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We propose searching for Chern insulators by depositing atomic layers of elements with large
spin-orbit coupling (e.g., Bi) on the surface of a magnetic insulator. We argue that such systems
will typically have isolated surface bands with non-zero Chern numbers. If these overlap in energy, a
metallic surface with large anomalous Hall conductivity (AHC) will result; if not, a Chern-insulator
state will typically occur. Thus, our search strategy reduces to looking for examples having the
Fermi level in a global gap extending across the entire Brillouin zone. We verify this search strategy
and identify several candidate systems by using first-principles calculations to compute the Chern
number and AHC of a large number of such systems on MnTe, MnSe, and EuS surfaces. Our search
reveals several promising Chern insulators with gaps of up to 140 meV.

The discovery of the quantized conducting edge states
characteristic of the integer quantum Hall effect (IQHE),
and their explanation in terms of a bulk topological in-
variant known as the Chern number or TKNN invariant
[1], initiated a new emphasis on topology in the theory
of electronic structure. In recent years, this trend has
accelerated enormously, extending also to materials with
time-reversal (TR) symmetry and leading to important
discoveries including two-dimensional (2D) quantum spin
Hall (QSH) systems and three-dimensional (3D) topolog-
ical insulators (TI) [2, 3].

Concerning systems with broken TR symmetry, it has
been known since the work of Haldane [4] that it is pos-
sible in principle to have an insulating magnetic material
exhibiting a non-zero Chern number, as in the IQHE, but
in the absence of any applied magnetic field. These Chern
insulators, or quantum anomalous Hall insulators, would
display many of the same properties as IQHE systems,
including robust edge states with quantized conductance,
potentially at room temperature. Theoretically, it seems
quite plausible that spin-orbit coupling (SOC), when
combined with broken TR symmetry, could allow for a
non-zero Chern number in an insulator just as it allows
for non-zero anomalous Hall conductivity in metals [5–
8]. While some aspects of the Chern-insulator state have
been investigated theoretically [9, 10], there are currently
no experimentally known examples of Chern insulators,
and finding one remains a major challenge in condensed
matter physics.

Motivated in part by the spectacular recent progress
concerning other kinds of topological insulators, there
has been a dramatic renewal of interest recently in
the search for experimental realizations of the Chern-
insulator state. Previous experimental and theoreti-
cal proposals for Chern insulators have typically in-
volved starting with non-magnetic topological-insulator
or Dirac-cone systems, such as HgTe quantum wells
[11, 12], graphene [13], and Bi2Se3 [14–17], and doping
them with magnetic ions in order to break TR symmetry

in such a way as to generate a Chern-insulator state [18].
While these proposals are promising, there are serious
challenges associated with this strategy, including the
difficulties of magnetically doping these materials in a
controlled fashion, understanding the role of the asso-
ciated disorder, aligning the spins of the dopants, and
keeping these small-gap materials insulating during the
process. Further proposals have focused on avoiding dop-
ing by using thin layers of stoichiometric compounds like
GdBiTe3 [19] and HgCr2Se4 [20], but the band gaps re-
main small.

In this work, we propose an alternate search strategy
for Chern insulators that overcomes many of the materi-
als challenges of previous work, and we use first principles
calculations to prove its viability. In addition, we suggest
several candidate systems with non-zero Chern numbers,
including several with significant gaps. Our proposal is to
start with a known magnetically-ordered insulating sub-
strate, choose a surface which breaks TR symmetry, and
deposit a layer of heavy atoms (Pt-Bi) with large SOC
(see Fig. 1). In other words, we directly combine the two
key ingredients necessary to create a Chern insulator:
broken TR symmetry and large SOC. By starting with
a large-band-gap substrate with naturally aligned spins,
we avoid the difficulties related to magnetic dopants and
disorder. In addition, by including the heaviest possible
atoms, we maximize the SOC and have the potential for
band gaps over 0.5 eV.

As will be discussed shortly, our strategy generically
gives rise to surface bands in the bulk band gap having
two crucial properties: (i) they are isolated, in the sense
that surface band N does not touch bands N ± 1 any-
where in the 2D Brillouin zone (BZ); and (ii) these bands
typically carry non-zero Chern numbers. Property (i) in-
sures that the minimum direct gap between bands N and
N + 1 is generically positive. Property (ii) implies that if
the indirect gap between these bands is also positive, so
that a global gap exists, then a surface with N filled sur-
face bands is likely to realize the Chern-insulator state.
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FIG. 1: a) Top view and b) side view of the tripled surface
unit cell of MnTe with 2/3 ML Pb. Pb is in green, Mn in
gray, Te is dark blue and I in cyan.

