesian frame as

i
∂

∂t
ψ(r, t) =

[
−∇

2

2
+ V (r, t)

]
ψ(r, t), (7)

where we have set h̄ = me = 1. Multiplying through
by
√
h and carrying out the coordinate transformations,

this becomes (the detailed derivations can be found in
the Appendix)

i
∂

∂t
ψ̃ = ˆ̃Hψ̃, (8)

where the new effective Hamiltonian operator,

ˆ̃H =
1

2
(ˆ̃pβ −Aβ)gβγ(ˆ̃pγ −Aγ)

+Ṽ + Vgeom −
1

2
φ, (9)

contains contributions arising not only from the poten-
tial and kinetic terms on the right-hand side of Eq. (7),
but also from the time-derivative term on the left. Here
ˆ̃pβ = −i∂/∂ξβ indicates the canonical momentum in
curvilinear space, gβγ = (g−1)βγ is the inverse metric

tensor, Ṽ (ξ, t) = V (r(ξ, t), t) is the external potential
represented in the curvilinear frame, and we have intro-
duced a number of additional quantities. First, the “geo-
metric” scalar potential Vgeom originates from the kinetic
energy operator, and reads as

Vgeom =
1

2
AβgβγAγ +

1

2
∂β(gβγAγ), (10)

Aα =
1

2h

∂h

∂ξα
=

1

2

∂ ln(h)

∂ξα
. (11)

(Note the close relationship of the auxiliary field Aα to
the contracted Christoffel symbol.) Second, we have a
further scalar and vector potential field originating from
the time derivative,

φ =
∂ri
∂t

∂ri
∂t
, (12)

Aγ =
∂ri
∂ξγ

∂ri
∂t

∣∣∣
ξ
. (13)

Interestingly, both A and φ have the same form as the
metric tensor elements in Eq. (3), except that one or both
real-space indices have been replaced here with time.
Eq. (9), together with definitions (10), (11), (12) and
(13), constitutes one of our central results.

The present theory of deformations bears an intrigu-
ing similarity to electromagnetism, as in both cases the
electronic Hamiltonian acquires a gauge-dependent vec-
tor and scalar potential contribution [see the discussion
following Eq. (6)]. We shall see in the following that
both A and φ have classical counterparts in the fictitious
forces that appear in the noninertial frame defined by the
coordinate transformation.
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B. Physical interpretation

To see the physical interpretation of the new terms ap-
pearing in the Schrödinger equation, it is useful to work
out a couple of simple examples.

1. Galilean transformations

Consider a transformation of the type

r = ξ + vt, (14)

where v is a vector constant with the dimension of a
velocity. We have hαβ = gαβ = δαβ , Aα = 0 and Aα =
vα. The result is

ih̄
∂ψ̃

∂t
=

1

2m
(p̃−mv)·(p̃−mv)ψ̃+

(
V − 1

2
mv2

)
ψ̃, (15)

where we have reintroduced the factors of electron mass,
m, and h̄ to better illustrate the physical meaning of the
various terms. We have also used the fact that the po-
tential in the co-moving frame (i.e., we assume here that
the crystal is uniformly moving with respect to the lab-
oratory frame with the same velocity v) is independent
of time and equal to the potential of the lattice at rest.

To see that Eq. (15) is reasonable, consider a free
particle ψ(r, t) = eiq0·re−iω0t with h̄ω0 = p20/2m and
p0 = h̄q0 in the original frame. Classically, the parti-
cle has momentum p0 − mv as seen from the moving
frame. Eq. (6) gives its transformed wavefunction to be

ψ̃(ξ, t) = eiq0·ξe−i(ω0−q0·v)t, which is easily verified to
satisfy Eq. (15). The first term of Eq.(15) is just the ki-
netic energy (p0 −mv)2/2m as seen from the comoving
frame; the extra −mv2/2 term is, however, problematic
to the extent that it implies that the energy in the trans-
formed frame cannot be associated with the expectation
value of the Hamiltonian operator. (Note that the parti-
cle velocity is correct, even if the transformed wavefunc-
tions appears to have the “wrong” phase at first sight.)

The fact that the curvilinear-coordinate Hamiltonian
does not reproduce the correct kinetic energy in the co-
moving frame may appear at first sight as a serious lim-
itation of the present theory. To ensure that this is not
a real issue in the context of this work, some additional
words of comments are in order. First, note that the
Galilean covariance of the Schrödinger equation is not
automatic, but requires a specific assumption about the
phase of the transformed wavefunction. We could have
certainly used such a prescription in Eq. (6), and this
would have restored the standard form of the Schrödinger
equation in the uniformly moving frame. However, this
would have been of little help in the context of more gen-
eral displacement fields (e.g. nonuniform in time and/or
space); in such cases it is not possible to reabsorb the
new gauge potentials with a phase shift. Second, solving
these issues is not essential to the scope of this work. As
we shall see shortly, we shall either be concerned with

the static energy of the system, or with the dynamical
evolution of the wavefunctions up to first order in the ve-
locity; neither of these is affected by the spurious O(v2)
term that stems from the “dynamic scalar potential” φ.
Further delving into these intriguing fundamental issues,
while desirable in a general context, would bring us far
from our present focus, and therefore we regard this as a
stimulating subject for future investigation.

2. Rotating frame

Consider now a transformation of the type

r = R(t)ξ, (16)

where R(t) is a 3× 3 matrix describing a rotation about

a given axis θ̂. We have

hαβ = Rαβ , h = 1, (17)

which implies that gij = gij = δij , and that Aj = 0. On
the other hand, we have

A = ω × ξ, (18)

where ω is the pseudovector whose direction coincides

with θ̂, and whose modulus indicates the angular ve-
locity. This can be easily seen by writing an arbitrary
rotation matrix in exponential form,

R(t) = eθ(t)L
θ̂

, Lθ̂
αβ = −εαβγ θ̂γ , (19)

and by observing that A = RT Ṙ(t) ξ. We have

ih̄
∂ψ̃

∂t
=

[
1

2m
(p̃−mω × ξ)2 + V (ξ)− 1

2
m(ω × ξ)2

]
ψ̃.

(20)
The Hamiltonian of the system in the rotating frame of
reference is, therefore, identical to that of the system at
rest except for two additional terms: a gauge field and
a quadratic potential term. The latter is unbound from
below – it diverges like −ρ2, where ρ is the distance from
the rotation axis. These two terms have direct classi-
cal interpretations as the fictitious forces (respectively,
Coriolis and centrifugal) that appear in the noninertial
rotating frame of reference. It is interesting to observe
that the Coriolis force enters the Hamiltonian in the ex-
act same way as a uniform magnetic field, with the only
difference that the former acts on the particle mass, while
the latter on its charge. A magnetic field, in particular,
can be described by a gauge field of the type

− q

2c
B× ξ.

The above derivations show that we can obtain the same
physical consequences (at first order in the perturbation
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amplitude) if, instead of applying a magnetic field, we
rotate the system with an angular velocity equal to

ω =
q

2mc
B. (21)

This is, of course, the Larmor frequency. Thus, in the
special case of a rigid rotation, our theory correctly recov-
ers Larmor’s theorem in its known quantum-mechanical
form.8

C. Current density

The above derivations provide a general picture of how
the electronic Hamiltonian is modified by an arbitrary
time-dependent deformation. Since our main motivation
stems from flexoelectricity and, more generally, from the
description of electromechanical phenomena, in this sub-
section we shall give special attention to the electronic
current density. This is necessary in order to extract use-
ful information on the electric polarization that develops
in an insulator following a mechanical deformation.

First of all, we postulate a formula for the current den-
sity that is associated with the Hamiltonian of Eq. (9),

J̃β(ξ, t) = −1

2
gβγ

(
−iψ̃∗∂γψ̃ + iψ̃∂γψ̃

∗ − 2Aγ |ψ̃|2
)
.

(22)

Note that J̃β(ξ, t) describes the current density in the
curvilinear frame; this means that the “convective” con-
tribution, due to the displacement of the coordinate
frame itself with respect to the laboratory, is not in-
cluded. For instance, in the limit of a rigid rototransla-
tion, the laboratory current J is given by J = R · J̃+vρ,
where R is a rotation matrix, v = ṙ is the velocity and
ρ the charge density.

Now, we shall proceed to demonstrate that this for-
mula is indeed correct. By “correct” we mean that the
probability current satisfies two criteria, namely (i) the
continuity equation, and (ii) the known transformation
laws of the classical four-current in the nonrelativistic
limit.

1. Continuity equation

We need to show that

∂

∂t
ρ̃
∣∣∣
ξ

= −∇ξ · J̃, (23)

where ρ̃ = −|ψ̃|2 is the electronic charge density in the
curvilinear frame. The proof proceeds along the same
lines as in the textbook case of a standard electronic
Hamiltonian in the presence of a vector potential field.
In particular, one needs first to multiply both hand sides
of Eq. (9) by ψ̃∗(ξ, t), and then focus on the real part
of the equation by summing each term with its complex
conjugate. One is left with the time derivative of ρ̃(ξ, t)

on the left-hand side; after a few manipulations, it is not
difficult to show that the right-hand side corresponds to
−∇ξ ·J̃. The only difference with respect to the textbook
derivation consists in the presence of the inverse metric
tensor, both in the kinetic energy operator of Eq. (9)
and in Eq. (22); however, this does not entail any special
complication in the algebra.

As a note of warning, one should keep in mind that
the proof of Eq. (23) is valid only under the key assump-
tion that the external potential applied to the electrons
is local. Thus, the form of the current density as written
in Eq. (22) is inadequate in cases where nonlocal pseu-
dopotentials are adopted in the calculation.2 This issue,
however, is not specific to the present theory of defor-
mations (it complicates the definition of the current den-
sity already at the level of the standard Cartesian-space
Schrödinger equation), and discussing it in detail would
lead us far from the scope of this work.

