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We present an efficient first-principles approach for calculating Fermi surface averages and spectral
properties of solids, and use it to compute the low-field Hall coefficient of several cubic metals and
the magnetic circular dichroism of iron. The first step is to perform a conventional first-principles
calculation and store the low-lying Bloch functions evaluated on a uniform grid of k-points in the
Brillouin zone. We then map those states onto a set of maximally-localized Wannier functions,
and evaluate the matrix elements of the Hamiltonian and the other needed operators between the
Wannier orbitals, thus setting up an “exact tight-binding model.” In this compact representation
the k-space quantities are evaluated inexpensively using a generalized Slater-Koster interpolation.
Because of the strong localization of the Wannier orbitals in real space, the smoothness and accuracy
of the k-space interpolation increases rapidly with the number of grid points originally used to
construct the Wannier functions. This allows k-space integrals to be performed with ab-initio

accuracy at low cost. In the Wannier representation, band gradients, effective masses, and other
k-derivatives needed for transport and optical coefficients can be evaluated analytically, producing
numerically stable results even at band crossings and near weak avoided crossings.

I. INTRODUCTION

In electronic structure calculations for solids, the eval-
uation of an observable requires integrating a periodic
function in reciprocal space.1 We will distinguish between
three kinds of properties: those where the integral is over
the Brillouin zone (type-I), over the Fermi surface (type-
II), and over an energy-difference isosurface (type-III). In
many cases those integrals take, at T = 0, the form

I(I) =
∑

n

∫

BZ

dk

(2π)3
Fnn(k)θ(Enk − Ef), (1)

I(II) =
∑

n

∫

BZ

dk

(2π)3
Fnn(k)δ(Enk − Ef), (2)

and

I(III)(ω) =

occ
∑

n

empty
∑

m

∫

BZ

dk

(2π)3
Fnm(k)δ

[

h̄ω−(Emk−Enk)
]

.

(3)
Here Ef is the Fermi level, Enk are the eigenenergies of
the one-electron states, and Fnm(k) involves matrix el-
ements of periodic operators which commute with the
crystal translations. Ground-state properties such as
the total energy, and dc response functions such as the
Hall conductivity, are examples of the first and second
type of property, respectively. The third type includes
optical absorption in the dipole approximation; other
response and spectral functions can be expressed in a
similar form.2 Eqs. (1)–(3) are by no means exhaustive.
While properties such as the electron-phonon interaction
[described by matrix elements of the form Fnm(k,k + q)
associated with phonon wavevector q] are not explicitly
covered above, the methods discussed in this paper can
be extended to handle such cases.3

In a practical calculation the continuous integral is re-
placed by a summation over a finite number N of points
in the Brillouin zone (BZ),

Vcell

(2π)3

∫

BZ

dk → 1

N

∑

k

w(k), (4)

where Vcell is the cell volume and w(k) are the k-point
weights that arise upon restricting the summation to the
irreducible wedge of the BZ. For type-I properties of in-
sulators, the integrand varies smoothly across the BZ
and this summation converges rapidly with the number
of sampled points.1 In metals the BZ integral must be
treated carefully, as the integrand is now discontinuous
due to the partial filling of the energy bands. Prop-
erties of type II and III pose the additional challenge
of sampling isosurfaces in k-space accurately and effi-
ciently. In all these other cases the rate of convergence
is much slower than for ground state properties of in-
sulators, and a very large number of k-points may be
needed. This sampling problem severely limits the ef-
ficiency and accuracy of ab-initio calculations for many
properties. Examples of such difficulties abound even in
the recent literature, and include the magnetocrystalline
anisotropy of ferromagnets4 and optical absorption in hot
liquid metals,5 to name just a few.

In this paper we describe a widely-applicable WF-
based scheme for interpolating both the energy bands
Enk and the matrix elements Fnm(k). The method was
used in Ref. 6 to compute the anomalous Hall conductiv-
ity of iron. Where possible, we have adopted a notation
consistent with that work. Ref. 6 dealt with a type-I
problem (the quantity being integrated over the BZ was
the Berry curvature of the occupied states), and here we
extend the method to problems of type II and III.