The essential challenge for our strategy, therefore, is to
choose a magnetic substrate and a heavy-adatom surface
decoration that can put the Fermi energy in a global gap
of the 2D surface bandstructure. As we show below, this
is not an insurmountable difficulty.

We give here a brief justification of properties (i) and
(ii) above, although they are also amply illustrated by the
results presented later. Regarding (i), it is well known
that, in the absence of special symmetries, accidental de-
generacies between bands in 2D generically do not oc-
cur. This fact can be understood by considering that
the Hamiltonian near any potential crossing between two
bands can be written as a linear combination of the three
Pauli matrices; for the bands to cross, the coefficients
of all three matrices must vanish. In the 2D (kx, ky)
space of the BZ, this will not happen except by spe-
cial tuning of some third parameter. Moreover, since
we consider systems with a net magnetization at the sur-
face in the presence of SOC, neither time reversal (TR)
nor common crystallographic point symmetries (e.g., 3m′

for most of the cases below) enforce degeneracies at any
high-symmetry points in the BZ. Regarding property (ii),
we find that if the SOC, magnetic exchange, and inter-
atomic hoppings are all of comparable magnitude, then
non-zero Chern numbers are typical. To illustrate this,
we performed a numerical study of random tight-binding
Hamiltonians consisting of between two and six orbitals
on a square lattice with random complex hoppings to the
four adjacent and four diagonal unit cells, and found that
the Chern numbers of the resulting bands appear to be
normally distributed around zero with a standard devi-
ation of 1-2. In other words, non-zero Chern numbers
are abundant in 2D in the absence of TR or other special

symmetries.
In order to prove the viability of our proposal, we

perform first-principles calculations on surfaces of three
insulating magnetic substrates with a variety of mono-
layer or submonolayer heavy-atom coverages, searching
for promising Chern-insulator systems. We consider the
(001) surfaces of MnSe and MnTe in the NiAs structure
(P63/mmc), and the (111) surface of EuS in the rock-
salt structure (Fm3̄m). These hexagonal surfaces are
closely related, as the structures only differ by the stack-
ing sequence of the hexagonal close-packed atomic lay-
ers. MnSe and MnTe are A-type antiferromagnets, with
layers of ferromagnetically aligned spins lying in the xy
plane, while EuS is ferromagnetic. For MnSe, we cal-
culate that the spins can be aligned in the ±z-direction
by applying an epitaxial strain of −2%, so we adopt this
strain state in what follows. These substrates were cho-
sen for their large magnetizations, large band gaps, and
simple structures.

Our computational supercells consist of slabs of four
layers of the magnetic substrate, passivated by iodine
atoms on the bottom surface and stacked with a vacuum
separation of ∼12 Å, as illustrated in Fig. 1. The top sur-
faces of the substrates are terminated on the magnetic-
atom layer (Mn or Eu) so that when the heavy atoms
(Pt through Bi) are absorbed, the direct contact with
the magnetic ions will maximizing the exchange splitting.
We note that these terminations are all polar, with each
1×1 area donating one electron to the surface adatoms.
This fact highlights the difficulty in combining heavy
atoms directly with magnetic atoms in a thermodynam-
ically stable way, as both types of atom typically prefer
positive oxidation states. However, it may be possible
to stabilize these surfaces as metastable states. Further
theoretical work, combined with experimental investiga-
tions, will be necessary to identify which structures can
be achieved in practice.

We begin our search by considering full monolayers of
heavy atoms on MnTe surfaces. Promisingly, the bands
show both large exchange splittings and strong SOC ef-
fects, but the bandwidths of the surface bands are about
3 eV, making it difficult to find systems with gaps. In
order to reduce the dispersion of the surface bands to
the same magnitude as the spin-orbit and exchange split-
tings, we consider tripled unit cells with only 1/3 or 2/3
ML of heavy atoms adsorbed. These structures, which
produce flatter surface bands, are the focus of the re-
mainder of this work.