2. Transformation laws

We next check whether the definition of the current
density that we postulated in Eq. (22) is compatible
with the known Galilean transformation laws of the four-
current, which is defined as Jµ = (ρ, J1, J2, J3). In par-
ticular, Jµ transforms as a contravariant vector density,

J̄µ =
∂x̄µ

∂xν
Jν det−1

[
∂x̄ρ

∂xσ

]
, (24)

where xµ = (t, x1, x2, x3) is the coordinate four-vector
and the barred (unbarred) symbols refer to the deformed
(original) frame. In our special case of a nonrelativis-
tic mechanical deformation, we have t̄ = t, and the time
is independent of the space coordinates. By letting the
barred and unbarred space coordinates span the Carte-
sian r-space and the curvilinear ξ-space, respectively, we
obtain

ρ = h−1ρ̃, (25)

Jl = h−1
(
ρ̃
∂rl
∂t

+ hlβ J̃β

)
. (26)

The transformation law for the charge density is satisfied
by construction; we need to prove that the same is true
for the current density.

To that end, we write

J̃β = −1

2
h−1βl h

−1
γl

(
−iψ̃∗∂γψ̃ + iψ̃∂γψ̃

∗ − 2hmγ
∂rm
∂t
|ψ̃|2

)
,

(27)
where we have expanded the symbols gβγ and Bγ . By
observing that h−1γm∂γ = ∂/∂rm, this can be conveniently
rewritten as

J̃β = −1

2
h−1βl

(
−iψ̃∗ ∂ψ̃

∂rl
+ iψ̃

∂ψ̃∗

∂rl
− 2

∂rl
∂t
|ψ̃|2

)

= hh−1βl

(
Jl −

∂rl
∂t
ρ

)
, (28)
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where

Jl = −1

2

(
−iψ∗ ∂ψ

∂rl
+ iψ

∂ψ∗

∂rl

)
(29)

is the probability current in the Cartesian frame. This is
fully consistent with Eq. (26), thus completing the proof.

III. BULK ELECTROMECHANICAL
RESPONSE IN THE LINEAR REGIME

In order to make contact with the linear-response ap-
proaches used to describe phenomena such as piezoelec-
tricity and flexoelectricity, we shall consider, in the fol-
lowing, a continuous deformation that starts from the
unperturbed state at t = 0, and occurs slowly enough
that it can be considered small during a finite interval of
time following t = 0. In such a regime, we can write the
elastic deformation as

r = ξ + u(ξ, t), (30)

where both the displacement field, u, and its time deriva-
tive (velocity) are small. (This means that, in the linear
limit, all terms that are proportional to u2, uu̇, etc. can
be safely dropped.) We shall also suppose that the defor-
mation is smooth on the scale of the interatomic spacings.
This implies that only the lowest-order gradients of the
displacement field, u(ξ, t), are physically relevant. Fi-
nally, as a reminder, note that we shall only deal with
“clamped-ion” deformation fields, i.e., we suppose that
every atom in the lattice is displaced by hand accord-
ing to Eq. (1), and neglect any further relaxation of the
individual atomic sublattices. (Atomic relaxations are,
of course, of central importance for a quantitatively cor-
rect description of the electromechanical response. How-
ever, lattice-mediated effects are conceptually simpler to
understand, and have been extensively studied in ear-
lier publications. Here we shall only focus on the purely
electronic response.)

A. Reciprocal-space analysis

Without loss of generality, we can represent u(ξ, t) in
Fourier space as a superposition of monochromatic per-
turbations,

u(ξ, t) =
∑
qω

u(q, ω)eiq·ξ−iωt. (31)

In such a representation, the above conditions on adia-
baticity and smoothness can be formalized by requiring
that u(q, ω) appreciably differs from zero only for small
values of q = |q| and ω. In order to derive the elec-
tromechanical properties, we shall be concerned with the
electrical current-density as given by Eq. (22), which can
be conveniently represented in Fourier space as well,

J̃(ξ, t) =
∑
qω

J̃(q, ω)eiq·ξ−iωt. (32)

(For a monochromatic perturbation at a given q the mi-
croscopic polarization response, J(ξ, t), generally con-
tains all Fourier components of the type G + q, where G
is a vector of the reciprocal-space Bravais lattice. Here
we shall focus on macroscopic effects only, which are en-
coded in the G = 0 component.) Then one can write the
relevant coupling coefficients as the linear relationship
between u and J,

J̃(q, ω) = χ(J)(q, ω) · u(q, ω), (33)

where χ(J)(q, ω) is a 3× 3 tensor.
To see how the physical information contained in

χ(J)(q, ω) relates to the electromechanical (polarization
response to a deformation) properties of the crystal, it is
useful to recall the relationship J = −iωP, where the po-
larization P has been Fourier-transformed as in Eq. (32).
Then, one can immediately write, for the polarization
response in the curvilinear space,

P̃(q, ω) = χ(P)(q, ω) · u(q, ω), (34)

where we have introduced the electromechanical response
function

χ(P) =
i

ω
χ(J). (35)

Finally, one obtains the static clamped-ion electrome-
chanical response as the adiabatic ω → 0 limit of the
above,

χ(P)(q) = χ(P)(q, ω = 0) = i
∂χ(J)(q, ω)

∂ω

∣∣∣
ω=0

. (36)

This procedure reflects the fundamental physical nature
of the electrical polarization, which is understood as the
time integral of the transient current density that flows
through the sample in the course of an adiabatic trans-
formation of the crystal.

Note that χ(P)(q) has a direct relationship to the po-
larization response tensors that were considered in earlier
works, e.g.,

χ
(P)
αβ (q) =

∑
κ

P
q

α,κβ , (37)

where P
q

α,κβ describes the contribution of a modulated
displacement (along β) of the atomic sublattice κ to the
macroscopic polarization along α [see Eq. (13) of Ref. 9].

(The nuclear point charges are included in P
q

α,κβ , follow-

ing the original definition,5,9 while they are absent from

χ
(P)
αβ by construction – in the curvilinear space, the atoms

do not move from their original location, and hence do
not produce any current therein.)

B. Perturbation theory

To calculate χ(J) in a quantum-mechanical context,
we shall first derive (in real space) the current density
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response to a monochromatic perturbation of the type
u(r, t) = λeiq·r−iωt, and subsequently select its lowest
Fourier component, as required by the present macro-
scopic context. Even if the following derivations will be
carried out in curvilinear space, as there is no longer a
potential risk of confusion we shall indicate the real-space
coordinate as r and omit the “˜” symbol henceforth.

Consider the unperturbed single-particle density oper-
ator,

P̂(0) =
∑
n

|ψ(0)
n 〉f (0)n 〈ψ(0)

n |, (38)

where ψ
(0)
n (r) are eigenstates of the unperturbed Hamil-

tonian ,

Ĥ(0)|ψ(0)
n 〉 = ε(0)n |ψ(0)

n 〉. (39)

(f
(0)
n indicates the occupation of the state, which is either

0 or 1 for an insulating crystal in its electronic ground
state.) In presence of the perturbation, the dynamical
evolution of the density matrix is described by the single-
particle Liouville equation

ih̄
∂P̂
∂t

= [Ĥ(t), P̂], (40)

where Ĥ(t) is the curvilinear-frame Hamiltonian of
Eq. (9). (Earlier derivations of the first-order adiabatic
current based on the single-particle density matrix can
be found in Refs. 10 and 11.) Then, we can rewrite the
current density of Eq. (22) as

Jα(r, t) = gαβ Tr(ĴβP̂), (41)

where gαβ , as usual, refers to the inverse metric tensor
(implicit summation over β is assumed), the sum runs
over the valence wavefunctions, and we have introduced
the “curvilinear” current-density operator Ĵα,

Ĵβ(r, t) = − p̂β |r〉〈r|+ |r〉〈r|p̂β
2

+ |r〉Aα(r, t)〈r|. (42)

The minus sign appears, as in Eq. (22), because in our

units the charge of the electron is −1. Note that Ĵα
explicitly depends on space and time via the effective
gauge potential A(r, t) of Eq. (13). Time dependence is

also implicitly present in P̂ via Eq. (40).
In the linear regime, we can expand both operators, J

and P, in powers of the displacement amplitude, λ,

Ĵα = Ĵ (0)
α + λβĴ

(λβ)
α + · · · , (43)

P̂ = P̂(0) + λβP̂(λβ) + · · · , (44)

where the dots stand for higher-order terms that have
been dropped. By incorporating the above expansions
into Eq. (41) we readily obtain

∂Jα(r, t)

∂λβ
= Tr

(
Ĵ (λβ)
α P̂(0)

)
+ Tr

(
Ĵ (0)
α P̂(λβ)

)
. (45)

[Note that the inverse metric tensor of Eq. (41) also de-
pends on λβ , which in principle would generate an extra
term; however, one can easily see that the first-order ex-
pansion of gαβ does not contribute to the current den-
sity in a time-reversal symmetric crystal – there are no
circulating currents in the ground state. Thus, in the
present context gαβ can be safely replaced with a Kro-
necker delta.]

The expansion of the current-density operator of
Eq. (42) is relatively straightforward after observing that,
in the linear limit, Eq. (13) gives A = u̇ = −iωλeiq·r−iωt;
we obtain

Ĵ (0)
α (r) = − p̂α|r〉〈r|+ |r〉〈r|p̂α

2
, (46)

Ĵ (λβ)
α (r, t) = −iωδαβ |r〉eiq·r−iωt〈r|. (47)

At order zero, we correctly recover the standard textbook
expression for the current-density operator in a Cartesian
space, which does not depend explicitly on time, while
at first order we have a real-space projection operator
times some complex prefactors. The only remaining task
is now to derive an explicit formula for the first-order
density matrix, P̂(λβ), which we shall do in the following
paragraphs.

