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ELASTIC ENERGIES OF COHERENT GERMANIUM ISLANDS ON SILICON

David Vanderbilt and L. K. Wickham
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

ABSTRACT

Motivated by recent observations of coherent Ge island formation during growth of
Ge on Si (100), we have carried out a theoretical study of the elastic energies associated
with the evolution of a uniform strained overlayer as it segregates into coherent islands.
In the context of a two-dimensional model, we have explored the conditions under which
coherent islands may be energetically favored over both uniform epitaxial films and dis-
located islands. We find that if the interface energy (for dislocated islands) is more than
about 15% of the surface energy, then there is a range of island sizes for which the coherent
island structure is preferred.

INTRODUCTION

Until recently, it was generally believed that the growth mode of Ge on Si (100) was
of the Stranski-Krastanov (SK) type [1] in which initial layer-by-layer growth is followed
by the formation of dislocated islands. (By “dislocated islands” we mean islands at the
relaxed Ge lattice constant, with dislocations at the Si/Ge interface to relieve the misfit.)
However, Eaglesham and Cerullo [2] have made the surprising discovery that in the initial
stages of island growth, the islands can be coherent (dislocation-free); only later, as the
islands grow in size, do they become dislocated. The coherent islands appear somewhat
rounded in shape, and can be up to ~ 1500 A in size and ~ 500 A high.

In a possibly related development, Mo et al. [3] have presented STM observations of
a metastable cluster (island) phase in the same system. In addition to the large dislocated
islands expected in SK growth, these workers observed smaller metastable prism-shaped
islands of low aspect ratio [formed of (501) facets] and typical dimension ~ 1000 A. The
island surfaces were found to have the relaxed Ge lattice constant to within 1.5% uncer-
tainty. While one might therefore be tempted to conclude that the islands are dislocated
in this case, we suggest below that such a conclusion need not follow.

Motivated by these developments, we have carried out an analysis of the elastic re-
laxation energies of coherent islands for a model lattice-misfit system. Our goal will be to
determine whether, and under what conditions, the coherent island structure can be en-
ergetically preferred in comparison to both the uniformly strained epilayer and dislocated
island morphologies.

SPECIFICATION OF THE MODEL SYSTEM

In order to arrive at a tractable model system, we have made a number of simplifying
assumptions. Our most severe approximation is that we take the islands to be uniform
in one direction along the surface, and work in the 2D plane of cross section. (Thus, the
islands are really “ridges.”) Also, we assume that Si and Ge are identical in all respects,
except that the preferred lattice constant of Ge exceeds that of Si by a reference strain
eo = 0.05 (i.e., 5%).

We have studied geometries in which the island structure is repeated periodically in
the direction along the surface, as shown in Fig. 1(a). The actual calculations are carried
out on a system in which the continuous medium has been replaced by a finite-element
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Figure 1. (a) Continuum model of islands, illustrating the definitions of the island half-
width a, trough half-width b, and height h. Heavily and lightly shaded regions indicate Ge
and Si respectively. (b) Same, but showing hexagonal finite-element discretization actually
used in the calculations.

discretization, as shown in Fig. 1(b). The discrete lattice is hexagonal, connected by
nearest-neighbor springs of spring constant k, and with lattice spacing d. [Si-Si, Ge-Ge,
and Si-Ge bonds have preferred lengths d, (1 + €)d, and (1 + €/2)d, respectively.] The
resulting elastic constants are isotropic, with Poisson ratio v =1 /4. For ease of modeling
by the discrete lattice, we have only studied islands whose sides are inclined at 60°. With
these approximations, the geometry of an island structure can be specified by giving the
island height &, island size a, and trough size b, as shown in Fig. 1. Thus, the goal of our
calculations will be to obtained the relaxation energy AE ¢ of the structure of Fig. 1(a),
in the continuum limit, as a function of h, a, and b.

CALCULATION OF ELASTIC RELAXATION ENERGIES

For given values of h, a, and b, we constructed a series of finite-element representations
of decreasing lattice constant d, with up to ~ 60 mesh points along the periodic direction
(parallel to the surface). We used a finite number of rows in the vertical direction, with
free boundary conditions on the bottom row. However, we kept the number of rows in
the vertical direction somewhat greater than the horizontal repeat distance; under these
conditions, the results were found to be independent of the depth of the sample, to a high
degree of accuracy. The relaxed structure was determined by a simple iterative scheme in
which the updates for the displacements were just taken parallel to the calculated forces;
typically several thousand such iterations were required to obtain good convergence.

Only the mesh points in the islands were identified as Ge sites (see Fig. 1). In the
real system, of course, several atomic layers of Ge do cover the remainder of the surface.
While our mesh points do not really correspond to atoms, we nevertheless experimented
with setting the top one or two rows of mesh points to be Ge sites. However, we found
very little difference in the results. This is easily understood; the presence of an entire Ge
row, in the presence of periodic boundary conditions, does not result in any forces on the
atoms (in the unrelaxed configuration). Thus, in the limit €g — 0, the results should be
rigorously independent of the presence of entire Ge rows (i.e., the effect of such entire rows
on AE, enters at cubic and higher order in €).