As an example of a type-II problem, we study the low-
field classical Hall coefficient of several cubic metals. This
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and other transport coefficients pose an additional chal-
lenge to existing ab-initio methodologies: how to evaluate
the first and possibly also the second k-derivatives of the
energy bands at the Fermi level. Early work7 employed
tight-binding (TB) parameterizations of ab-initio bands
and the derivatives were calculated by numerical differ-
entiation using the linear tetrahedron method. In other
work, an analytic evaluation of the TB band gradients
has been used to achieve improved numerical stability,8

but the second derivatives were still computed by finite
differences. Other interpolation strategies, such as the
SKW scheme9,10,11 and spectral differentiation,12 have
also been used.

All previous interpolation schemes have one feature in
common: the only information retained from the origi-
nal ab-initio calculation is the set of energy eigenvalues
on a grid of k-points. Hence the information about the
connectivity of the bands is lost, and the interpolation
becomes unreliable or even unstable in the vicinity of
band crossings, avoided crossings, and near-degeneracies.
Moreover, retaining only the eigenenergies strongly re-
stricts the type of matrix elements Fnm(k), and hence
observables, that can be computed.

A more powerful interpolation scheme can be obtained
by keeping one more piece of information, namely, the
overlap matrices between the Bloch states at neighboring
grid points as in Eq. (5) below. It is perhaps not widely
appreciated that the information about band connectiv-
ity is encoded in those overlap matrices. Indeed, they
are the key input for the WF-construction method,13,14

and the connectivity can be recovered from the Wannier
representation of the bandstructure. Thus, not only do
the Wannier-interpolated bands reproduce the ab-initio

bands with essentially no loss of accuracy, but their k-
derivatives can also be evaluated analytically. Like the
SKW scheme, the present method is based on Fourier in-
terpolation. Unlike SKW,10 however, it produces stable
and reliable results even in the presence of band crossings
and avoided crossings.

Remarkably, a knowledge of the overlap matrices of
Eq. (5) allows for the interpolation of properties that
are not determined by the energy bands alone, but also
depend on the position (or velocity) matrix elements.
(More generally, any one-electron operator can be inter-
polated if, in addition, its matrix elements between the
WFs are tabulated.) As an example, we compute the
magnetic circular dichroism of iron, a type-III property.

The paper is organized as follows. Section II contains
the methodological aspects of the work. We start by re-
viewing the WF construction methods. We then describe
the Wannier-interpolation strategy for a generic periodic
operator. The interpolation of the velocity operator, as
well as of band gradients and inverse effective masses,
is discussed separately. We conclude Sec. II by present-
ing an improved broadening scheme for performing the
k-space integrals. In Sec. III we apply the technique to
the low-field Hall effect of several cubic metals, and in
Sec. IV to the magnetic circular dichroism of bcc Fe. In

Sec. V we provide a brief discussion and conclusion. The
Appendix contains some convergence studies.

II. WANNIER INTERPOLATION

A. Construction of the Wannier functions

Ab-initio calculations provide a certain number of low-
lying Bloch eigenstates ψnq(r) = eiq·runq(r) on a mesh
of k-points in the BZ, which we take to be uniform. We
will denote points on this “ab-initio mesh” by q, to distin-
guish them from arbitrary or interpolation points, which
will be denoted by k.

Consider a type-II (Fermi-surface) problem; two situa-
tions may occur. The first one, which is seen in Pb for ex-
ample, occurs when the Fermi level lies within an isolated
group of M bands, where by “isolated” we mean sepa-
rated from all higher and lower bands by a gap through-
out the BZ. In this case it is possible to construct a set
of M WFs per unit cell spanning the Hilbert space of
the isolated Bloch manifold. This can be done using the
method of Marzari and Vanderbilt13 to obtain so-called
maximally localized Wannier functions for that isolated
group of bands.