By linearizing the Liouville equation, Eq. (40), and by
assuming that the time dependence of the response is the
same as that of the perturbing field, we easily arrive at

〈ψm|P̂(λβ)|ψn〉 =
〈ψm|Ĥ(λβ)|ψn〉(fn − fm)

εn − εm + ω
, (48)

where we have dropped the superscript “(0)” on the
wavefunctions, eigenvalues and occupancies to simplify
the notation, and Ĥ(λβ) relates to the expansion of the
Hamiltonian operator in powers of λ,

Ĥ = Ĥ(0) + λβĤ(λβ) + · · · . (49)

(An explicit expression of Ĥ(λβ) is derived in the Ap-
pendix.) We thus arrive at a closed expression for the
current density of Eq. (45),

∂Jα(r, t)

∂λβ
= iωδαβe

iq·r−iωtρ(0)(r) + (50)

∑
mn

〈ψn|Ĵ (0)
α (r)|ψm〉〈ψm|Ĥ(λβ)|ψn〉(fn − fm)

εn − εm + ω
,

where ρ(0)(r) = −
∑
n |ψn(r)|2 is the ground-state elec-

tronic charge density.
We shall now filter out the macroscopic component

of the response at wavevector q and eliminate the triv-
ial phase factor of e−iωt. After performing both opera-
tions, we obtain the desired current-response function as
a Fourier transform

χ
(J)
αβ (q, ω) =

eiωt

Ω

∫
cell

d3re−iq·r
∂Jα(r, t)

∂λβ
. (51)
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By combining Eq. (51) with Eq. (50), we arrive at

χ
(J)
αβ (q, ω) = −iωN

Ω
δαβ + eiωt × (52)∑

mn

〈ψn|Ĵ (0)
α (q)|ψm〉〈ψm|Ĥ(λβ)|ψn〉(fn − fm)

εn − εm + ω
,

where we have introduced the reciprocal-space represen-
tation of the unperturbed current-density operator

Ĵ (0)
α (q) = − 1

Ω

∫
d3r

e−iq·rp̂α + p̂αe
−iq·r

2

= − 1

Ω

∫
d3r

(
p̂α +

qα
2

)
e−iq·r, (53)

and N is the number of valence electrons in the primitive
cell.

As a last step, it is useful to bring Eq. (52) into a
simpler form by observing that the occupation factor
(fn − fm) only selects cross-gap matrix elements. Thus,
we can introduce the first-order wavefunction response
to the perturbation at the frequency ω as a sum over
conduction states (c) only,

|ψ(λβ)
v (q, ω)〉 = eiωt

∑
c

|ψc〉
〈ψc|Ĥ(λβ)(q, ω)|ψv〉

εv − εc + ω
, (54)

where we have made the (q, ω)-dependence of the first-
order Hamiltonian explicit, and rewrite Eq. (52) as a
summation over valence states (v),

χ
(J)
αβ (q, ω) = −iωN

Ω
δαβ +∑

v

{
〈ψv|Ĵ (0)

α (q)|ψ(λβ)
v (q, ω)〉+ (55)

〈ψ(λβ)
v (−q,−ω)|

[
Ĵ (0)
α (−q)

]†
|ψv〉

}
.

To arrive from Eq. (52) to Eq. (55) we have used the
following general property of any first-order Hamiltonian
that is associated with a monochromatic perturbation,[

Ĥ(1)(q, ω)
]†

= Ĥ(1)(−q,−ω) (56)

which follows from the continued Hermiticity of Ĥ(r, t)
in the presence of the perturbation. Note that the cur-
rent operator is related to the first-order Hamiltonian in
presence of an electromagnetic vector potential field, A,

Ĵ (0)
α (q) = −

[
Ĥ(Aα)(q)

]†
. (57)

This means that Eq. (56) holds for the current operator
as well, thus completing the proof of Eq. (55).

In summary, the heavy algebra of this section has pro-
vided us with an important result for the current response

function, χ
(J)
αβ . To clarify what we have achieved so far,

it is useful to rewrite Eq. (55) as

χ
(J)
αβ (q, ω) = −iωN

Ω
δαβ+Fαβ(q, ω)+F ∗αβ(−q,−ω), (58)

where the auxiliary functions Fαβ can be expressed as
sums over occupied-state indices only,

Fαβ(q, ω) =
∑
v

〈ψv|Ĵ (0)
α (q)|ψ(λβ)

v (q, ω)〉. (59)

At first sight, our progress towards a numerically
tractable theory might appear only cosmetic, since an
infinite sum over unoccupied states is still present in the
definition of the first-order wavefunctions in Eq. (54).
This is, in principle, undesirable from the point of
view of an implementation. However, expressions like
Eq. (54) can easily be replaced, in the context of density-
functional perturbation theory, by computationally more
palatable Sternheimer equations.

C. Frequency expansion

We shall now extract the static polarization response

function, χ
(P)
αβ (q), by taking the zero-frequency limit of

the current response according to Eq. (36). Substituting
Eq. (58) and taking note of the fact that Fαβ(q, ω) =
F ∗αβ(−q,−ω), which follows from the assumption of time-
reversal symmetry, we obtain

χ
(P)
αβ (q) =

N

Ω
δαβ + 2i

∂Fαβ(q, ω)

∂ω

∣∣∣
ω=0

. (60)

Our next task, then, is to work out the frequency ex-
pansion of the auxiliary function Fαβ(q, ω), which in
turn depends on ω via the first-order wavefunctions of
Eq. (54). We shall, first of all, separate the “static”
(frequency-independent) and “dynamic” contributions to
the first-order Hamiltonian,

eiωtĤ(λβ)(q, ω) = Ĥ(λβ)(q)− iωĤ(λ̇β)(q), (61)

where we have set ω = 0 in the first term, and collected
the remainder in the second term. (Note that there are
no other terms, e.g., dependent on ω2, as we are work-
ing within the linear approximation in the displacement
field amplitude.) By combining Eq. (61) and Eq. (54) we
obtain then, for the wavefunction response,

|ψ(λβ)
v (q, ω)〉 = |ψ(λβ)

v (q, ω = 0)〉 − iω|δψ(λβ)
v (q)〉

−iω|ψ(λ̇β)
v (q)〉+ · · · , (62)

where the second and third terms originate, respectively,
from the frequency expansion of the energy denominator
in Eq. (54),

|δψ(λβ)
v (q)〉 = −i

∑
c

|ψc〉
〈ψc|Ĥ(λβ)(q)|ψv〉

(εv − εc)2
. (63)

and of the first-order Hamiltonian, Eq. (61),

|ψ(λ̇β)
v (q)〉 =

∑
c

|ψc〉
〈ψc|Ĥ(λ̇β)(q)|ψv〉

εv − εc
. (64)
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Note that Eq. (64) is very similar in form to Eq. (63),
except for the power of two in the denominator and the
factor of −i appearing in the latter. In fact, one can

show that |δψ(λβ)
v (q)〉 is directly related to the adiabatic

wavefunction response, at first order in the velocity, to
the “static” perturbation Ĥ(λβ)(q), when such a pertur-
bation is slowly switched on as a function of time. To see
this, one can go back to the Liouville equation, Eq. (40),
and perform an expansion in the velocity of the pertur-
bation, rather than its amplitude. First we write

ih̄λ̇
∂P̂(λ)

∂λ
= [Ĥ(λ), P̂(λ)], (65)

and use a trial solution of the type

P̂(λ) ' P̂(0)(λ) + λ̇P̂(1)(λ). (66)

Next, by expanding in powers of λ̇ we have, at order zero,
the usual adiabatic limit of the quantum system following
its instantaneous ground state,

[Ĥ(λ), P̂(0)(λ)] = 0. (67)

Finally, at first order in λ̇, we obtain

i∂λP̂(0)(λ) = [Ĥ(λ), P̂(1)(λ)], (68)

which after projecting over a basis of instantaneous eigen-
states of Ĥ(λ) leads to

〈ψm|P̂(1)|ψn〉 = −i 〈ψm|∂λP̂
(0)|ψn〉

εn − εm
. (69)

(We have omitted the obvious parametric dependence on
λ of all quantities in the above equation.) This result
illustrates the physical meaning of the additional energy
denominator and the factor of −i in Eq. (63).

Returning to our main argument, we are ready to carry
out the expansion of Fαβ(q, ω). Plugging Eq. (62) into
Eq. (59), we obtain

Fαβ(q, ω) = fαβ(q)−iω [ḡαβ(q) + ∆gαβ(q)]+ · · · , (70)

where the three contributions derive from the three terms
on the right-hand side of Eq. (62) respectively. That is,
fαβ(q) = Fαβ(q, 0) and

ḡαβ(q) =
∑
v

〈ψv|Ĵ (0)
α (q)|δψ(λβ)

v (q)〉, (71)

∆gαβ(q) =
∑
v

〈ψv|Ĵ (0)
α (q)|ψ(λ̇β)

v (q)〉. (72)

We shall refer to the above responses as as static and
dynamic respectively.

After plugging Eq. (70) into Eq. (60), we finally obtain
the polarization response function as

χ
(P)
αβ (q) = χ̄αβ(q) + ∆χαβ(q). (73)

Here χ̄αβ is the static part encoding the contribution of

the static first-order Hamiltonian via |δψ(uβ)
v (q)〉,

χ̄αβ(q) = 2ḡαβ(q), (74)

while the remainder in Eq. (73) is the dynamic part,

∆χαβ(q) = 2∆gαβ(q) +
N

Ω
δαβ , (75)

which arises due to the effective gauge fields that appear
in the time-dependent Schrödinger equation as a result
of the coordinate transformation.

The dynamic contribution ∆χαβ(q) is unusual in the
context of the existing literature, and deserves further
attention. The clear priority at this point is to under-
stand whether it produces any contribution to the macro-
scopic electromechanical tensors, and whether such con-
tribution can be related somehow to some well-defined
(and possibly measurable) property of the material. We
shall primarily focus on this task in the remainder of the
manuscript.

D. Long-wave expansion

After dealing with the linear expansion in the deforma-
tion amplitude and frequency (above subsections), there
is one last step that we need to take care of in order to
arrive at the macroscopic electromechanical tensors – the
long-wave expansion of χ(P)(q) in powers of the wavevec-
tor q. This readily yields the clamped-ion piezoelectric
(e) and flexoelectric (µ) tensors at first and second order
in q respectively,

χ
(P)
αβ (q) = iqγeα,βγ − qγqδµαβ,γδ + · · · . (76)

We shall separately discuss the expansion of χ̄ and ∆χ in
the following, highlighting their respective contribution
to the aforementioned tensors.

