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Exponential decay properties of Wannier functions and related quantities
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The spatial decay properties of Wannier functions and related quantities have been investigated
using analytical and numerical methods. We find that the form of the decay is a power law times
an exponential, with a particular power-law exponent that is universal for each kind of quantity.
In one dimension we find an exponent of −3/4 for Wannier functions, −1/2 for the density matrix
and for energy matrix elements, and −1/2 or −3/2 for different constructions of non-orthonormal
Wannier-like functions.

PACS: 71.15.Ap, 71.20.-b, 71.15.-m

A growing interest in localized real-space descriptions
of the electronic structure of solids has been motivated
by the development of computationally efficient “linear-
scaling” algorithms [1,2] and by the desirability of a local
real-space mapping of chemical [3,4] and dielectric [5,6]
properties. A primary avenue to such a description is
the use of Wannier functions [7–9] (WFs), i.e., a set of
localized wavefunctions wR(r) obtained from the Bloch
functions ψk(r) by a Fourier-like unitary transformation.
A closely related approach is to represent the electronic
structure in terms of the density matrix n(r, r′). It is
thus not surprising to find considerable recent interest
in the localization properties of the WFs [3] and of the
density matrix [10,11].

In a classic 1959 paper, Kohn proved, for the case of a
centrosymmetric crystal in one dimension (1D), that the
WFs have an “exponential decay” w(x) ≈ e−hx, where h
is the distance of a branch point from the real axis in the
complex-k plane [8]. More precisely,

lim
x→∞

w(x) eqx =
{

0, q < h
∞, q > h .

(1)

The density matrix has a similar decay n(x, x′) ≈
e−h|x−x

′|. The exponential decay of the WFs has since
been proven for the general 1D [12] and single-band 3D
[13] cases, and that of the density matrix (more pre-
cisely, of the band projection operator) has been proven
in general [12]. The energy matrix elements E(R) =
〈wR|H|w0〉, with wR(x) = w(x − R) and R = la a lat-
tice vector, are also expected to have a similar decay,
E(R) ∼ e−hR.

The purpose of this Letter is to address two questions.
First, Eq. (1) allows considerable freedom; in fact, it is
consistent with

w(x) ≈ x−αe−hx (2)

for any exponent α, i.e., a decay which could be faster
(α > 0) or slower (α < 0) than pure exponential. Does
such a power-law prefactor exist, and if so, what is the
exponent α? Second, it has long been understood that
relaxation of the orthogonality constraint 〈w0|wR〉 = δ0,R
can give “more localized” Wannier-like functions [14–16].

In what sense are these more localized – a larger h, or
a larger α for the same h, or only a smaller prefactor
of the tail? We show that the power-law prefactors of
Eq. (2) do exist, and that the various quantities have
a common inverse decay length h but different expo-
nents α. In 1D we find that α = 3/4 for usual (or-
thonormal) WFs, α = 1/2 for n(x, x′) and E(R), and
α = 1/2 or α = 3/2 for two different constructions of non-
orthonormal Wannier-like functions (NWFs). The NWFs
of superior decay (∼ x−3/2e−hx) can be constructed by
a projection method as duals to a set of trial functions.
These results may have important implications for the de-
sign and implementation of efficient real-space electronic-
structure algorithms.

We first review the central results of the pioneering
work of Kohn [8], who considers a centrosymmetric po-
tential of period a in 1D. The WFs are constructed as

wn(x−R) = wnR(x) =
a

2π

∫ π/a

−π/a
e−ikRψnk(x) dk (3)

with the phases of the Bloch functions ψnk chosen as in
Sec. 6 of Ref. [8]. The exponential decay of the WFs is
then governed by the positions of branch points in the
“complex band structure” En(k) constructed by regard-
ing complex En to be a function of complex k via ana-
lytic continuation from the real axis [8,9]. Specifically,
there is a Riemann sheet En(k) for each band n, and the
branch points kn are the points at which the sheets are
connected, En(kn) = En+1(kn). These are located at

kn =
{
π/a± ihn, n even
±ihn, n odd (4)

and at translational image locations k(m)
n = kn + 2πm/a

for integer m. En(k) and ψn(k) are thus analytic func-
tions in the strip |Im(k)| < h̄n where h̄n=min(hn−1, hn).
Kohn’s main result [8] is that the decay of the WF for the
n’th band is as wn(x) ≈ e−h̄n|x| in the sense of Eq. (1). In
what follows we restrict our attention to the bottom band
(n=0), for which h̄0 = h0 (henceforth just h). The rele-
vant branch point in the upper half-plane is k0 = π/a+ih
and the expected Wannier decay is w(x) ≈ e−hx.
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FIG. 1. Decay of normalized WFs w(x) and NWFs v(x)
and y(x). (a) 1D model (see text) with b=0.3 and V0=−10.
(b) 3D Si plotted along the [110] direction.