The second scenario occurs when the bands of inter-
est are “entangled” with other bands. Then it is still
possible, using the approach of Souza, Marzari, and
Vanderbilt,14 to construct a small number M of maxi-
mally localized WFs which describe those bands exactly.
The number M of WFs per cell is now to some extent
an adjustable parameter. The first step is to identify the
subspace of states of interest. Usually this is done by se-
lecting the bands inside an energy window spanning from
Emin to Emax. (For type-I and type-III problems Emin

is normally in the gap below the lowest valence bands
and the position of Emax depends on the problem, but
is always above Ef . For a type-II problem the only re-
quirement is that Emin < Ef < Emax, and in practice the
range is adjusted so that WFs with good localization and
symmetry properties result.) The number Nq of states
within this window can vary from one q-point to another,
and we require that M ≥ Nq for all q, so that the space
spanned by the WFs (the “projected space”) can be cho-
sen to contain as a subspace all the window states. In
the method of Ref. 14 a second (outer) energy window is
used which encloses the previously defined (inner) win-
dow. At each q, the M -dimensional projected space is a
subspace of the Nq-dimensional space of states contained
in the outer window. For the special case of an isolated
group of M bands it is natural to choose M = Nq = Nq

Only two pieces of information from the ab-initio cal-
culation are needed as an input to the WF-generation
algorithm: the Nq band-energy eigenvalues Enq, and the
Nq × Nq+b overlap matrices between the cell-periodic
Bloch eigenstates at neighboring points q and q + b,

Snm(q,b) = 〈unq|um,q+b〉. (5)
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The output consists of an Nq ×M matrix U(q) for each
q. These matrices relate the original set of Nq ab-initio

Bloch eigenstates selected by the outer window to a new
set of M orthonormal Bloch-like states

|u(W)
nq 〉 =

Nq
∑

m=1

|umq〉Umn(q) (6)

that vary smoothly with q. These states are labeled with
a superscript (W) to indicate that the WFs are obtained
from them by a direct Fourier sum

|nR〉 =
1

N0

∑

q

e−iq·R|u(W)
nq 〉, (7)

where the sum runs over a grid of N0 q-points and |nR〉
is the n-th Wannier function in the unit cell at R.

Although the explicit construction of the WFs obvi-
ously requires a knowledge of the |unq〉’s, only the eigen-
values Enq and the overlaps S(q,b) are needed to obtain
the U(q) matrices. Retaining this minimal information
from the ab-initio calculation is thus sufficient for many
applications, including the ones presented in this work.

An important object in what follows is the M × M
Hamiltonian matrix in the projected subspace,

H(W)
nm (q) = 〈u(W)

nq |Ĥ(q)|u(W)
mq 〉

=
[

U†(q)H(q)U(q)
]

nm
, (8)

where Hnm(q) = Enqδnm is a diagonal Nq × Nq matrix

and Ĥ(q) = e−iq·r̂Ĥeiq·r̂. We diagonalize H(W)(q) by
finding an M ×M unitary matrix U(q) such that

U †(q)H(W)(q)U(q) = H(H)(q), (9)

where H
(H)
nm (q) = E(H)

nq δnm. Then E(H)
nq will be identical

to the original ab-initio Enq for all bands inside the inner
window. The corresponding Bloch states

|u(H)
nq 〉 =

∑

m

|u(W)
mq 〉Umn(q) (10)

will also coincide with the ab-initio eigenstates |unq〉 in-
side the inner window. We shall refer to a quantity with
a (W) or (H) superscript as belonging to the Wannier or
Hamiltonian gauge respectively.

B. Wannier interpolation of a periodic operator

The problem we pose for ourselves is the following one.
Suppose we are given a periodic operator operator Ô, and
we have computed at every q

Onm(q) = 〈unq|Ô(q)|umq〉, (11)

its matrix elements between the Nq ab-initio eigenstates
in the outer energy window. How can we interpolate

this matrix onto an arbitrary point k? We now show
that this can be achieved once the matrices U(q) and the
eigenvalues Enq (n = 1, . . . ,Nq) are known. Naturally,
we can only expect the interpolation onto a given k to
be meaningful for those matrix elements (n,m) for which
both Enk and Emk fall within the inner window.