Before doing so, we need to remove the incommen-
surate phases from the operators and wavefunctions, as
they are problematic in the context of a parametric q-
expansion; the standard approach to deal with this issue
is to introduce a crystal momentum representation. For
the ground-state orbitals we have

|ψnk〉 = eik·r|φnk〉, (77)

where φnk are cell-periodic functions. Then, all the sums
over occupied states of the previous sections need to be
replaced by a sum over valence bands plus a Brillouin-
zone average, ∑

v

→
∑
n

∫
[d3k], (78)

where we have introduced the short-hand notation
[d3k] = Ω/(2π)3d3k. Note that the first-order wavefunc-
tions contain a shift in momentum space by q, which
reflects the monochromatic nature of the perturbation,

|ψ(1)
nk (q)〉 = ei(k+q)·r|φ(1)nk,q〉, (79)
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Finally, the cell-periodic operators are constructed in or-
der to conveniently reabsorb the above phase factors,

Ĥ(1)
k,q = e−i(k+q)·r Ĥ(1)(q) eik·r. (80)

Note that, consistent with Eq. (57), we shall define

Ĵ (0)
αk,q = −

(
Ĥ(Aα)

k,q

)†
= e−ik·rĴ (0)

α (q)ei(k+q)·r. (81)

Equation (56) becomes

(Ôk,q)† = Ôk+q,−q (82)

where Ô stands for either Ĵ (0)
α or a generic first-order

Hamiltonian Ĥ(1).

1. Static contribution

Regarding the static part χ̄, we defer the detailed

derivation of the operator Ĥ(λβ)
k,q to Appendix B. Here

we shall limit ourselves to using some key properties of
its small-q expansion,

Ĥ(λβ)
k,q = iqγĤ(βγ)

k − qγqδĤ(β,γδ)
k + · · · , (83)

which we summarize as follows:

• Ĥ(λβ)
k,q vanishes at q = 0. This has to do with the

fact that the q → 0 limit of a monochromatic dis-
placement wave is a rigid translation, and a rigid
translation has no effect whatsoever on the static
physical properties of the crystal.

• The first-order term Ĥ(βγ)
k is symmetric with re-

spect to βγ exchange, and corresponds to the uni-
form strain perturbation of Ref. 12.

• Both properties propagate to the first-order static
and adiabatic wavefunctions, which can be ex-
panded as

|φ(λβ)
nk (q)〉 = iqγ |φ(βγ)nk 〉+ · · · , (84)

|δφ(λβ)
nk (q)〉 = iqγ |δφ(βγ)nk 〉+ · · · . (85)

The functions |φ(βγ)nk 〉, in particular, correspond to

the strain response functions |ψ(ηβγ)
nk 〉 of Ref. 12.

The above considerations readily yield, by combining
Eqs. (71), (74), (76) and (85), an explicit formula for
the contribution of χ̄ to the piezoelectric tensor,

ēα,βγ = 2

∫
[d3k]

∑
v

〈φvk|Ĵ (0)
kα |δφ

(βγ)
vk 〉, (86)

where Ĵ (0)
kα = −∂Ĥ(0)

k /∂kα is the macroscopic current op-
erator. This is easily shown to match Eq. (16) of Ref. 12
by rearranging the energy denominators,∑

v

〈φvk|Ĵ (0)
kα |δφ

(βγ)
vk 〉

= −i
∑
vc

〈φvk|Ĵ (0)
kα |φck〉〈φck|Ĥ

(βγ)
k |φvk〉

(εvk − εck)2

= −
∑
v

〈i∂̃αφvk|φ(βγ)vk 〉, (87)

where we have introduced the standard definition of the
auxiliary “d/dk” wavefunctions,

|i∂̃αφvk〉 = i
∑
c

|φck〉
〈φck|∂Ĥ(0)

k /∂kα|φvk〉
εvk − εck

. (88)

Thus, the present theory yields the widely accepted for-
mula for the clamped-ion piezoelectric response as a long-
wave expansion of the static contribution to the elec-
tromechanical response.

By pushing the q-expansion to second order [recall
Eq. (76)], one can readily access the static13 contribu-
tion to the clamped-ion flexoelectric tensor, µ̄. While
the resulting formulas can be derived analytically, they
are significantly more complex (e.g., both the contribu-
tion of the uniform strain and strain gradient response
functions need, in principle, to be taken into account),
and their physical interpretation is not as obvious as in
the piezoelectric case. From the point of view of the
code implementation it might be convenient to calculate,
instead, the electromechanical response at finite q, and
later take the long-wave expansion of Eq. (76) numeri-
cally; we took such an approach in Ref. 2.

2. Dynamic contribution

We now elaborate on the dynamic term and derive its
contributions to the piezoelectric and flexoelectric ten-
sor. First of all, we need an explicit expression for the
operators that are implicitly involved in Eq. (75),

Ĵαk,q = Ĥ(λ̇α)
k,q = −

(
p̂kα +

qα
2

)
, (89)

Then, we can readily write a closed expression for the
intermediate function ∆gαβ(q),
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∆gαβ(q) = −
∫

[d3k]
∑
nc

〈unk| (p̂kα + qα/2) |uck+q〉〈uck+q| (p̂kβ + qβ/2) |unk〉
εck+q − εnk

, (90)

which is clearly Hermitian in the Cartesian indices. (n
and c run, as usual, over valence and conduction states,
respectively). Note that ∆χαβ(q) of Eq. (75) can then be
recognized as the usual electromagnetic response function
(J-response to a spatially modulated A-field) in the zero-
frequency limit. This is one of the central results of this
work.

Its relevance to the calculation of the macroscopic elec-
tromechanical tensors can be appreciated by looking at
the lowest terms in its small-q expansion. At zero-th or-
der in q we have

∆χαβ(q = 0) = 2∆gαβ(q = 0) +
N

Ω
δαβ , (91)

By invoking the f -sum rule, one can show that the re-
sult vanishes, consistent with expectations: As we said,
the zero-th order in q corresponds to a rigid translation,
which should not produce any macroscopic electronic cur-
rent in the reference frame that moves with the crystal.
Similarly, this can be regarded as a manifestation of the
gauge invariance of electromagnetism in the context of
macroscopic electromechanical response properties.

The first order in q also vanishes, again as a conse-
quence of gauge invariance. Physically, one can show that
the q-derivative of ∆χαβ(q) describes the J-response to
a static B-field, or equivalently the M-response (M is
the orbital magnetization) to a static A-field; both are
forbidden in insulators, and only allowed in certain cate-
gories of metals in a transport regime.14 This unambigu-
ously proves that the contribution of the gauge fields, via
the dynamical term ∆χαβ , to the macroscopic piezoelec-
tric tensor identically vanishes, and can be regarded as
providing a formal proof (a posteriori) that the metric
tensor approach of Hamann et al.12 rests on firm theo-
retical grounds.

3. Relationship to orbital magnetism

The interesting physics, in our present context, occurs
at second order in q. By using Eq. (76) and substituting
Eqs. (73) and (75), we can write the gauge-field contri-
bution to the bulk flexoelectric tensor as

∆µmn,kl = −1

2

∂2∆χmn(q)

∂qk∂ql

∣∣∣
q=0

= −∂
2∆gmn(q)

∂qk∂ql

∣∣∣
q=0

.

(92)
To see that this expansion term is directly related to
orbital magnetism (earlier derivations were reported by
Vignale (PRL 1991) and Mauri and Louie15), define the
magnetic susceptibility tensor as

Mα = χmag
αβ Bβ , (93)

(M and B are the magnetization and the magnetic field,
respectively), which for a monochromatic A-field implies
(J = −∇ ×M, and B = ∇ ×A) that the magnetically
induced current density is

Jm = εmlαqlχ
mag
αβ εβknqkAn. (94)

Now observe that, in our context, the vector potential
is the time derivative of the displacement field, and that
the polarization is the time derivative of the current. By
taking the time integral on both sides of Eq. (94), and
by recalling Eq. (34) we have, then

∆χmn(q) ∼ εmlαqlχmag
αβ εβknqk. (95)

Now, we can derive both sides twice with respect to q,
which leads to

∆µmn,kl =
1

2

∑
αβ

(εαmkεβnl + εαmlεβnk)χmag
αβ . (96)

In the special case of a solid with cubic symmetry, where
χmag
αβ = χmagδαβ , the above expression can be simplified

by using ∑
α

εαmkεαnl = δmnδkl − δmlδnk,

which leads to

∆µmn,kl =
χmag

2
(2δmnδkl − δmlδnk − δmkδnl). (97)

Thus, in a cubic solid only two independent combinations
of indices yield a nonzero value,

∆µ11,22 = χmag, ∆µ12,12 = −χ
mag

2
. (98)

The fact that the flexoelectric response involves a con-
tribution that is exactly proportional to the diamagnetic
susceptibility may appear surprising at first sight, as this
result combines two material properties that are, at first
sight, completely unrelated. Yet, by recalling the equiva-
lence between rotations and magnetism discussed in Sec-
tion II B 2, the above result, which is one of the key mes-
sages of this work, becomes reasonable: Certain compo-
nents of the strain-gradient tensor involve gradients of
the local rotation. A uniform rotation, in turn, produces
an orbital magnetization, M; then, a rotation gradient
that is applied adiabatically to the crystal produces a
macroscopic current (recall the relationship from electro-
magnetism J = −∇ ×M) that, integrated over time,
yields a macroscopic polarization.

To summarize this long Section, we have achieved a
decomposition of the electronic flexoelectric tensor into
two physically distinct terms,

µ = µ̄+ ∆µ. (99)
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At this point, we are left with the obvious questions of
whether the two contributions µ̄ and ∆µ are separately
measurable and, if yes, of how they should be treated in
the perspective of comparing the results to the experi-
ments. To provide a reliable answer, however, one needs
to account for the surface contributions along side the
bulk ones, as we know that the two form an undissocia-
ble entity in the context of the flexoelectric response. We
shall discuss this topic in the following section.