To confirm this decay numerically, we first choose a
simple 1D model Hamiltonian having a periodic poten-
tial U(x) =

∑
m Vat(x − ma) constructed as a sum of

Gaussian “atomic” potentials Vat(x) = (V0/b
√
π)e−x

2/b2 .
Here a is the lattice constant and V0 and b control the
depth and width of Vat. We choose units such that
m=h̄=e=1 and keep a=1 and V0=−10 fixed while ad-
justing b to vary the gap. The Bloch functions are com-
puted on a mesh of 200 k points by expanding in 401
plane waves and the WF at R = 0 is then constructed
according to Eq. (3) using 128-bit arithmetic.

The resulting decay of the WF for b=0.3 is shown as
the solid line in Fig. 1(a). In this semilog plot, the ap-
proximate linearity of the peaks is consistent with the
expected exponential decay, but there is a slight curva-
ture that can be analyzed further. To do so, we first
computed the En(k) along π/a + iκ for real κ and de-
fined h to be the value of κ at which E0 = E1. For b=0.3
we find h=1.28869. In Fig. 2(a) we then plot (diamonds)
hx+ln |w(x)| vs. ln(x) for each peak of ln |w(x)|. A pure
exponential decay w(x) ≈ e−hx should yield a horizontal
line in such a plot; instead, the data appears linear with
a slope of −3/4, indicating that

w(x) ≈ x−3/4 e−hx . (5)

A similar plot (not shown) for

E(R) = 〈wR|H|w0〉 =
a

2π

∫
dk eikRE(k) . (6)

suggests that E(R) shares the same inverse decay length
h but has a different power-law exponent,

E(R) ≈ R−3/2 e−hR . (7)
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FIG. 2. (a) As in Fig. 1(a) but plotted so that slope reveals
exponent −α of Eq. (2). (b) Same for b=0.6 (nearly-free elec-
tron case) showing crossover. Pluses, diamonds, and squares
represent v, w, and y, respectively.

Naturally h changes if the potential parameter b is varied,
but we find that the power-law exponents of −3/4 and
−3/2 do not. It thus appears that these exponents are a
universal feature of electron bandstructures in 1D.

In order to gain an analytic understanding of this be-
havior, we consider first the simpler case of the energy-
band Fourier transform E(R) ↔ E(k). Kohn showed
that the expansion of E(k) about k0 = π/a + ih takes
the form [8]

E(k) = E0 + γ (k − k0)1/2 + · · · (8)

with higher terms of order (k − k0)1, (k − k0)3/2, etc.
The form of this expansion arises from the requirement
that E(k) come back to itself if k traverses a closed path
winding twice around k0, consistent with the picture of
two Riemann sheets touching at k0.

Now there are well-known mathematical results that
relate the behavior of a function near a branch point to
the asymptotic decay of its Fourier transform [17]. The
following lemma is useful here. Let f(k) be a periodic
function f(k) = f(k + 2π/a) that has a leading behavior

f(k) = f0 + γ [i(k − k0)]β (9)

when expanded at the branch point k0 = π/a + ih. Its
Fourier series coefficients are given by

F (x) =
∫
C0

f(k) eikx dk (10)

at x = ma for integer m. As shown in Fig. 3, the contour
C0 initially lies along the real axis. However, f(k) eikx
is invariant under k → k + 2π/a, and assuming that no
other branch points or poles intervene, the contour can
be deformed to become C1 as shown in Fig. 3. The ex-
ponential smallness of eikx for large x kills the integrals
along the horizontal segments, and the dominant con-
tribution to the C1 integral comes from the vicinity of
k0. Using the contour-integral definition of the Gamma
function [18],
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FIG. 3. Branch points (×), cuts (dashed lines), and inte-
gration contours (C0 and C1) in the complex-k plane.

|F (x)| ' γ B(β)x−(1+β) e−hx , (11)

where Bβ = 2 sin(βπ) Γ(1 + β).
Eq. (11) now allows us to understand the observed be-

havior of quantities such as E(R) and w(x). For ex-
ample, since E(k) in Eq. (8) has β = 1/2, we confirm
that E(R) ≈ R−α e−hR with α = 1 + β = 3/2. Simi-
larly, to understand the decay of w(x), we need to know
the behavior of ψk(x) regarded as a function of k near
the branch point k0. Once again Kohn [8] provides the
needed result ψk ≈ (k−k0)−1/4. Sure enough, β = −1/4
gives a decay w(x + R) ≈ R−3/4e−hR for small x and
R � a. In other words, w(x) ≈ x−3/4e−hx for large x,
as obtained numerically from Fig. 2(a).