We start by describing in Sec. II B 1 the interpolation
strategy as it applies to most (“conventional”) proper-
ties. Transport and optical properties merit a separate
discussion, given in Sec. II B 2.

1. Conventional properties

By analogy with Eq. (8), we define the M ×M matrix

O(W)
nm (q) = 〈u(W)

nq |Ô(q)|u(W)
mq 〉

=
[

U†(q)O(q)U(q)
]

nm
. (12)

Next we find its Fourier sum

O(W)
nm (R) =

1

N0

∑

q

e−iq·RO(W)
nm (q). (13)

This operation is done once and for all for each of the
N0 lattice vectors R lying in a supercell conjugate to the
q-mesh. (If the sum is performed using a fast Fourier
transform (FFT), the vectors R will be disposed in a
parallelepipedal supercell.) Using Eq. (7) we recognize

in O(W)
nm (R) the matrix element of Ô between WFs,

O(W)
nm (R) = 〈n0|Ô|mR〉. (14)

In the above equations, the specification of the lattice
vectors R can be left ambiguous with respect to supercell
translations (R → R+Rsup) since exp(iq ·Rsup) = 1 for

all mesh points q, and thus O(W)(R+Rsup) = O(W)(R).
However, we now wish to perform the inverse (slow)
Fourier transform

O(W)
nm (k) =

∑

R

eik·RO(W)
nm (R), (15)

which yields the interpolation of Eq. (12) onto an arbi-
trary point k. At this point the set of lattice vectors
must be defined more precisely, since for points k not
on the q-mesh exp(ik · Rsup) 6= 1, and the smoothness
of interpolation will depend on the choice of set. Us-
ing the FFT parallelepipedal supercell, for example, is
generally not optimal. Instead, one wants to choose lat-
tice vectors lying inside the Wigner-Seitz (WS) super-
cell centered on the origin,6,14 but the details may vary
(e.g., sharing weights of R-vectors lying on the bound-
ary of the WS supercell, or truncation to a sphere lying

within the WS supercell). In practice the |O(W)
nm (R)| de-

cay exponentially with |R|, as expected if the WFs are
exponentially localized, so the results should not be very
sensitive to this choice, when using a sufficiently dense
q-mesh. These remarks are illustrated in the Appendix.
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FIG. 1: (Color online.) Wannier-interpolated bands of bcc Fe
along Γ–H. The bands are color-coded according to the value
of 〈Sz〉: red for spin up and blue for spin down. The energies
are given in eV and the Fermi level is at 0 eV. The vertical
dashed lines indicate k-points on the ab-initio mesh used for
constructing the WFs.

The final step is to transform the matrix of Eq. (15)
from the Wannier to the Hamiltonian gauge. To find the
required unitary matrix U(k) we repeat the above steps

for Ô = Ĥ to obtain H(W)(k). The matrix U(k) is then
given by Eq. (9), with the replacement q → k. Finally,

O(H)(k) = U †(k)O(W)(k)U(k), (16)

where M ×M matrix products are implied on the right-
hand side. This solves the problem posed above at the
beginning of Sec. II B.

Once the WF matrix elements of both the operator of
interest and the Hamiltonian are tabulated, the interpo-
lation onto an arbitrary k-point requires only inexpensive
operations on small M × M matrices. When Ô = Ĥ,
the present scheme reduces to Slater-Koster interpola-
tion, with the maximally localized WFs playing the role
of the TB basis orbitals.14

Fig. 1 shows the interpolated band structure of bcc Fe
along Γ–H, using the same WFs and computational de-
tails as in Ref. 6. If one were to superimpose on this plot
the energy bands obtained by performing an ab-initio cal-
culation for a large number of points along the same line
in k-space, they would be essentially indistinguishable
from the interpolated ones. Following Ref. 15, we indi-
cate with vertical dashed lines k-points on the q-mesh
used for constructing the WFs (an 8 × 8 × 8 grid in the
full BZ). It is apparent that the Wannier interpolation
procedure succeeds in resolving details on a scale much

smaller than the spacing between those points. In par-
ticular, the correct band connectivity is obtained. This
means that spin-orbit-induced avoided crossings, for ex-
ample, are never mistaken for actual crossings, no matter
how weak the spin-orbit interaction.