IV. MICROSCOPIC POLARIZATION
RESPONSE AND SURFACE CONTRIBUTIONS

To quantify the surface contributions to the flexoelec-
tric response of a finite object, we need to adapt the the-
ory developed in the previous Section to the calculation of
the microscopic polarization response to a deformation.
(The physical properties of the surface substantially dif-
fer from those of the bulk, thus requiring a spatially re-
solved description.) In particular, we shall be concerned
with the response functions χ̄q

αβ(G) and ∆χq
αβ(G), which

we define by generalizing their macroscopic counterparts,
Eq. (74) and Eq. (75), as follows,

χ̄q
αβ(G) = 2

∫
[d3k]

∑
v

〈φvk|Ĵαk,G+q|δφ
(λβ)
vk (q)〉,

∆χq
αβ(G) = 2

∫
[d3k]

∑
v

〈φvk|Ĵαk,G+q|φ
(λ̇β)
vk (q)〉

+δαβn
(0)
el (G). (100)

The only difference with respect to the previous formu-
las is that the polarization response is now calculated
at G + q, where G is a vector of the reciprocal-space
Bravais lattice. [Note that the average electron density,
nel(G = 0), corresponds to N/Ω, consistent with the
macroscopic formula, Eq. (75).] Of course, the above ex-
pressions include the macroscopic response defined earlier
as a special case,

χq
αβ(G = 0) = χαβ(q), (101)

where χ stands for either χ̄ or ∆χ.

A. The role of the gauge fields

To make a more direct connection with the existing
treatments of the surface problem, we shall assume a
slab geometry henceforth, with the surface normal ori-
ented along x, and periodic boundary conditions in the
yz plane. As in earlier works, we shall adopt open-circuit
electrical boundary conditions along x, as appropriate for
a slab with free surfaces, and focus our attention on the
total open-circuit voltage that is linearly induced by a
strain-gradient deformation. To determine such “flex-
ovoltage”6 response we need the induced electrostatic
potential and this, in turn, is uniquely given (modulo

an irrelevant global constant) by the charge-density re-
sponse of the system to the perturbation. This obser-
vation makes the analysis of a finite object conceptually
simpler than that of a bulk crystal – the explicit inclusion
of the boundaries allows us to study the charge rather
than the polarization, which is much easier to define and
calculate.

The charge response functions that are associated with
the static and dynamic terms can be written as minus the
divergence of the polarization response, which in recip-
rocal space can be written as (ρ stands for ρ̄ or ∆ρ, and
χ for either χ̄ or ∆χ)

ρqβ(G) = −i
∑
α

(Gα + qα)χq
αβ(G), (102)

Crucially, the dynamic gauge-field contribution to the
charge-density response vanishes identically,

∆ρqβ(G) = 0. (103)

This result may appear surprising at first sight, but it is
really a simple consequence of time-reversal symmetry:
In absence of spin-orbit coupling, a vector potential field
applied to the orbital degrees of freedom produces, in the
linear regime, a divergenceless circulating current, which
does not alter the ground-state electron density. Still,
the situation is paradoxical in light of the results of the
previous Section: How can we reconcile the irrelevance of
the gauge fields for the electromechanical response of a
slab, clearly stated by Eq. (103), with their nonvanishing
contribution to the bulk flexoelectric tensor, as expressed
by Eq. (96)? The answer, as we anticipated at the end
of the previous Section, resides in the presence of sur-
face contributions to the overall flexo-response of a slab
that are equal in magnitude and opposite in sign to ∆µ,
leading to an exact cancellation of their combined effect.

To prove that such a cancellation indeed occurs, it suf-
fices to review Section II B 2, where the equivalence be-
tween a uniform rotation of the sample and an effective
orbital magnetic field is established; we shall see that this
result can quantitatively explain both the bulk and sur-
face contributions of the gauge fields to the flexoelectric
response. It is convenient, to that end, to introduce a
quantity T(r) corresponding to the time integral of the
orbital magnetization,

T(r) =

∫ t

0

M(r, t)dt, (104)

and since J = ∇×M = dP/dt, it follows that

P(r) = −∇×T(r). (105)

Loosely speaking, T can be thought of as a kind of elec-
tric toroidization. In the linear-response regime, the dy-
namic gauge-field term in the Hamiltonian produces a
T-field whose amplitude is proportional to the local ro-
tation of the sample (we neglect the spatial dispersion of
the orbital diamagnetic response, which is irrelevant in
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FIG. 1. Gauge-field contributions to the polarization of a
slab subjected to a shear strain gradient. (a) Decomposition
into circulating currents withing segments; (b) Decomposition
between bulk and surface contributions.

the context of the present discussion) with respect to the
unperturbed configuration [recall Eq. (21)],

T(r) = −2χmagθ(r). (106)

Now consider a displacement field of the type

uy(r) =
η

2
x2, (107)

corresponding to a uniform shear strain gradient applied
to the slab, as illustrated in Fig. 1. The rotation angle
is given by θz = ηx/2, and its curl is readily given by
∇× θ = −ŷ/2; Eqs. (104-105) then yield a contribution
to the bulk flexoelectric response equal to ∆Py = ηχmag,
consistent with Eq. (98).

To gain a more intuitive insight into this result, one
can regard the strain-gradient deformation of the slab
as a piecewise shear [Fig. 1(a)], which we suppose to be
uniform within individual segments. (The realistic phys-
ical picture is then recovered upon reducing the segment
length to zero.) The rotation of each segment is asso-
ciated with a circulating surface polarization (black ar-
rows), and as the rotation amplitude linearly increases
along x, the contribution of the facets that lie next to
each other (i.e. within the interior of the slab) does not
cancel out; on the contrary, they result in a uniform P
[red arrows in Fig. 1(b)]. In principle, a bulk polarization
would result in a net surface charge; however, the cartoon
of Fig. 1(a) clearly illustrates why here this is not the

case. Indeed, in addition to the aforementioned bulk ef-
fect, there is also a polarization that develops at the outer
surfaces of the segments [green arrows in Fig. 1(b)]. Such
a surface polarization is oriented in-plane, and linearly
increases along the same direction x. This polarization
field yields (recall ρ = −∇ · P) a uniform, net surface
charge that exactly cancels the contribution of the bulk,
thereby settling the paradox that we described at the
beginning of this Section.

Summarizing the above, there are two equally valid
ways to understand the gauge-field contribution to the
polarization field induced by a deformation, which are
illustrated by the two panels in Fig. 1. We can think
of it either [panel (a)] as the sum of local circulating
currents that arise because individual segments of the
slab undergo a local rotation with respect to the original
configuration; or [panel (b)], as in earlier treatments of
the flexoelectric problem, as a sum of bulk and surface
contributions. In either case, the overall sum yields a
vanishing charge density, and is therefore irrelevant in
the context of an electrical measurement. The conclusion
is that we can discard the “dynamical” contributions to
the flexoelectric effect altogether, and build a predictive
theory of the electromechanical response based on the
static contribution only.

B. Connection to the existing theory of
flexoelectricity

Our next task is to clarify how all of the above relates
to the calculations of flexoelectricity that have recently
been reported.6,16,17 These previous works based their
analysis on the microscopic response functions Pq

α,κβ(r),
which are defined as the α component of the polariza-
tion response, calculated in the laboratory frame, to a
monochromatic displacement of the sublattice κ along
the Cartesian direction β. To summarize this approach,
it is useful to begin by considering the sum of the above
sublattice displacements, which corresponds to the polar-
ization response to an acoustic phonon in the laboratory
frame. Following Ref. 3 we shall define

Pq
αβ(r) =

∑
κ

Pq
α,κβ(r). (108)

By taking into account the transformation properties of
the current density between the laboratory and the curvi-
linear frame in the linear regime of small deformations,
one can then write the following relationship,

Pq
αβ(r) = δαβρ

(0)(r) + χq
αβ(r), (109)

where the last term on the rhs is defined as the Fourier
transform of the microscopic response function χq

αβ =

χ̄q
αβ + ∆χq

αβ ,

χq
αβ(r) =

∑
G

χq
αβ(G)eiG·r, (110)
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and ρ(0)(r) is the ground-state charge density, inclusive
of the nuclear point charges.

To access the macroscopic electromechanical proper-
ties of the system, a long-wave decomposition is per-
formed,3

Pq
αβ(r) = P

(0)
αβ (r)− iqγP (1,γ)

αβ (r)− qγqδ
2
P

(2,γδ)
αβ (r) + · · · ,

(111)
where the cell averages of the expansion terms yield the
electronic parts of the macroscopic piezoelectric and flex-
oelectric tensors,

− 1

Ω

∫
cell

d3rP
(1,γ)
αβ (r) = eα,βγ , (112)

1

2Ω

∫
cell

d3rP
(2,γδ)
αβ (r) = µαβ,γδ, (113)

consistent with the q-expansion of the macroscopic
χαβ(q) tensors defined in the previous Sections. In fact,
after observing that at q = 0 the microscopic polariza-
tion response function χq

αβ(r) vanishes identically, one

can use Eq. (109) to directly relate the q-expansion of
the laboratory P-response to that of the curvilinear P-
response even at the microscopic level , e.g. by writing

χq
αβ(r) = iqγχ

(1,γ)
αβ (r)− qγqδχ(2,γδ)

αβ (r) + · · · , (114)

and equating terms at each order in q.
At this point, one would be tempted to proceed as in

Ref. 3, and identify the first- and second-order expan-
sion terms as the microscopic polarization response to
a uniform strain and to a strain gradient, respectively.
(This step was a crucial prerequisite to the calculation of
the transverse components of the bulk flexoelectric tensor
that was performed in Ref. 3.) This implies tentatively
writing the induced polarization as

P(r) = εβγ(r)PU
βγ(r) +

∂εβγ(r)

∂rδ
PG
βγ,δ(r) + · · · , (115)

where εβγ(r) is a spatially nonuniform symmetric strain
field, and PU and PG describe the linear polarization re-
sponse to a uniform (U) strain and to its gradient (G),
respectively. In Refs. 3 and 6 it was assumed that such
response functions simply correspond to the q-expansion
terms of Pq

αβ(r). In light of the results of this work,

however, an expression such as Eq. (115) is physically
problematic, as it implicitly assumes that the polariza-
tion response to a rigid translation or a rotation of the
crystal vanishes. While we know this to be true for trans-
lations, rigid rotations do contribute to P(r) via the dy-
namic gauge-field terms discussed in the previous section.
As a consequence, we cannot identify PU

α,βγ(r) with ei-

ther χ
(1,γ)
αβ (r) or, equivalently, with −P (1,γ)

αβ (r): PU
α,βγ is

symmetric with respect to βγ by construction, while the
other two functions implicitly contain an antisymmetric
contribution that is mediated by the gauge-field rotation
response.

y

x

FIG. 2. Schematic illustration of the flexural deformation of
a slab. Thick arrows indicate the Cartesian axes, thick gray
curves indicate the slab surfaces.