In Figs. 2(a-b) we show the band structure of 2/3 ML of
Pb of MnTe arranged in a honeycomb lattice (see Fig. 1)
with the spins aligned along the ±z and ±x direction
respectively. We label the Chern numbers of each gap,
defined as the total Chern number of all bands below the
gap; the Chern number of an isolated band is then just
the difference between the gap Chern numbers above and
below it. The system with spins in the ±z direction is a
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FIG. 2: (a-b) Band structure of 2/3 Pb on MnTe with spins in
(a) the ±z-direction, and (b) the ±x-direction. Bands with
the most Pb character are highlighted in thick (blue) lines;
bulk-like MnTe bands are in thin (black) lines. Chern num-
bers of gaps near the Fermi level are labeled. (c-d) Anomalous
Hall conductivity of band structures in (a-b), in units of e2/h.
Quantized plateaus are highlighted.

Chern insulator (C=−1) with a direct band gap of 126
meV and an indirect band gap of 36 meV, providing a
proof of principle for our search method. The effect of the
non-zero Chern numbers on the AHC can be seen for the
insulating case of Fig. 2(c), which shows quantized Hall
plateaus (circled). For the case of a semimetal, Fig. 2(d),
the plateaus disappear but the AHC remains on the order
of e2/h, especially near avoided crossings. Incidentally,
we find a similar behavior for the case of a honeycomb
layer of Pb atoms at the same lattice constant in vacuum
with a Zeeman field of about 0.5 eV representing the cou-
pling to Mn; such a (hypothetical) system also produces
similar flat bands with non-zero Chern numbers.

The Pb honeycomb structure has seven Pb p bands
occupied in the tripled unit cell. We can change the
doping of the system, modifying this number down to

Substrate Surface Spin C Edir
g Eindir

g

direction (meV) (meV)
MnTe AuAu z 1 141 36
MnTe AuAu x m m m
MnTe HgHg z 0 31 −341
MnTe TlTl z m m m
MnTe PbPb z −1 126 36
MnTe PbPb x −1 12 −156
MnTe BiBi z m m m
MnSe Pb z 0 25 24
MnSe AuAu z 1 64 −731
MnSe PbPb z −1 213 1
MnSe PbPb x −1 12 −103
MnSe PbBi z −2 31 −9
MnSe PbPbI z −3 84 56
MnSe BiI z 1 302 41
MnSe BiBr z 1 213 142
MnSe TlI z 0 5 −53
MnSe HgSe z −1 22 −23
EuS PbPb z −1 91 −48
EuS AuAu z 0 188 −251

TABLE I: Chern number (C) and direct (Edir
g ) and indirect

(Eindir
g ) gaps for surface adatoms on four layers of magnetic

insulator. Surfaces are labeled by number of adatoms per
tripled unit cell (e.g., PbPbI consists of 2/3 ML Pb and 1/3
ML I). Chern insulators are in bold. Systems with Edir

g <
2 meV are labeled m (“metallic”).

one and up to nine, by scanning through the (Au, Hg,
Tl, Pb, Bi) series of heavy elements. We have carried out
corresponding DFT calculations of all of these systems,
and the results are summarized in Table I. We find that
2/3 ML Au on MnTe with spins along z also produces
a Chern insulator with properties similar to that of Pb,
except that the Chern number is now C=+1.

While encouraging, our initial examples of Chern in-
sulators on MnTe have two problems: (i) the band gaps
are rather small, and (ii) experimentally the spins of bulk
MnTe lie in the xy plane, which we find tends to close the
gaps. We address these problems by searching though a
variety of structures on EuS and strained MnSe surfaces,
which have their spins in the z (surface-normal) direction.
We consider tripled surface unit cells decorated with 1-2
heavy adatoms and 0-2 electron-accepting adatoms (S,
Se, I, Br), thus allowing us to tune the filling of the sur-
face bands towards potentially Chern-insulating combi-
nations. We perform 51 calculations in our initial search
by using slabs of magnetic insulator which are only two
layers thick. We find that 30 of these are metallic, 6 be-
cause of a near-zero direct gap and 24 because of indirect
overlap (Eindir

g < 0). Of the latter, the Chern number of
the gap is non-zero for 14, of which 3 are nearly Chern
insulators (Eindir

g > −10 meV). Of the remaining sur-
faces, 11 are trivial insulators and 9 are Chern insulators
(4 of which, however, have Eindir

g < 10 meV). Then we
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FIG. 3: Band structures of atoms on −2% epitaxially strained
MnSe. Top: 1/3 ML Br, 1/3 ML Bi, Bottom: 2/3 ML Pb,
1/3 ML I. Majority spin-up surface bands are in red; majority
spin-down surface bands are in blue; bulk-like bands are in
thin black lines. Chern numbers near the Fermi level are
labeled.

re-calculate several interesting candidate systems using
four-layer slabs, usually finding similar surface bands but
with modified gaps. The results for some representative
cases are presented in Table I. In general, the systems
with EuS and MnSe are similar, with both producing
many non-zero Chern numbers. On the other hand, fewer
of the EuS systems are insulating; we trace this to the
reduced overlap between the very localized Eu 4f -states
and the surface adatoms, leading to reduced exchange
splittings.