We note in passing that one could have formulated the
problem at the beginning of Sec. II B somewhat differ-
ently: rather than viewing the matrix elements of Ô and

Ĥ between the Nq ab-initio Bloch states at each q as the
basic ingredients of the method, we could have assigned
that role to the matrix elements of the two operators be-
tween the WFs. Even if the latter viewpoint is in some
ways the more fundamental one, in practical implemen-
tations one often obtains the Wannier matrix elements
(14) via Eqs. (11)–(13). When doing so, the Wannier
orbitals are never explicitly constructed.

2. Transport and optical properties

The treatment of transport and optical properties in
crystals is more subtle. We will restrict our discussion to
the electric-dipole approximation, where those properties
depend on matrix elements of the velocity operator. The
formulation of the previous subsection could in principle
be used to interpolate the full velocity operator v̂α =
−(i/h̄)[r̂α, Ĥ] (α = 1, 2, 3). Its matrix elements, as those
of any other periodic operator, transform between the
Wannier and Hamiltonian gauges according to Eq. (16)
(such a matrix will be called “gauge-covariant”6). They
are given by16

vnm,α(k) = 〈ψnk|v̂α|ψmk〉 =
1

h̄

〈

unk

∣

∣

∣

∂Ĥ(k)

∂kα

∣

∣

∣
umk

〉

.

(17)
However, when describing the dynamics of electrons in

crystals it is convenient, from the points of view of both
numerics and physics, to decompose the velocity operator
into two terms.16 This is achieved by taking ∂α = ∂/∂kα

outside the brackets on the right-hand side of Eq. (17)
and compensating for the extra terms that appear. After
a few manipulations one obtains

vnm,α(k) =
1

h̄

∂Enk

∂kα
δnm − i

h̄
(Emk − Enk)Anm,α(k) (18)

where

Anm,α(k) = i〈unk|∂αumk〉. (19)

The first (second) term on the right-hand side of
Eq. (18) is diagonal (off-diagonal) in the band index.
Note that neither is separately gauge-covariant. For ex-
ample, the second one contains k-derivatives acting on
the eigenstates. According to Eq. (10), additional terms
involving ∂U(k)/∂kα will therefore appear when trans-
forming between the Wannier and Hamiltonian gauges.
Let us define, for every matrix object O,

O(H)
= U †O(W)U (20)

so that, by definition, O(H)
= O(H) only for gauge-

covariant objects. This notation will be used in the next
section for expressing the intraband (diagonal) velocity
matrix elements and the effective mass tensor, and in
Sec. IV for the interband (off-diagonal) velocity.
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C. Band gradient and Hessian

1. Notation

We make use of the first and second k-derivatives of
the Hamiltonian matrix,

Hnm,α =
∂Hnm

∂kα
, (21)

Hnm,αβ =
∂2Hnm

∂kα∂kβ
, (22)

and define Hnm,α and Hnm,αβ via Eq. (20) as usual. We
also define the first and second k-derivatives of the band
energy,

vnk,α =
1

h̄

∂Enk

∂kα
, (23)

µnk,αβ =
1

h̄2

∂2Enk

∂kα∂kβ
, (24)

which have the interpretation of group velocity (ignoring
Berry-curvature contributions) and inverse effective mass
tensor, respectively. The strategy for interpolating these
quantities is similar to the one developed in Ref. 6 for
the Berry curvature. We will again make extensive use
of the antihermitian matrix

D(H)
nm,α ≡ (U †∂αU)nm =



















H
(H)

nm,α

E(H)
m − E(H)

n

if n 6= m

0 if n = m

(25)

defined in that work.

2. Non-degenerate bands

First we consider the band-gradient velocity, Eq. (23).

