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All known proper ferroelectrics are unable to polarize normal to a surface or interface if the re-
sulting depolarization field is unscreened, but there is no fundamental principle that enforces this
behavior. In this work, we introduce hyperferroelectrics, a new class of proper ferroelectrics which
polarize even when the depolarization field is unscreened, this condition being equivalent to insta-
bility of a longitudinal optic mode in addition to the transverse-optic-mode instability characteristic
of proper ferroelectrics. We use first principles calculations to show that several recently discovered
hexagonal ferroelectric semiconductors have this property, and we examine its consequences both in
the bulk and in a superlattice geometry.

Ferroelectrics, which are materials with a non-zero
spontaneous polarization that can be switched by an ex-
ternal electric field, have been extensively studied both
experimentally and theoretically. Much of the work on
ferroelectrics has focused on proper ferroelectrics, such as
BaTiO3. These have a non-polar reference structure that
is related to the ferroelectric ground state by a polar dis-
tortion that lowers the energy in zero macroscopic electric
field, corresponding to an unstable transverse optic (TO)
mode. However, a slab of a typical proper displacive fer-
roelectric with insulating surfaces will not spontaneously
polarize with polarization normal to the surface, because
at quadratic order in the polarization the energetic cost
of the resulting depolarization field is larger than the en-
ergy gain from freezing in the distortion [1]. In order to
polarize, the depolarization field must be screened, as for
example by a metallic electrode placed on the surfaces of
the ferroelectric slab [2].

In contrast to proper ferroelectrics, improper ferro-
electrics do not have an unstable polar distortion in their
high-symmetry structure. Instead, these materials have
one or more unstable non-polar distortions. However,
when these distortions assume non-zero values they break
inversion symmetry in the material, resulting in a non-
zero polarization [3–6]. Because the primary energy-
lowering distortion in an improper ferroelectric is non-
polar, the depolarization field is too weak to prevent the
instability. Thus, a slab cut from such a material can de-
velop a non-zero polarization normal to the surface [7].

In this work, we demonstrate a new class of “hyper-
ferroelectrics.” These are proper ferroelectrics in which
the polarization persists in the presence of a depolariza-
tion field. Using first-principles calculations, we iden-
tify hyperferroelectrics in the recently discovered class of
hexagonal ABC semiconducting ferroelectrics [8]. Us-
ing first-principles-based modeling, we show that hyper-
ferroelectrics have an electric equation of state that is
qualitatively different from those of both proper and im-
proper ferroelectrics, resulting in persistent polarization
regardless of screening and unique dielectric behavior.

Finally, we discuss the potential applications of hyper-
ferroelectrics, whose ability to polarize in ultra-thin lay-
ers may allow the creation of highly tunable thin-film
or superlattice structures displaying ultra-fast switching
behavior.

We perform first-principles density functional theory
(DFT) calculations [15, 16] within the local-density ap-
proximation [17] using the Quantum Espresso code [18].
We use ultrasoft [19] pseudopotentials from the GBRV
high-throughput pseudopotential set [20, 21]. Phonon
frequencies, Born effective charges, and electronic dielec-
tric constants are calculated using DFT perturbation the-
ory [22–24], and polarization is calculated using the Berry
phase method [25].

We begin by reviewing the properties of normal proper
ferroelectric materials, which in their high-symmetry
phase have at least one unstable TO mode, specifically,
a Γ mode that is unstable under zero macroscopic elec-
tric field (E = 0) boundary conditions. The frequency of
this mode can be obtained from first-principles compu-
tation of the force-constant matrix with the usual peri-
odic boundary conditions. The longitudinal optic (LO)
modes can then be obtained by adding to the force-
constant matrix a non-analytic long-range Coulomb term
that schematically takes the form (Z∗)2/ε∞, where Z∗

are the Born effective charges and ε∞ is the electronic
contribution to the dielectric constant, generating the
well-known LO-TO splitting [9]. For normal proper ferro-
electrics, this non-analytic term is sufficiently large that
all the LO polar modes are stable; in other words, the de-
polarization field resulting from the long-range Coulomb
interaction will prevent the ferroelectric from polarizing
under fixed D=0 boundary conditions. For typical per-
ovskite oxides, the strength of the depolarization field
must be weakened by at least 90% to allow for a non-
zero polarization with D=0 [1].