As shown in Table I, we find a variety of materials with
non-trivial Chern numbers, including six Chern insula-
tors with indirect gaps ranging from a minuscule 1 meV
to a robust 142 meV (BiBr on MnSe). To our knowledge,
this is the largest calculated band gap for a theoreti-
cally proposed Chern-insulator state. In addition, BiI on
MnSe has a direct band gap which never falls below 302
meV, suggesting that there is no fundamental principle
which prohibits this search method from producing gaps
at least as large as those seen in Bi2Se3, the largest-gap
topological insulator.

Fig. 3 shows the band structures of two of our largest-
gap Chern insulators, 2/3 ML Pb plus 1/3 ML I (PbPbI)
and 1/3 ML Bi plus 1/3 ML Br (BiBr) on strained MnSe.
These two band structures are typical of these systems,
except that these examples have unusually large gaps at

the Fermi level. Systems with one heavy atom per tripled
unit cell, like BiBr, frequently have flat bands with large
gaps; however, many of these gaps are trivial. In con-
trast, systems with two heavy atoms, like PbPbI, have
more non-zero Chern numbers but fewer large gaps; this
results from the larger number of dispersive bands around
the Fermi level, which leads to more avoided crossings.

While we have not addressed the kinetic or thermody-
namic stability of these particular Chern-insulator sur-
face systems under realistic experimental conditions, our
strategy of putting heavy atoms on the surfaces of mag-
netic substrates produces so many non-trivial band struc-
tures that it is likely that suitable candidates can be
achieved through future collaboration between theory
and experiment. In addition, it should be possible to
search this class of surfaces experimentally for candidates
that are metallic but have a large AHC, on the order of
e2/h as in Fig. 2(d). Since this implies that strong SOC
is already generating a non-trivial band structure, one
could then attempt to tune these candidates via chemical
additions or substitutions, strain, or spin-alignment engi-
neering, in such a way as to arrive at a Chern-insulating
state. Undoubtedly, a combined experimental and theo-
retical search will be the best strategy for arriving at the
desired Chern-insulating surfaces.

In summary, we have proposed a search strategy
for finding Chern insulators which avoids many of the
materials-related difficulties of previous proposals. Our
approach is to use magnetically insulating large-gap sub-
strates and decorate their surfaces with elements having
large spin-orbit coupling. We have demonstrated the vi-
ability of this approach with first-principles calculations,
finding a number of Chern insulators with gaps on the
order of 50-150 meV, and have discussed the possibilities
for the experimental realization of this strategy.

METHODS

Our first-principles plane-wave calculations are carried
out in the context of density functional theory (DFT)
[21, 22] using the local-density approximation (LDA)
[23, 24] and the PBE generalized-gradient approxima-
tion (GGA) [25] for calculations on Mn and Eu com-
pounds respectively. We add Hubbard U (DFT+U)
[26, 27] corrections to Mn and Eu using literature val-
ues (U=5 and 6 eV respectively) which which have been
shown to be needed to describe the bulk materials as in-
sulators [28, 29]. We have tested the sensitivity of our
results to the choice of U ; for variations of 1-2 eV the
calculated Chern numbers are constant, but the mag-
nitude of the gaps can change. The calculations are
done with two codes: Quantum Espresso [30], using
fully-relativistic norm-conserving non-local pseudopoten-
tials from the OPIUM package [31, 32], as well as VASP
[33, 34] using PAWs [35, 36] (we find very similar results
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with both codes).
Results from both codes are used as input to construct

maximally-localized Wannier functions (MLWF) using
WANNIER90 [37, 38]. Chern numbers and band gaps
are calculated using Wannier interpolation of the band
structure; the Chern numbers are computed by sampling
a dense k-point grid (from 32×32 to 128×128, if neces-
sary for convergence) and adding up the Berry phases
around the loops formed by each set of four adjacent k-
points in the Brillouin zone. In addition, we calculate
the anomalous Hall conductivity (AHC) for a few exam-
ples using a 128×128 k-point grid with the WANNIER90
postprocessing code [39–41].
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