In the Hamiltonian gauge H
(H)
nm = E(H)

n δnm, and hence

H
(H)
nm,α = h̄v

(H)
nα δnm. Differentiating Eq. (9) with respect

to kα,

H(H)
α = U †H(W)

α U +
{

U †H(W)∂αU + h.c.
}

= H
(H)

α +
{

H(H)D(H)
α + h.c.

}

, (26)

where each object is an M ×M matrix and h.c. denotes
the Hermitian conjugate. Because of the extra terms in

curly brackets we have H
(H)
α 6= H

(H)

α and thus Hα, the
first term on the right-hand side of Eq. (18), is not gauge-
covariant. However, those extra terms do not contribute
to the velocity; being the product of a diagonal matrix

(H(H)) with an antihermitian matrix (D
(H)
α ), they only

contain off-diagonal elements which cancel those in H
(H)

α .
Thus

h̄v(H)
nα = H(H)

nn,α = H
(H)

nn,α =
[

U †H(W)
α U

]

nn
. (27)

Differentiating this equation yields the inverse effective
mass tensor (24)

h̄2µ
(H)
n,αβ =

[

∂βH
(H)

α

]

nn

=
[

U †H
(W)
αβ U

]

nn
+

{

U †H(W)
α ∂βU + h.c.

}

nn

= H
(H)

nn,αβ +
{

H
(H)

α D
(H)
β + h.c.

}

nn
. (28)

Unlike Eq. (26), here the matrix in curly brackets has

nonzero diagonal elements which contribute to µ
(H)
n,αβ .

Eqs. (27)–(28) are the desired expressions for the band
derivatives, valid away from degeneracies and inside the
inner energy window. They involve the M ×M matrices

U(k) calculated in Sec. II B 1, D
(H)
α given by Eq. (25),

H
(W)
α , and H

(W)
αβ . The last two involve k-derivatives of

Eq. (15) that can be taken analytically, i.e.,

H(W)
nm,α(k) =

∑

R

eik·RiRα〈n0|Ĥ|mR〉 (29)

and

H
(W)
nm,αβ(k) =

∑

R

eik·R(−RαRβ)〈n0|Ĥ |mR〉. (30)

3. Discussion

In order to interpret the above expressions it is illu-
minating to introduce ||φn〉〉, the n-th M -component col-
umn vector of U .6 ||φn〉〉 is an eigenvector of H(W), the
Hamiltonian operator projected onto the WF space. We
then recognize in Eq. (27) the Hellmann-Feynman result

h̄v
(H)
nα = 〈〈φn||H(W)

α ||φn〉〉, and in Eq. (28) the expression
for the effective mass tensor in empirical TB theory.17

Eq. (25) is the standard result from k · p perturbation
theory, in terms of the TB states. It involves the oper-

ator (1/h̄)H
(W)
α , which differs from the full velocity op-

erator in that the position-operator-dependent terms are
absent.6,17 We note that all the formulas given so far and
in the rest of the paper remain valid when the ab-initio

Hamiltonian contains non-local and spin-orbit terms.

The advantage of this reformulation of k · p perturba-
tion theory is that it is done strictly in terms of the small
number M of M -dimensional states ||φn〉〉 at an arbitrary
k, and yet it is exact within the inner energy window.
In contrast, the formulation in terms of the original ab-

initio states on the q-grid is considerably more expensive
and usually entails a truncation error.18
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4. Degeneracies

While meaningful band derivatives can be defined via
degenerate k · p perturbation theory even at degeneracy
points in the BZ,19 this is not possible when the only
information available about the bandstructure is a list of
eigenenergies on a predetermined coarse k-point grid. In
that case, the information about the band connectivity
is lost, and finite-difference estimates of the derivatives
become ill-defined at points of degeneracy, which have to
be carefully avoided.2

In the present formulation the k-gradients of the de-
generate states are the eigenvalues of the submatrix

[

H
(H)

α

]

µν
= 〈〈φµ||H(W)

α ||φν〉〉, (31)

where the indices µ and ν run over the degenerate states
only. We update the M ×M matrix U by replacing the
columns corresponding to those states with the rotated

states that diagonalize H
(W)
α . The Hessian matrix can

then be obtained from Eq. (28) using the updated U and
a modified form of Eq. (25),

D(H)
nm,α =



















H
(H)

nm,α

E(H)
m − E(H)

n

if E(H)
n 6= E(H)

m

0 if E(H)
n = E(H)

m .