While large-band-gap oxide ferroelectrics, which typi-
cally have large Z∗’s and small ε∞’s, have all LO modes
stable, there is no fundamental principle that enforces
this stability. In fact, as we demonstrate in detail be-
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FIG. 1: Structures of a) high-symmetry (P63/mmc) and b)
polar (P63/mc) ABC ferroelectrics. The large green atom is
the ‘stuffing’ atom. c) Phonon spectrum of high-symmetry
LiBeSb, from K (π/3a, π/3a, 0) to Γ(0, 0, 0) to A (0, 0, π/2c)
(imaginary frequencies are plotted as negative numbers).

low, unstable LO modes can be found in semiconducting
hexagonal ABC ferroelectrics. The crystal structure is
shown in Fig. 1(a-b) (space group P63mc, LiGaGe struc-
ture type). The high-symmetry phase of these materials
consists of layers of two atoms in an sp2-bonded honey-
comb lattice separated by layers of a third ‘stuffing’ atom,
as shown in Fig. 1(a-b). The polar phase is reached by
a single Γ2− phonon mode, which consists primarily of
a buckling in the honeycomb layers as the atoms move
from an sp2 environment towards sp3 bonding, resulting
in polarization in the z direction [8].

In Table I, we report the lowest TO and LO phonon
frequencies, dielectric constants, as well as band gaps,
∆Z∗zz =

√∑
m(Z∗zz)2m/N , and polarizations for a variety

of ABC ferroelectrics; those with imaginary LO frequen-
cies are, by definition, hyperferroelectrics. The relatively
small ∆Z∗zz≈3 and large (ε∞)zz≈10−20 both contribute
to the weak depolarization fields in these materials (for
reference, cubic perovskites typically have ∆Z∗zz≈5 and
(ε∞)zz≈6). Both the small effective charges and large di-
electric constants of ABC ferroelectrics are consequences
of the covalent bonding and resulting small band gaps of
these semiconductors. In Fig. 1(c), we show the phonon
dispersion for the hyperferroelectric LiBeSb, which is a
previously synthesized material [10, 11]. We see that the
lowest frequency phonon mode for q→ 0 is unstable re-
gardless of the direction from which Γ is approached.

In order to investigate the electric equation of state of
hyperferroelectrics, we use a simple first-principles-based
model. We first define a dimensionless polar internal de-
gree of freedom, u, as the buckling of the honeycomb
layer, which varies from zero in the high symmetry struc-
ture to one in the polar structure at E = 0. Then, we
expand the free energy up to second order in E , and up
to sixth order in u, with the E = 0 polarization included
up to first order in u,

F (u, E) = −au2 + bu4 + cu6 − Psu E −
1

2
χe(u)E2, (1)

where F is the free energy, χe(u)=ε∞(u)− 1 is the zero-
field electronic susceptibility as a function of u, and Ps,

ABC ωTO ωLO (ε∞)zz ∆Z∗zz Gap P (E=0) P (D=0)

(cm−1) (cm−1) (eV) (C/m2) (C/m2)
LiZnP 134i 49 13.3 3.0 1.27 0.80 0
NaMgP 131i 150 10.6 2.9 0.89 0.52 0
LiZnAs 118i 68i 15.5 3.0 0.48 0.73 0.02
LiBeSb 144i 47i 19.9 2.9 0.93 0.59 0.02
NaZnSb 42i 14i 10.2 2.0 0.69 0.51 0.01
LiBeBi 171i 132i 22.1 2.9 0.83 0.54 0.02

TABLE I: Properties of ABC hexagonal ferroelectrics. Com-
pounds are listed with the stuffing atom first. First-principles
results for high-symmetry phase: ωTO and ωLO are frequen-
cies of unstable polar modes approaching Γ along q̂ = (100)
and (001) respectively; Lc is defined in the text; (ε∞)zz is the
zz electronic dielectric constant; ∆Z∗zz is the RMS zz Born
effective charge; ‘Gap’ is the band gap. P (E=0) is the first-
principles polarization at E = 0. P (D=0) is the polarization
computed from the model of Eqs. (1-2) at D=0.
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FIG. 2: Computed energy landscape and electric equations
of state for normal ferroelectric NaMgP. a) Energy vs. polar
mode u. Dots are first principles; line is a fit to the model.
b) P vs. ε0E . c) P vs. D. d) D vs. ε0E . Dashed red lines are
locally unstable at fixed E ; solid red lines are locally stable;
solid black lines are globally stable.

a, b, and c are constants. The polarization, P , is then

P (u) = −∂F
∂E

= Psu+ χe(u)E , (2)

which allows us to identify Ps as the spontaneous polar-
ization of the ground-state structure at zero electric field
(u= 1, E = 0), justifying the notation for this constant.
We fit this model to our materials by running a series of
calculations with E=0 and u fixed between 0 and 1.1, al-
lowing all of the other internal degrees of freedom as well
as the lattice vectors to relax. In addition, we calculate
ε∞(u) for each structure, which we fit to a cubic spline.
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FIG. 3: Computed energy landscape and electric equations of
state for hyperferroelectric LiBeSb. Details as in Fig. 2.