We can summarize the information about both the k-
and x-dependence of ψk(x) near the branch point as

ψk(x) = A0(x) q−1/4 +A1(x) q1/4 + · · · , (12)

where q = i(k − k0). (All such terms have powers
that are odd-integer multiples of 1/4, consistent with
ψk(x) → −ψk(x) when traversing a closed path wind-
ing twice around k0.) A0(x) and A1(x) are real functions
obeying An(x+ a) = eik0aAn(x).

The locality of the density matrix (i.e., the band pro-
jection operator) is also very important. For example,
many linear-scaling algorithms are based on a direct so-
lution for the density matrix [1,2,19]. We can write

n(x′, x) =
a

2π

∫
C0

ψ−k(x′)ψk(x) dk (13)

where, following Kohn [8], we have substituted ψ∗k(x′)
by ψ−k(x′) in order that the integrand of Eq. (13)
should remain analytic off the real axis. The behavior of
ψ−k(x) near the branch point is ψ−k(x) ≈ A0(−x) [i(k−
k0)]−1/4. The integrand of Eq. (13) then takes the form
ψ−k(x′)ψk(x) ≈ A0(−x′)A0(x)[i(k − k0)]−1/2. Applying
Eq. (11) yields n(0, x) ≈ x−1/2 e−hx for large x, and more
generally, n(x′, x) ≈ (x − x′)−1/2 e−h(x−x′) for x � x′.
This α = 1/2 behavior of the decay has been confirmed
from numerical plots (not shown) similar to Fig. 2(a).

We have so far shown that E(x), w(x), and n(0, x) all
have a decay of the form x−α e−hx with a common h but
with different (universal) exponents αE=3/2, αw=3/4,
and αn=1/2. The energy matrix elements thus have the
fastest decay, and the density matrix the slowest.

One may next ask whether it is possible to find
non-orthonormal Wannier-like functions (NWFs) with a
faster decay than those of the orthonormal WFs w(x)
[14–16]. We explore this question in the context of band-
projection methods [20–22]. We find that a naive ap-
plication of the projection technique actually generates
NWFs with a slower decay, while a modified “dual con-
struction” approach does give improvement as measured
by the exponent α.

The basic idea of the projection technique is to start
with a trial function t(x) and generate a Wannier-like
function v(x) by acting with the band-projection op-
erator P̂ =

∑
k |ψk〉〈ψk|, i.e., |vR〉=P̂ |tR〉. Here |tR〉

corresponds to the translational image t(x − R) of t(x)
in cell R = na, and similarly for |vR〉. The trial func-
tions can be Gaussian functions, atomic or molecular or-
bitals, etc. The |vR〉 are NWFs having overlap S0R =
〈v0|vR〉 = 〈t0| P̂ |tR〉. Numerical investigations on C and
Si by Stephan and Drabold indicated that the projected
functions v(x) are not more localized than the true WFs
w(x) [22]. This should not be surprising; introduction of
NWFs may give flexibility to generate more localized or-
bitals, but this flexibility needs to be used to advantage.
To do so, we introduce dual functions y(x) defined via
|y0〉=

∑
R(S−1)0R |vR〉, so that 〈y0|vR〉 = δ0R and also

〈y0|tR〉 = δ0R. This latter equation means that y(x) is
orthogonal to the trial function at every site except R=0,
suggesting that y(x) may be especially well localized.

Numerical tests of the decay of (normalized versions
of) v(x) and y(x) are shown as dashed and dotted curves
respectively in Figs. 1(a) and 2(a). The trail function
used is a δ-function on the atomic site, but use of other
narrow trial functions gives similar results. It clearly
appears that α = 1/2 and 3/2 for v(x) and y(x) respec-
tively, to be compared with α = 3/4 for w(x). Thus, the
simple projected functions v(x) actually have a slower de-
cay that the WFs w(x), but the duals y(x) have a much
faster decay than either of them.