(32)

In cases of degeneracies (at band edges, for example)
where some of the eigenvalues of the matrix (31) are
equal, a first-order treatment is inadequate and the cor-
rect rotation between eigenstates needed to compute the
Hessian is found by going to second order in degenerate
perturbation theory. This amounts to diagonalizing the
submatrix obtained from the right-hand side of Eq. (28)
by replacing the subscripts nn therein by µν, and letting
µ and ν run over the the first-order-degenerate bands.
The desired Hessian matrix elements are the eigenvalues
of that submatrix.

In our calculations we employ the first-order form of
degenerate perturbation theory when two or more energy
eigenvalues lie within 10−4 eV of each other and we sub-
sequently use the second-order form if in addition two or
more band gradients differ by less than 0.1 eV-Å.

5. Validation

As an illustration, we used the above formulas to calcu-
late the inverse effective mass of the three p-like valence
bands of Pb along the Γ–K direction in k-space. (We
have chosen this example because it displays a threefold
band-edge degeneracy at Γ and a band crossing between
Γ and K.)

In all the calculations in this work, lattice constants
are taken from Ref. 20. The Bloch states are obtained
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FIG. 2: Upper panel: Dispersion of the three p-like energy
bands of Pb along the Γ–K direction, obtained by interpo-
lating a non-relativistic ab-initio calculation. Lower panel:
Inverse effective masses of those bands along the same direc-
tion, calculated in two ways: from the interpolated eigenen-
ergies on a regular mesh of points using a spline fit (circles),
and from perturbation theory in the Wannier representation
(solid lines).

with the PWSCF code21 using density-functional theory
in the local-density approximation, together with the
planewave-pseudopotential formalism.1 Norm-conserving
pseudopotentials are employed, and spin-orbit effects are
included in Sec. IV and Fig. 1 only. The WFs are gener-
ated using the WANNIER90 code.22

In Pb the lowest four valence bands crossing the Fermi
level are separated everywhere in the Brillouin zone from
higher bands, so that the original prescription of Marzari
and Vanderbilt13 can be used to generate the correspond-
ing maximally localized WFs. They are atom-centered
and have sp3 character, with the axis of each orbital
pointing towards a nearest neighbor.

The inverse effective masses are shown as solid lines
in the lower panel of Fig. 2. For comparison, we also
plot as circles in the lower panel the values obtained by
fitting a spline function to the energy eigenvalues on a
dense grid of k-points along the path. We remark that
whereas in the analytic method band crossings are han-
dled automatically, in order to obtain a smooth spline fit
it was necessary to manually reorder the eigenvalues close
to the band crossing. Once that is done, the agreement
between the two is essentially perfect.

D. Adaptive broadening scheme for k-space

integration

We conclude this section by discussing the evaluation
of type-I, II, and III integrals, Eqs. (1–3). In order to ac-
celerate the convergence of type-I integrals with respect
to the number of sampling points in Eq. (4), a broadening
scheme can be used.23,24 This amounts to replacing the
step function in Eq. (1) with a Fermi-Dirac-like smear-
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ing function. In the case of type-I integrals, smearing is
most important when relatively few sampling points are
used, as tends to be the case whenever the evaluation of
the integrand is expensive.24 If, however, the integrand
is inexpensive, as is the case when using Wannier inter-
polation, then it is possible to converge the BZ integral
without resorting to smearing. For example, no smear-
ing was used in Ref. 6 for integrating the Berry curvature
over the occupied states of bcc Fe.