Finally, we obtained the relaxation energy in the continuum limit, AE ¢, by extrapo-
lation from a series of discrete calculations, by fitting the results to a polynomial in d and
then taking the limit d — 0.

It is convenient to express the relaxation energy AE in terms of a dimensionless
function of dimensionless arguments
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Table I. Calculated dimensionless relaxation energy F' and the combination h,F for a
representative sample of geometries specified by h, = h/a and hy = h/b.

ha hy F AEq| he hy F AEgq
0.083 1.000 3.220 0.268 [0.500 1.000 1.492 0.746
0.125 0.125 3.508 0.438 |1.000 0.500 0.828 0.828
0.125 1.000 3.020 0.377 |1.000 1.000 0.822 0.822
0.250 0.250 2.500 0.625 [1.000 2.000 0.804 0.804
0.250 1.000 2.360 0.590 |1.500 1.000 0.560 0.840
0.500 0.250 1.532 0.766 |2.000 1.000 0.420 0.840
0.500 0.500 1.524 0.762 [2.000 2.000 0.412 0.824

Then F remains finite in the limit ¢g — 0, i.e., negligible non-linear distortion. (Inciden-
tally, we did some tests which indicated that the values of F' obtained with our ¢y = 0.05
are in fact very close to those that would apply in the ¢ — 0 limit.) Moreover, F' also
remains finite in the limits hp — 0 (isolated islands), h, — 0 (isolated troughs), hy — 2
(V-shaped troughs), and h, — 2 (inverted V-shaped islands). However, we expect a loga-
rithmic singularity when hp — 0 and h, — 0 simultaneously. In this limit (which can be
thought of as h — 0 for fixed a and b), the problem can be mapped onto an array of line
forces of alternating sign acting parallel to the surface. This problem has been solved in
the context of a theory of stress domains on Si (100) by Alerhand et al. [4], [5]. Thus in
this limit we expect

(2)

] 2\/3_ 1h,+ hy 7 he — hy
poim Fha h) = ¢+ —— In L hohy 00 (§ha +hb)]

Some of the results of our numerical calculations are given in Table I. A notable feature
of these results is the asymmetry under the interchange h, « hj (islands «+ troughs), which
is a symmetry of Eq. (2). The relaxation energy is greater for a trough configuration (e.g.,
h, = 1/2, hy = 1) than for the corresponding island configuration (e.g., h, = 1, hy = 1/2).
This might have been expected: while the forces that result from the material stresses are
similar in both cases, the trough acts like a region of enhanced elastic compliance, and the
island like one of reduced compliance, in the vicinity of the forces. However, the magnitude
of the asymmetry is striking. For example, starting from h, = hy = 1, the change in F
as we let h, — 0 is approximately two orders of magnitude greater than the change as
hy — 0. This indicates that the repulsive interaction between islands is very much weaker
than would be the repulsive interaction between troughs of similar aspect. We also find
that the departure from the limit expressed in Eq. (2) is so rapid that this limit is not a
useful starting point for understanding the energetics of islands.

Returning to the energetics of islands, a useful way of expressing the results is to
calculate the ratio of the relaxation energy to the maximum relaxation energy possible in
a fully relaxed (dislocated) island of the same dimensions:

. 2AE,

=2 B F(ha, )
AE. T haF(ha, hy) (3)

These results are also given in Table I. Moreover, we have extrapolated our results to the
hy — 0 axis, corresponding to the case of an isolated island, by assuming an approximately
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Figure 2. Reduced elastic relaxation energy AE ¢ of an isolated island as a function of

he = h/a as defined in Fig. 1. The maximum value AE ¢ = 1 would correspond to a fully
relaxed (e.g., dislocated) island. '

parabolic dependence upon h; for hy < h,. (Because of the weakness of the dependence

of AE . upon hy, the details of this extrapolation procedure are not very important.) We
then fitted the resulting F'(h,) = F(h,,0) to a function of the form

F(hy) = ~g—7—r-\/§ln(ha)+co + crhg + c2h? + cah® + csh?t . (4)
(The first two terms are required for consistency with Eq. (2) in the limit h, — 0.) We
obtained the best overall fit with ¢y = 1.470, ¢; = —2.601, ¢, = 3.059, ¢3 = —1.315, and
cs = 0.2. The resulting function AE (ke) = hoF(h,) is plotted in Fig. 2.

Recalling that AE . has the limiting values 0 and 1 for completely unrelaxed and
completely relaxed (dislocated) islands respectively, we notice immediately that even is-
lands of rather flat aspect ratio can relieve most of their strain energy by relaxing in the
coherent mode. For example, an island with h, = h/a = 1/4 can get rid of approximately
60% of its strain energy by relaxing without the introduction of dislocations. Moreover, for
the same case (h, = 1/4) the strain at the center of the top surface of the island is found
to be 3.6%, and averaged over the entire top surface it is 4.1%, to be compared to the 5%
assumed for completely relaxed Ge. This suggests that the islands observed in STM by
Mo et al. are most likely coherent after all.