These results can be explained by the complex analy-
sis of the Bloch-like functions vk(x) and yk(x) that are
related to v(x) and y(x) in the same way that ψk(x) is
related to w(x). Defining

η(k) =
∫ ∞
−∞

ψ−k(x) t(x) dx , (14)

it follows from |vk〉 = |ψk〉〈ψk|t〉 that |vk〉 = ηk |ψk〉.
Also the Fourier transform of S(0, R) can be seen to be
S(k) = η2(k), so that |yk〉 = |ψk〉/η(k). In the vicinity
of k0 we have

η(k) = η0 [i(k − k0)]−1/4 + η1 [i(k − k0)]1/4 + · · · (15)

where ηn =
∫∞
−∞An(−x) t(x) dx. Moreover,

vk(x) = η0A0(x) q−1/2 + · · · ,
wk(x) = A0(x) q−1/4 + · · · ,

yk(x) =
1
η0

{
A0(x) + Ã1(x) q1/2 + · · ·

}
, (16)
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where q = i(k − k0) and Ã1(x) = A1(x)− (η1/η0)A0(x).
The leading term in yk(x) gives no singularity, so the
real-space decay is determined by the behavior of the
next term for which α = β + 1 = 3/2. To be explicit, we
can define An(x) = An(x) ehx so that A is anti-periodic,
A(x+ a) = −A(x), and for large x we find

w(x) ' B−1/4A0(x)x−3/4 e−hx ,

v(x) ' B−1/2 η0A0(x)x−1/2 e−hx ,

y(x) ' (B1/2/η0) Ã1(x)x−3/2 e−hx . (17)

The above conclusions regarding y(x) rely on the ab-
sence of zeros of η(k) inside the strip −h < Im(k) < h. If
such zeros exist, yk(x) = ψk(x)/ηk may have new singu-
larities and y(x) will then have poor decay compared to
other NWFs. We find that this problem does not arise
when using t(x) = δ(x) or a narrow Gaussian, but can
be triggered by use of a too-wide Gaussian for t.

In view of n(x′, x) =
∑
i wi(x

′)wi(x) it may appear
surprising that n(x′, x) decays more slowly than w(x)
(αn=1/2 vs. αw=3/4). The representation of n via w
thus has some advantages. Better yet, perhaps, one can
represent n(x′, x) =

∑
ij Sij yi(x

′) yj(x). Here the slow
decay has been transferred to a simple matrix quantity
(αS=1/2) but the NWFs decay very quickly (αy=3/2).

Is it possible to find a NWF with an even faster decay
than x−3/2 e−hx? Yes; define a new NWF zk = f(k) yk
where f(k) is analytic in the strip |Im(k)| < h and has
simple zeros at the branch points (2n + 1)π ± ih. The
function f(k) = 1+cos(ka)/ cosh(ha) is a good candidate
[23]. Then the leading singularity of zk is as (k− k0)3/2,
and we expect z(x) ∼ x−5/2e−hx. We have confirmed
numerically that this works. However, since the multi-
plication by f(k) in k-space corresponds to a convolution
in real space, the resulting z(x) is actually broader than
y(x) or w(x) by almost any other measure (e.g., second
moments [3]). Thus, this strategy may be counterpro-
ductive in practice.

Before leaving the 1D case, we make two brief com-
ments. First, the extension to the case of non-
centrosymmetric potentials in 1D is not difficult, and
the results (including values of the α exponents) are un-
changed. Second, there is an apparent paradox concern-
ing the nearly-free electron limit. For free electrons the
occupied portion of the band gives w(x) ∼ sin(kFx)/kFx,
i.e.,∼ x−1. One may expect this to go over to ∼ x−1 e−hx

in the nearly-free case, but this would be inconsistent
with our general result α = 3/4. Actually we find there
is a crossover behavior, as shown in Fig. 2(b), with α=1
behavior for x << xc and α=3/4 in the true large-x tail.
The crossover distance xc increases as the gap decreases;
as the gap closes, xc →∞ and h→ 0.

Before concluding, we briefly discuss the 3D case. Here
the 6-dimensional space of complex (kx, ky, kz) makes the
formal analysis difficult. We have carried out a numerical
calculation of WFs and NWFs for Si using an empirical-
pseudopotential scheme starting from four bond-centered
trial functions. The results are plotted in Fig. 1(b). Plots

of hx+ ln |F (x)| vs. ln(x) (not shown) again show linear
behavior, with slopes that appear consistent with the 1D
values of α = 3/4, 1/2, and 3/2 for w, v, and y, respec-
tively. However, in this case we cannot afford to go to
very large x values, and we suspect that there may be a
crossover to larger α values in the far tails. We leave this
as a question for future investigations.

To conclude, we find that in 1D the asymptotic behav-
ior of WFs and related quantities can all be expressed
as x−αe−hx with a common h, and with exponents α
that take on universal rational values depending on the
type of singularity of the relevant function at the branch
points in the complex-k plane. It is surprising that this
behavior has gone unnoticed since Kohn’s seminal 1959
paper. The consequences for linear-scaling calculations,
and localized real-space representations of electron struc-
ture more generally, remain to be fully explored.
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