As we anticipated in the previous Section, an elegant
solution to this problem consists in dropping the dynamic
gauge-field response altogether, and writing the theory in
terms of the static response function χ̄ only. The latter
enjoys a q-expansion analogous to that of the total χ,

χ̄q
αβ(r) = iqγχ̄

(1,γ)
αβ (r)− qγqδχ̄(2,γδ)

αβ (r) + · · · , (116)

with the key advantage that the first-order term is now
symmetric under βγ exchange. This formally justifies the
use of Eq. (115), together with the definitions

PU
α,βγ(r) = χ̄

(1,γ)
αβ (r), (117)

PG
αδ,βγ(r) = χ̄

(2,γδ)
αβ (r) + χ̄(2,βδ)

αγ (r)− χ̄(2,βγ)
αδ (r),(118)

where we have operated the standard permutation of in-
dices on the rhs of Eq. (118) in order to move from a
“type-I” (second gradient of the displacement field) to a
“type-II” (first gradient of the symmetrized strain ten-
sor) representation of the strain-gradient tensor.5,9 This
way, we can connect the present analytical results with
the existing theory of the flexoelectric response. Most im-
portantly, this allows us to formally reconcile the existing
calculations of the bulk flexoelectric tensor, which were
based on an analysis of the charge-density response in a
supercell geometry,6 with the more fundamental current-
response theory that we have developed in this work.

C. Calculation of the transverse components

To illustrate the above arguments, it is useful to explic-
itly work out the example of a symmetric slab, finite in
the y direction, subjected to a transverse (i.e., flexural)
strain gradient deformation via the displacement field

ux = ηxy, (119)

uy = −η
2
x2 (120)
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(see Fig. 2). The symmetric strain tensor has only one
non-zero entry,

εxx =
∂ux
∂x

= ηy, (121)

indicating a linear increase of the transverse component
along the normal to the slab surface, i.e., a constant
strain-gradient field of the type

εxx,y =
∂εxx
∂y

= η. (122)

By using Eq. (115), we can readily write the resulting
polarization field (within the linear approximation and
discarding higher-order gradient effects) as

∂P(r)

∂η
= yPU

xx(r) + PG
xx,y(r). (123)

To move further it is convenient to operate, as custom-
ary, a macroscopic averaging procedure on the PU and
PG functions in order to filter out the irrelevant oscilla-
tions on the scale of the interatomic spacings. This way,
the in-plane spatial resolution is completely suppressed,
leaving response functions that depend on y only. Note
that, by symmetry, the induced polarization can only
have nonzero y components,

∂Py(y)

∂η
= yPU

y,xx(y) + PG
yy,xx(y), (124)

and that since the bulk is nonpiezoelectric the first func-
tion on the rhs, PU

y,xx(y), can only be nonzero near the
surface. These observations allow one to conclude that
the induced surface charge, σ is uniquely determined by
the second term on the rhs of Eq. (124); in the limit of a
thick slab, we can then write

∂σ

∂η
=
µ̄T

ε∞
, (125)

where

µ̄T = 2µ̄12,12 − µ̄11,22 (126)

is the transverse component of the “barred” (no gauge
fields) bulk flexoelectric tensor in type-II form, and ε∞ is
the bulk relative permittivity at the clamped-ion level.

We stress that the above arguments, linking µ̄T to the
surface charge σ, and hence to the macroscopic electric
field that develops in the interior of the slab upon bend-
ing, Ey = −σ/ε0 (ε0 is the vacuum permittivity), hold
under the hypothesis that the effect of rotations is ex-
cluded from Eq. (115), which can only be justified if the
gauge-field contribution is excluded from both bulk and
surface contributions to the overall flexoelectric response.
This means that the explicit calculation of the bulk flexo-
electric tensor of SrTiO3 that was carried out in in Ref. 6
really concerned µ̄, and not the total tensor µ = µ̄+∆µ.
We believe that the former quantity, µ̄, given its more
direct relationship to the charge-density response of the
system, is physically more meaningful than µ, and should
be preferred to the latter when reporting the results of
first-principles calculations.

D. A simple example

Consider a simple cubic lattice made of spherical,
closed-shell atoms, with a cell parameter that is suffi-
cienty large as to avoid any direct interaction between
neighboring sites. Such a crystal is, of course, unrealis-
tic as there is no force whatsoever keeping the atoms in
place. Nevertheless, it is a useful toy model to discuss
some fundamental aspects of the flexoelectric response,
without the complications that characterize a real mate-
rial. This model was introduced in Ref. 3 to illustrate
some subtleties related to surface contributions; here we
shall use it to illustrate the two alternative definitions
of the bulk flexoelectric tensor, either excluding (µ̄) or
including (µ) the dynamic gauge-field response.

The basic quantities that define the model are: (i) the
spherical charge distribution ρat(r) of each isolated atom,
and (ii) the lattice parameter a0. Then the charge density
can be readily written as

ρ(r) =
∑
R

ρat(|r−R|), (127)

where the sum runs over the Bravais lattice defined by
a0. To calculate the flexoelectric tensor via the current-
density response we need the microscopic polarization
field that is induced by the displacement of an isolated
atom. As the atoms are spherical, there are no long-range
electrostatic forces involved, and since they are noninter-
acting, one can readily use the transformation laws of the
probability current to write

Pα,β(r) = ρat(r)δαβ (128)

where we have dropped the sublattice index κ since we
are dealing with a single atom per unit cell. This equation
reflects the fact that the probability current associated
with an isolated spherical atom located at the origin and
moving with uniform velocity v is simply given by v times
the atomic charge density,

J(r) = vρat(r). (129)

Now, recall the definition of the flexoelectric tensor given
by Eq. (113). We have, for the three independent com-
ponents,

µL = µS =
Q

2Ω
, µT = − Q

2Ω
, (130)

where Q is the quadrupolar moment of the static atomic
charge,

Q =

∫
d3rρat(r)x

2, (131)

and the longitudinal (L), transverse (T) and shear (S)
components are given by

µL = µ11,11, µS = µ11,22,
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µT = 2µ12,12 − µ11,22. (132)

To calculate the “revised” version of the flexoelectric
tensor we need to calculate the gauge-field contribution,
which is in turn given by the macroscopic diamagnetic
susceptibility via Eq. (98),

∆µL = 0, ∆µS = χmag,

∆µT = −2χmag. (133)

Given the noninteracting nature of the spherical atoms,
we can apply Langevin theory to calculate χmag,

χmag =
Q

2Ω
, (134)

which immediately yields

µ′L = µ′T =
Q

2Ω
, µ′S = 0. (135)

Eq. (135) matches the conclusions of earlier works, where
the flexoelectric tensor components were inferred from
the behavior of the macroscopic electrostatic potential
under a deformation. (The interested reader can find a
detailed derivation in the Supplementary Note 1 of Ref. 3,
or in Ref. 9.)

By comparing the two “versions” of the flexoelectric
tensor, it is clear that the quantitative differences can be
substantial, even in the trivially simple case of the toy
model described in this section. Further work is needed
to assess the impact of these effects on the calculation of
flexoelectricity in realistic materials. In any case, the dis-
cussion presented should serve as a warning against po-
tential misunderstandings when interpreting the results
of calculations of flexoelectric responses.

V. DISCUSSION

It is important to stress that Eq. (115), together with
the definitions of Eqs. (117) and (118), does not describe
the total polarization response, but only a part of it. This
part is enough for an exact description of electromechan-
ical effects, as we have seen in the case of flexoelectricity.
One can wonder, however, whether there is any physi-
cal significance that can be associated with the part that
we have discarded from our analysis, i.e., the gauge-field
contribution. In this Section we shall briefly discuss this
topic.

The connection of rotations and orbital magnetiza-
tion has been noted earlier in other contexts; for exam-
ple, it plays an important role in the theory of molec-
ular g-factors. Ceresoli and Tosatti18 (CT) have shown
how such quantities can be understood (and calculated
from first principles) as the Berry phases that the wave-
functions accumulate in the course of a rotation of the
molecule around its center of mass. It is interesting to

analyse their approach in some detail, in order to show
its strong relationship to the topics of the present work.