Using the model of Eqs. (1-2), we can parametrically
plot E(u), P (u) and D(u) = ε0E + P versus each other,
which we do for both the normal ferroelectric NaMgP
and the hyperferroelectric LiBeSb in Figs. 2-3. In both
cases, we indicate regions that are locally unstable, lo-
cally stable, and globally stable under fixed-E boundary
conditions. In locally unstable regions (∂P/∂E < 0), the
atomic degrees of freedom are at an unphysical maximum
of the free energy, rather than a minimum. In NaMgP, P
as a function of E is multi-valued at E=0, indicating that
NaMgP is ferroelectric, with spontaneous polarization as
given in Table I. However, P vs. D is single-valued, in-
dicating that NaMgP will not polarize under fixed D=0
boundary conditions, and thus is a normal proper ferro-
electric. In contrast, for the hyperferroelectric LiBeSb,
both P vs. E and P vs. D are multi-valued, so that
the material will spontaneously polarize under both fixed
E= 0 and fixed D= 0 boundary conditions. In addition,
the slope of D vs. E indicates ε0 = ∂D/∂E|E=0 > 0, de-
spite the unstable polar mode. As shown in Table I and
Fig. 3(c), the D = 0 polarization of hyperferroelectrics,
P (D=0), which we compute with the model of Eqs. 1-
2, is small compared to P (E=0); however, the amplitude
of the polar mode remains surprisingly large. The po-
lar distortions of the materials at D= 0 are 25−75% of
their E = 0 values, but the resultant ionic polarization
is largely canceled by the electronic polarization χe(u)E
induced by the depolarization field, resulting in a small
net polarization.

To emphasize the difference between hyperferro-
electrics and improper ferroelectrics, we briefly review
a model of an improper ferroelectric. In the simplest im-
proper ferroelectrics, the primary order parameter, v, is
non-polar, but it couples to a stable polar mode u with
the form uv3. Then u, which appears only to quadratic
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FIG. 4: Energy landscape and electric equations of state for
improper ferroelectric model of Eq. (3). a) Energy vs. non-
polar mode v. b) P vs. E . c) P vs. D. d) D vs. E . All regions
are locally stable at fixed E ; globally stable regions in black;
other regions in red.

order, can be minimized over analytically, resulting in an
effective coupling between v3 and E :

F (v, E) = −av2 + bv4 − cv3 E − 1

2
χeE2. (3)

In Fig. 4, we plot P vs D and D vs E for this model
with typical parameters. Similar to hyperferroelectrics,
improper ferroelectrics allow for a non-zero polarization
at D = 0; however, the overall shape of the curves is
very different. In particular, improper ferroelectrics lack
a structure with D = P = 0. This reflects the fact our
model of improper ferroelectrics always has a barrier to
homogeneous switching via external field (∂P/∂E>0 ev-
erywhere), as that the effective coupling between the field
and third power of the non-polar distortion cannot over-
come the primary quadratic instability. Clearly, then,
the physical behavior of improper ferroelectrics and hy-
perferroelectrics is qualitatively different.

Returning to our main topic, we note that the un-
usual electric properties of hyperferroelectrics mean that
the ferroelectric phase transition temperature, which de-
creases with decreasing screening, will still be non-zero
even under D=0 boundary conditions. At this tempera-
ture, TD, the LO mode becomes unstable and the mate-
rial becomes a hyperferroelectric. As a hyperferroelectric
goes through TD under D= 0 boundary conditions, the
inverse dielectric constant will diverge, rather than the
dielectric constant, which can be understood by compar-
ing the D vs. E plots of normal and hyperferroelectrics in
Figs. 2(d) and 3(d), respectively. In order to transition
from the normal to the hyperferroelectric state, the slope
at the origin of the D vs. E curve, which is equal to the
dielectric constant, must pass through zero.
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In order to demonstrate the consequences of the most
notable quality of hyperferroelectrics, their ability to
polarize under fixed D = 0 boundary conditions, we
place our ABC ferroelectrics in superlattice configura-
tions with thick slabs of non-polar ABC materials. We
expect that normal ferroelectrics will not polarize in this
geometry if there are no free charges, as a sufficiently
thick non-polar layer will have P = 0, which enforces
D= 0 boundary conditions on the ferroelectric, but hy-
perferroelectrics will still polarize under these conditions.