The above results suggest that coherent islands may actually be energetically favored
under some conditions, since they are able to relieve much of the strain energy without
paying the cost of introducing dislocations. Whether this is in fact possible is explored in
the next section.

COMPARISON OF ENERGETICS OF THREE GROWTH MODES

In this section we compare the energy cost of depositing a given quantity of Ge in
three different ways: as a single dislocated island (DI), as a single coherent island (CI),
and incorporated into a uniformly strained coherent overlayer (UF, for “uniform film”).
The quantity of Ge to be deposited is represented by its cross-sectional area A g. (for our

islands, A ge = -\g—g-ha). In addition to the elastic relaxation energy AE ¢ discussed above,
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we suppose that there is an energy cost per unit length + associated with the additional
surface exposed on islands, and a similar cost A associated with the dislocation density
which must exist at the dislocated Si-Ge interface. Then the energies of these three modes
of deposition are given by

1 1

—_— Eur = —=ke2 A e

7 UF \/5 €AG
(5)

Introducing dimensionless quantities n (ratio of interface to surface energy), @ (quantity
of Ge deposited), and E (reduced energy, following Eq. (3)) via

2 [(ke2\? — V3E
77::/\/’}’7 Q:__3_<_P;9.) AGea E = B (6)

h
EDI=7h+)\<G+ §> , Eci=~h+ —=kééAge— AEq ,

we then obtain

o~ [ ha 1 = [ha - —
Epr=(2+n) 5”"—\/—75_5’ Eci=2 —Q—+1-AEel, Eyrp=1. (7)

For the two kinds of islands, we minimize the energy with respect to variation in the
aspect ratio h, (holding @ and 7 constant). (For the case of coherent islands, this is done
numerically using the function AE; obtained earlier.) Then the reduced energies in Eq.
(7) become functions of ¢ and 75 only.

In Fig. 3 we have constructed a phase diagram showing which of the three morpholo-
gies is energetically preferred, for given values of ¢ and n. Note that n i1s a material
property (the ratio of the dislocated-interface energy to the surface energy), whereas @ is
a measure of the amount of Ge deposited. We find that for small n, the system makes
a transition directly from the uniform film to the dislocated island morphology with in-
creasing (). In contrast, for n above a critical value n, = 0.145, we find that coherent
wslands are favored for intermediate values of ). There is first a transition from uniform
film to coherent island at (. = 2.49, and then a second transition to an incoherent island
at a larger Q which depends upon 7. (Both transitions are discrete in our model, but the
second CI — DI transition may well be continuous in the real physical system.)

We can get an order-of-magnitude estimate of the physical value of n by assuming
that the interface and surface energies are A = ¢ Egp/ao and v = Egy/ae respectively,
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where aj is a lattice spacing and E 41, is the energy of a dislocation-core or surface dangling
bond. Then n & ¢; = 0.05, which is below the critical value, but only by a factor of ~ 3.
Moreover, in a real three-dimensional analysis, A would increase (because dislocations
would run in both directions), and so would AE ¢ (since coherent islands could relax more
efficiently). Thus, given the numerous approximations that have been made, we think it
is quite plausible that the real Si/Ge system may be in the n > 1. regime.

DISCUSSION

While the model presented here involves many simplifying assumptions, we expect the
main qualitative features of the analysis to survive in a more exact treatment. Specifically,
we have provided theoretical support for the idea that coherent islands may be locally
stable with respect to both dislocated islands and uniform film growth, for certain materials
systems. This will be most likely in systems with large lattice misfit, where the dislocation
density necessary for incoherent islands is relatively costly.

Under these conditions, we imagine that the system evolves through three stages
with increasing deposition of the mismatched species. The first stage is the nucleation of
coherent islands whose size exceeds the critical size necessary to prevent these islands from
“evaporating” back into the uniform film phase (ie., @ > Q. = 2.49 in the model). In
the second stage, coherent islands grow by Ostwald ripening until they reach the size at
which dislocated islands are preferred. In the third and final stage, dislocated islands grow
by Ostwald ripening. In this scenario, the rounded islands observed by Eaglesham and
Cerullo [2] and the prism-shaped islands seen in STM by Mo et al. [3] would be associated
with the second and third stages, respectively. The difference in the observed shapes may
be associated with differences in the relative importance of energetic and kinetic factors
during these latter two stages.

In summary, we have analyzed the energetics of the relaxation of coherent islands
in a model system. We find that even coherent islands of relatively low aspect ratio are
surprisingly efficient at reducing their elastic strain energy. For appropriate materials
parameters, we find that coherent islands can be favored over both dislocated island and
the uniform film morphology. These results provide theoretical support for the hypothesis
that Stranski-Krastanov growth proceeds via an intermediate coherent-island phase for the
Si/Ge system.
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