CT base their formalism on the electronic ground state
of an isolated molecule, whose rotation state about the
z axis is measured by an angle, θ. The instantaneous
ground state of the molecule is defined by the lowest N
eigenstates of the Hamiltonian, which depend paramet-
rically on θ,

Ĥ(θ)|ψn(θ)〉 = εn|ψn(θ)〉. (136)

(εn does not depend on θ, as the energy of the system
is invariant upon rotations.) Then, by discretizing the
[0, 2π] interval into M equally spaced points θi, one can
write the Berry phase corresponding to a complete cycle
as

γ ' −Im log
∏

i=1,M

det S(θi, θi+1), (137)

where S are N ×N matrices,

Smn(θi, θj) = 〈ψm(θi)|ψn(θj)〉, (138)

and we have enforced periodic boundary conditions on
the wavefunction gauge,

|ψn(θM+1)〉 = |ψn(θ1)〉. (139)

Note that γ is a well-defined physical observable in
spite of the arbitrariness of the wavefunction phases,19

and vanishes identically in the absence of an applied mag-
netic field. The strategy taken by CT was to assume
that a small uniform B-field, oriented along the rotation
axis, was applied in the calculation of the instantaneous
ground states that define γ. In particular, one can in-
troduce the Berry curvature that is associated with the
two-dimensional parameter space (B, θ),

ΩBθ = −2 Im
∑
n

〈ψ(B)
n |ψ(θ)

n 〉, (140)

where the superscripts indicate the first-order wavefunc-
tions with respect to either B or θ. These, in turn, can
be written as sums over conduction states,

|ψ(λ)
n 〉 =

∑
c

|ψc〉
〈ψc|∂Ĥ/∂λ|ψn〉

εn − εc
, (141)

where ∂Ĥ/∂λ is, as usual, the variation of the Hamilto-
nian at linear order in the perturbation parameter. It is
easy then to show19 that, at linear order in B, γ is the
flux of ΩBθ through the rectangle spanned by B and 2π,

γ = 2πBΩBθ. (142)

In order to recast the above result into the formalism
developed in this work, we shall choose an electromag-
netic gauge for the vector potential such that

A =
1

2
B× r, (143)
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where B = (0, 0, B) and the coordinate origin coincides
with the rotation axis of the molecule. (γ, of course,
does not depend on the electromagnetic gauge; the above
choice has been made in order to facilitate the analytic
derivations that follow.) Then, the first-order Hamilto-
nian with respect to the external B is

Ĥ(B) =
1

2
ẑ ·
∫

r× Ĵ (r)d3r, (144)

where J (r) is the current-density operator in the Carte-
sian frame, and ẑ is a unit vector oriented along z.

One can then write

〈ψ(B)
n |ψ(θ)

n 〉 = − i
2
ẑ ·
∫
d3r r× 〈ψn|Ĵ (r)|δψ(θ)

n 〉, (145)

where |δψ(θ)
n 〉 is the adiabatic counterpart of the first-

order wavefunction |ψ(θ)
n 〉. We can recognize, in the inte-

gral, the microscopic current-density field that is induced
by a uniform rotation of the molecule,

∂J(r)

∂θ̇
= 2 Re

∑
n

〈ψn|Ĵ (r)|δψ(θ)
n 〉. (146)

Then γ can be readily rewritten, in the linear regime, as

γ = πBẑ ·
∫

r× ∂J(r)

∂θ̇
d3r, (147)

i.e. it is proportional to the z-component of the elec-
tronic magnetic moment, m, that is associated with the
rotation,

γ = πB
∂mz

∂θ̇
. (148)

This also implies that

ΩBθ =
1

2

∂mz

∂θ̇
. (149)

To summarize, γ tells us the electronic contribution
to the magnetic moment associated with the rotation of
the molecule, which could be combined with the trivial
contribution from the nuclear motion to compute the g-
factor of the molecule as a whole. Interestingly, though,
the same γ is also closely related the the magnetic sus-
ceptibilty of the static molecule. In particular, an earlier
work20 demonstrated that the quantity we call γ corre-
sponds to the paramagnetic part of the susceptibility of
the molecule. The theory developed here nicely fits with
this result.

To see this, note that in the theory of molecular mag-
netic susceptibility, the “diamagnetic” contribution is de-
fined such that it is given by the second moment of the
ground-state electronic density, and the “paramagnetic
part” is defined as the remainder. As we have discussed in
Sec. II B 2, a uniform rotation at a frequency ω produces,
in the rotating frame that is rigid with the molecule, the

same effects (at linear order) as a uniform B-field, i.e.,
the sum of the diamagnetic and paramagnetic pieces just
discussed. To get the total moment in the laboratory
frame, as reflected in γ, we have to add to this a triv-
ial piece coming from the rigid rotation of the ground-
state electronic cloud, which is just minus the diamag-
netic contribution to the susceptibility. Thus, it follows
that γ corresponds precisely to the paramagnetic part of
the magnetic susceptibility of the molecule.

Of course, the case of a molecule is relatively simple to
deal with. Being an isolated object, it does not present
serious technical issues no matter how the calculation is
carried out (either by using the Ceresoli and Tosatti ap-
proach, or the linear response to B as discussed in the
above paragraphs). It would be interesting, however, to
explore these ideas in the case of extended solids, where
orbital magnetic effects associated with zone-center op-
tical phonons have received some attention in the past.
In an infinite crystal, a finite magnetic field (which CT
used for calculating γ via the Berry phase approach) is
far less obvious to apply, and our linear-response strategy
may prove handy. We shall leave this interesting topic
for future investigations.

VI. CONCLUSIONS AND OUTLOOK

In summary, we have established a full-fledged quan-
tum theory of inhomogeneous mechanical deformations,
by working within a linear-response density-functional
framework. An intimate and unsuspected connection to
orbital magnetism has emerged, where the latter natu-
rally enters as a consequence of a dynamically applied
deformation of the crystal. This effect produces a con-
tribution to the bulk flexoelectric coefficient that corre-
sponds to the orbital magnetic susceptibility of the ma-
terial.

An obvious question that may be asked is whether this
unusual interplay of elasticity and magnetism can lead to
interesting new physics, beyond the topics that we dis-
cussed in this work, in terms of experimentally measur-
able effects. We believe that the best candidates may be
magnetic materials in a proximity of a phase transition
to a ferromagnetic state, where the susceptibility peaks
to huge values. However, ferromagnetism only occurs
in presence of spins, and whether deformations affect the
spin degree of freedom in the same way we have shown for
the orbital ones, still remains to be seen. Interest in this
mechanism has been growing in the past few years, with
the proposal that surface acoustic waves may be used to
manipulate the magnetic state of nanoparticles.21 Thus,
we regard this as a stimulating avenue for future research.
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Appendix A: Derivation of the curvilinear-frame
Schrödinger equation

In this Appendix we shall back up the results of
Sec. II A with a more detailed derivation.

1. Potential term

The potential V (r, t) generally contains contributions
from the external potential of the nuclei, plus self-
consistent Hartree and exchange and correlation terms.
As in this manuscript we have assumed an all-electron
framework, the external potential is that of the nuclear
point charges. Thus, V (r, t) reduces to an electrostatic
(Hartree) term plus the exchange and correlation poten-
tial,

V (r, t) = VH(r, t) + VXC(r, t), (A1)

where VH is the solution of the following Poisson’s equa-
tion,

∇2VH(r) = −4π[nel(r)− ρion(r)]. (A2)

Here ρion is a sum of delta functions representing the
nuclei, nel(r) = |ψ(r)|2 the electronic particle density,
and VXC is the functional derivative of the exchange and
correlation energy with respect to the electron density,

VXC(r) =
δEXC

δnel(r)
. (A3)

The transformation to a curvilinear coordinate system
is relatively easy for both the electrostatic and exchange
and correlation terms. First, we introduce the electron
density in the curvilinear frame,

ñel(ξ, t) = |ψ̃(ξ, t)|2 = h−1(ξ, t)nel(r(ξ, t), t), (A4)

where we have used the shortcut h = det(h). Then, the
Poisson’s equation in the curvilinear frame becomes

∂α(hgαβ∂βVH) = −4π(ñel − ρ̃ion), (A5)

where ∂α = ∂/∂ξα is the gradient operator in ξ-space,
ρ̃ion = h−1ρion, and

gαβ = (g−1)αβ (A6)

is the inverse of the metric tensor. This means that,
from the point of view of the electrostatics, the curvilin-
ear frame is essentially equivalent to a Cartesian frame,

with one exception: the vacuum permittivity, ε0, must be
replaced with a (generally anisotropic) dielectric tensor,
ε, that in turn depends on the metric of the deformation
as ε = ε0

√
g g−1 where g = detg = h2. The exchange

and correlation energy, at the level of the local density
approximation, can be written as

EXC =

∫
d3r nel(r)εXC(nel(r))

=

∫
d3ξ ñel(ξ)εXC(h−1(ξ) ñel(ξ)), (A7)

which leads to a straightforward expression for the po-
tential.

2. Kinetic term

To derive the kinetic contribution to ˆ̃H, one can start
from the Laplace-Beltrami operator and apply it to the
curvilinear representation of the wavefunction,

∇2ψ(r, t) =
1

h
∂α

[
hgαβ∂β

(
1√
h
ψ̃(ξ, t)

)]
. (A8)

After some tedious (but otherwise straightforward) alge-
bra, one obtains

− 1

2
∇2ψ(r, t) =

1

2
√
h

(ˆ̃pβ − iAβ)gβγ(ˆ̃pγ + iAγ)ψ̃(ξ, t),

(A9)

where ˆ̃pα = −i∂α is the canonical momentum operator
in ξ-space, and Aα is the auxiliary vector field defined in
Eq. (11). This result almost exactly matches the expres-
sion derived by Gygi22, except for a sign discrepancy in
the contribution of the “vector potential” Aβ [see Eq. (7)
therein]. One can then rewrite the kinetic contribution

to ˆ̃H as

1

2
(ˆ̃pβ − iAβ)gβγ(ˆ̃pγ + iAγ) =

1

2
ˆ̃pβg

βγ ˆ̃pγ + Vgeom(ξ),

where Vgeom(ξ) corresponds to Eq. (10). Thus, the auxil-
iary field A does not really act as a vector, but rather as
a scalar potential. Note that the A-field essentially co-
incides (apart from a factor of 1/2) with the contracted
Christoffel symbol Γµµν ; thus, the operator p̂γ + iAγ can

be thought as a sort of covariant derivative22 acting on
the electronic wavefunctions.

3. Time derivative

Our starting point is

i
∂

∂t
ψ(r, t) = i

∂

∂t

[√
|h−1(r, t)|ψ̃ (ξ(r, t), t)

]
, (A10)

where ξ(r, t) is the inverse coordinate transformation
from r-space to ξ-space, and

h−1βγ =
∂ξβ(r, t)

∂rγ
. (A11)
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Now observe that

ξ(r(ξ, t), t) = ξ, (A12)

which implies that

∂ξβ
∂t

∣∣∣
r

= −∂ξβ
∂rγ

∂rγ
∂t

∣∣∣
ξ
. (A13)

(Note that the time derivative on the left-hand side has to
be taken at fixed r, while the time derivative on the right-
hand side is at fixed ξ – this is usually obvious, we made
it explicit here to avoid possible sources of confusion.)