We consider superlattices consisting of ferroelectric
ABC materials combined with non-polar hexagonal
ABC semiconductors, specifically normal ferroelectric
NaMgP with non-polar KZnSb and hyperferroelectric
LiBeSb with non-polar NaBeSb, as shown in Fig. 5. We
epitaxially strain each superlattice to the in-plane lattice
constant of the non-polar material, allowing the z lattice
constant to relax.

As shown in Table II, the normal ferroelectric NaMgP
has essentially no polarization when in a superlattice with
an insulating material. We attribute the tiny 10 meV
energy lowering of the 1/7 NaMgP/KZnSb superlattice
to interface effects, as the interfaces between NaMgP and
KZnSb consist of single layers of NaZnSb, which as shown
in Table I is itself a hyperferroelectric. On the other
hand, a single polarized layer of the hyperferroelectric
LiBeSb interfaced with NaBeSb has a significantly lower
energy and reduced band gap relative to an unpolarized
layer. A second LiBeSb layer already provides sufficient
polarization to cause the system to become metallic, due
to dielectric breakdown, a field-induced overlap of con-
duction and valence bands leading to charge transfer.

As already demonstrated, hyperferroelectrics can re-
main polarized down to single atomic layers even when
interfaced with normal insulators. Such quasi-2d ferro-
electric systems could have a variety of unusual proper-
ties. First, by adjusting the spacing of layers in a su-
perlattice, the polarization, well depth, band gap, and
internal electric field could all be tuned. More specu-
latively, these superlattice systems could display novel
domain-wall motion or super-fast switching behavior, as
they consist of weakly-coupled ferroelectric layers which
may allow for easier domain nucleation, and they support
head-to-head and tail-to-tail domain walls. Also, unlike
a normal ferroelectric, which requires asymmetric screen-
ing charges to remain polarized, a hyperferroelectric can
switch between two states without the motion of screen-
ing charges between its surfaces or interfaces, allowing
hyperferroelectric slabs which are terminated by vacuum
or by non-polar insulators to be switched via an external
field. In addition, in contrast to improper ferroelectrics,
the primary order parameter of hyperferroelectrics cou-
ples directly to an applied electric field, which may allow
for easier switching. Finally, ABC materials could be
used to build an all-semiconducting ferroelectric field ef-
fect transistor, side-stepping many of the materials diffi-

Ferro. Non-polar Period ∆E Gap(HS) Gap(FE) P (E=0)

(eV) (eV) (eV) C/m2

NaMgP KZnSb 1/7 –0.01 0.32 0.35 0.007
NaMgP KZnSb 2/6 0 0.69 − 0
NaMgP KZnSb 3/7 0 0.61 − 0
NaMgP KZnSb 4/6 0 0.68 − 0
LiBeSb NaBeSb 1/7 –0.07 0.75 0.39 0.03
LiBeSb NaBeSb 2/6 –0.09 0.57 m m
LiBeSb NaBeSb 3/7 –0.25 0.28 m m
LiBeSb NaBeSb 4/6 –0.50 0.32 m m
LiBeSb NaBeSb 1/3 –0.08 0.77 0.46 0.07
LiBeSb NaBeSb 2/2 –0.41 0.61 1.02 0.56

TABLE II: Properties of superlattices. An n/m ABC/A′B′C′

superlattice consists of n BC atomic layers separated by A
atomic layers, and m B′C′ atomic layers separated by A′

atomic layers, with A layers at both interfaces. ∆E is the
energy gained by allowing a polar distortion. ‘Gap(HS)’ and
‘Gap(FE)’ are the band gaps for the non-polar and polar
phases respectively; m indicates a metal. For insulators,
P (E=0) is the polarization for E=0 boundary conditions.

Li

a)                                                      b) Sb

Be

Na

FIG. 5: Interfacial region of a) non-polar and b) polar phases
of 1/7 LiBeSb/NaBeSb superlattice. The full supercell has
three additional unpolarized NaBeSb layers.

culties and interface effects that have hampered attempts
to interface ferroelectric oxides with semiconductors [12–
14].

In conclusion, we have introduced a new class of ferro-
electrics, hyperferroelectrics, and we have identified ex-
amples among the ABC hexagonal semiconducting fer-
roelectric family. These new ferroelectrics have a variety
of interesting and potentially useful properties, both in
the bulk and as thin films. Furthermore, this work high-
lights the benefits of looking beyond well-studied mate-
rials systems in the search for functional materials with
novel properties.
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