We shall derive things piece by piece. First, the deriva-
tive of the wavefunction,

∂ψ̃

∂t

∣∣∣
r

=
∂ψ̃

∂t

∣∣∣
ξ

+
∂ψ̃

∂ξβ

∂ξβ
∂t

∣∣∣
r
, (A14)

by using Eq. (A13) becomes

∂ψ̃

∂t

∣∣∣
r

=
∂ψ̃

∂t

∣∣∣
ξ
− ∂ψ̃

∂ξβ

∂ξβ
∂rγ

∂rγ
∂t

∣∣∣
ξ
. (A15)

We can now insert an identity operator,

∂ψ̃

∂t

∣∣∣
r

=
∂ψ̃

∂t

∣∣∣
ξ
− ∂ψ̃

∂ξβ

∂ξβ
∂rγ

∂ξδ
∂rγ

∂rλ
∂ξδ

∂rλ
∂t

∣∣∣
ξ
, (A16)

and finally rewrite the above as

∂ψ̃

∂t

∣∣∣
r

=
∂ψ̃

∂t

∣∣∣
ξ
−Aβg−1βγ

∂ψ̃

∂ξγ
. (A17)

where Aβ is the effective vector potential of Eq. (13).
Second, the time derivative of the volume prefactor reads
as

∂

∂t

1√
h

∣∣∣
r

= − 1

2h
√
h

∂h

∂t

∣∣∣
r

= − 1

2h
√
h

(
∂h

∂t

∣∣∣
ξ

+
∂h

∂ξβ

∂ξβ
∂t

∣∣∣
r

)
.

(A18)
By using again Eq. (A13), this leads to

∂

∂t

1√
h

∣∣∣
r

= − 1

2h
√
h

(
∂h

∂t

∣∣∣
ξ
− ∂h

∂ξβ

∂ξβ
∂rλ

∂rλ
∂t

)
. (A19)

Now, recall Jacobi’s rule for the derivative of a determi-
nant,

∂h(λ)

∂λ
= hh−1ij

∂hji
∂λ

, (A20)

where λ is an arbitrary parameter on which the elements
of h depend. This allows us to write

∂

∂t

1√
h

∣∣∣
r

= − 1

2
√
h

(
∂ξi
∂rλ

∂2rλ
∂ξi∂t

− ∂ξi
∂rj

∂2rj
∂ξi∂ξβ

∂ξβ
∂rλ

∂rλ
∂t

)
.

(A21)
At this point, observe that for a matrix A that depends
parametrically on λ, we have

∂A−1(λ)

∂λ
= −A−1 ∂A(λ)

∂λ
A−1 (A22)

We use this relationship to observe that

− ∂ξi
∂rj

∂2rj
∂ξi∂ξβ

∂ξβ
∂rλ

=
∂

∂ξi

(
∂ξi
∂rλ

)
. (A23)

This allows us to write the derivative of the volume factor
in a compact form,

∂

∂t

1√
h

∣∣∣
r

= − 1

2
√
h

∂

∂ξi

(
∂ξi
∂rλ

∂rλ
∂t

)
. (A24)

By using the quantities that we introduced earlier, we
can equivalently write

∂

∂t

1√
h

∣∣∣
r

= − 1

2
√
h

∂

∂ξβ

(
g−1βγAγ

)
. (A25)

After few straightforward steps of algebra, one finally
arrives at

i
∂ψ

∂t

∣∣∣
r

=
i√
h

∂ψ̃

∂t

∣∣∣
ξ

+
1

2
√
h

(
Aβg

−1
βγ

ˆ̃pγ + ˆ̃pβg
−1
βγAγ

)
ψ̃.

(A26)
Then, by observing that the effective scalar potential of
Eq. (12) can also be written as

φ = Aβg
−1
βγAγ , (A27)

one can combine Eq. (A26) with the kinetic terms that
we have derived in the previous subsection, leading to
Eq. (9).

Appendix B: Static perturbation in the linear regime

In this Appendix we shall provide an explicit expres-
sion for the “static” perturbation of Sec. III D 1, in
the specific case of a monochromatic perturbation at
wavevector q. We shall also show that it reduces to
Hamann’s metric perturbation at first order in q.

The first-order Hamiltonian can be decomposed as fol-
lows,

Ĥ(λβ)
k,q = T̂ (λβ)

k,q + V̂
(λβ)
geom,q + V̂

(λβ)
H,q + V̂

(λβ)
XC,q, (B1)

where the four terms on the rhs are related, respectively,
to the kinetic (T̂ ) operator, and the geometric, Hartree
and exchange-correlation potentials. In the following,
we shall discard all the dynamical terms that emerge
from the time derivative. Note that all the operators
in Eq. (B1) are cell-periodic, i.e., the static curvilinear-
space Hamiltonian can be written, in the linear regime,
as

ˆ̃H(λ) = Ĥ(0) + λβe
iq·rĤ(λβ)

k,q + · · · . (B2)

Note the use of r instead of ξ to indicate the coordi-
nates in curvilinear space; we shall follow this convention
henceforth (and omit the tilde on the curvilinear opera-
tors). For a generic perturbation O, we shall also use
the following notation convention to distinguish the full
operator from its cell-periodic part,

Ô(λβ)
k (q) = eiq·rÔ(λβ)

k,q . (B3)
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1. Kinetic term

The curvilinear kinetic operator can be expanded, in
powers of the deformation amplitude, as

T̂k =
p̂2k
2
− p̂kβ εβγ(r) p̂kγ + · · · , (B4)

where εβγ(r) is the symmetric strain tensor associated
with a generic inhomogeneous deformation. In the spe-
cific case of a monochromatic displacement wave, the
strain reads as

εβγ(r) =
i

2
(λβqγ + λγqβ) eiq·r. (B5)

This immediately leads to

T̂ (λβ)
k,q = − i

2
[(p̂kβ + qβ)q · p̂k + (p̂k + q) · q p̂kβ ] .

(B6)
At first order in q, we have

∂T̂ (λβ)
k,q

∂qγ

∣∣∣
q=0

= −i p̂kβ p̂kγ = iT̂ (βγ)
k , (B7)

where we have indicated with a superscript (βγ) the re-
sponse to a uniform strain, εβγ , within Hamann’s formal-
ism.

2. Geometric potential

By retaining only terms that are linear in the defor-
mation amplitude, we have

Vgeom =
1

2
∂αAα, Aα = −1

2
λ · q qαeiξ·q. (B8)

Then, one immediately obtains

V (β,q)
geom = − i

4
qβ q

2. (B9)

This structureless potential is irrelevant for either the
uniform strain or the strain-gradient response, as it is of
third order in q.

3. Electrostatic potential

Recall Poisson’s equation in curvilinear space,

∂α(hgαγ∂γVH) = −4π(nel − ρion). (B10)

In the linear limit one has

hg−1αγ = δαγ + i(λ · qδαγ − λαqγ − λγqα)eir·q,(B11)

VH = V
(0)
H + λβe

iq·rV
(λβ)
H,q , (B12)

nel = n
(0)
el + λβe

iq·rn
(λβ)
el,q . (B13)

(Note that the ionic point charges do not move within the
curvilinear frame; thus, their density, ρion, is unsensitive
to the deformation.) By collecting the terms that are
linear in λβ , and by following analogous derivation steps
as in Ref. 3, we have

|∇ + iq|2V (λβ)
H,q = −4π

(
n
(λβ)
el,q + n

(λβ)
met,q

)
, (B14)

where the “metric density” n
(λβ)
met,q is given in terms of the

ground-state Hartree potential,

n
(λβ)
met,q =

i

4π
(∂α + iqα)[δαγqβ − δαβqγ − δβγqα]∂γV

(0)
H .

(B15)
At order zero in q, all the scalar fields involved in
Eq. (B14) manifestly vanish. (The kinetic and geometric
perturbations discussed in the previous subsections both

vanish, yielding a null first-order density; n
(λβ)
met,q vanish

as well, as it has a leading dependence on q; the first-
order potential then vanishes as well as a consequence of
Eq. (B14).) At first order in q, one has

∇2V
(λβ)
H,ζ = −4π

(
n
(λβ)
el,ζ + n

(λβ)
met,ζ

)
, (B16)

where we have indicated the derivatives with respect to
qζ calculated at q = 0 with a ζ subscript, and

n
(λβ)
met,ζ =

i

4π

(
∇2δζβ − 2∂ζ∂β

)
V

(0)
H . (B17)

Finally, by expressing the cell-periodic scalar fields in
Fourier space, we obtain

V
(λβ)
H,γ =

4π

G2

[
n
(λβ)
el,γ − in

(0)

(
δβγ − 2

GβGγ
G2

)]
, (B18)

where n(0) = n
(0)
el − ρion is the ground-state electronic

density minus the ionic point-charges (i.e., it corresponds
to the opposite of the total charge density of the crystal).

After observing that n
(λβ)
el,γ = in

(βγ)
el , one can easily verify

that the above formula coincides (modulo a factor of i)
with Hamann’s Eq. (57).

4. XC potential

Starting from Eq. (A7), one can write the exchange-
correlation potential as

VXC(ξ) =
δEXC

δn(ξ)
= εXC(h−1n)+h−1nε′XC(h−1n). (B19)

(The prime symbol indicates a first derivative with re-
spect to the particle density.) After a few algebra steps,
one arrives at an expression for the perturbed potential,

V
(λβ)
XC,q(r) = KXC(r)

[
n
(λβ)
el,q (r)− iqβn(0)el (r)

]
, (B20)
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where

KXC = 2ε′XC(n(0)) + n(0)ε′′XC(n(0)) (B21)

is the exchange-correlation kernel, and the contribution
that depends on n(0) originates from the derivative of the
inverse determinant,

h−1 = 1− iλ · qeiξ·q. (B22)

Again, the first-order potential vanishes at q = 0 and co-
incides with Hamann’s metric formulation of the uniform
strain perturbation at first order in q.
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