Smearing plays a more fundamental role in integrals
of types II and III: when replacing the BZ integral in
Eqs. (2-3) by a grid summation, the δ-functions must be
replaced by normalized functions with non-zero width,
such as Gaussians. For example, in Eq. (2) one would
replace δ(Ef − Enk) by

gnk(Ef) =
1√

2πW
exp

(−(Ef − Enk)2

2W 2

)

. (33)

Ideally the Gaussian width should be, for a given grid
spacing ∆k, comparable with the level spacing ∆Enk.
The level spacing is however difficult to estimate, and the
common practice is to set W to a constant for all bands
and k-points. As a result, FS sheets arising from steep
and flat bands are not described consistently. This is a
serious disadvantage of broadening schemes with respect
to the linear tetrahedron method, as discussed in Ref. 25.

This drawback is easy to remedy within the Wannier-
interpolation method, since the band derivatives are
readily available (Sec. II C), and can be used to esti-
mate the level spacing. The simple estimate ∆Enk ∼
|∂Enk/∂k|∆k suggests using a state-depending broaden-
ing width

Wnk = a

∣

∣

∣

∣

∂Enk

∂k

∣

∣

∣

∣

∆k (34)

for type-I and type-II integrals (a is a dimensionless con-
stant of the order of unity), and

Wnm,k = a

∣

∣

∣

∣

∂Emk

∂k
− ∂Enk

∂k

∣

∣

∣

∣

∆k (35)

for type-III integrals. With this prescription W is no
longer an independent adjustable parameter from ∆k,
guaranteeing that the ∆k → 0 and W → 0 limits are
approached consistently. Several smearing functions be-
yond a simple Gaussian have been proposed24,26 and can
be used straight forwardly with the adaptive smearing
scheme. For all of the calculations presented in this work
we use the first-order Hermite polynomial scheme intro-
duced by Methfessel and Paxton.24

The above first-order adaptive smearing should be re-
liable whenever the level-spacing is gradient-dominated.
In practice we find that it works rather well even near
critical points.This is illustrated in Fig. 3, where we show
the density of states of diamond calculated using both the
adaptive and conventional (fixed width) smearing, with
a 50 × 50 × 50 interpolation mesh. When using a fixed
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FIG. 3: (Color online.) Density of states of bulk diamond
calculated in the range 8-18eV using the conventional Gaus-
sian broadening approach (light thin lines) with a fixed width
of 0.4 eV in the upper panel and 0.2 eV in the lower panel,
versus the adaptive broadening approach (dark thick lines).
The inset shows the density of states in the full valence band
range computed with the adaptive broadening approach.

width of W = 0.4 eV, the sharp van-Hove features are
not well described. Reducing it to 0.2 eV improves the
situation for some of them, but introduces spurious os-
cillations whenever the level-spacing becomes larger than
W . With the adaptive scheme such oscillations do not
occur for a sensible choice of a, and the sharp features
are well-described. We have used a = 1.0, but find the
results to be quite robust for 0.8 < a < 1.3.

III. LOW-FIELD HALL COEFFICIENT OF

CUBIC METALS

As a first benchmark application we compute the “clas-
sical” low-field Hall coefficient of cubic metals, which is
given by

RH =
σxy,z

σ2
xx

, (36)

σxx = q2e
∑

n

∫

dk

(2π)3
τnkv2

nk,x

(

−∂f
∂E

)

, (37)

and

σxy,z = q3e
∑

n

∫

dk

(2π)3
τ2
nk

(

−∂f
∂E

)

×

×
(

v2
nk,xµnk,yy − vnk,xvnk,yµnk,xy

)

. (38)

(For the systems studied in this Section, which are non-
ferromagnetic and do not include the spin-orbit inter-
action, the sum over spin-degenerate bands will give
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TABLE I: Hall coefficient RH, in units of 10−11m3C−1. Ref-
erences to the experimental data can be found in Ref. 27.

This work Ref. 7 Ref. 10 Experiment
Li −12.7 −12.8 −12.4 −15.5
Al −2.5 −1.7 −3.4 −3.43
Cu −4.9 −5.2 −4.9 −5.17
Pd −11.9 −6.0 −17 −7.6

rise to factors of two, which are not written explicitly.)
σxx is the longitudinal conductivity, and and σxy,z =
∂σxy/∂Bz, where σxy is the antisymmetric (Hall) con-
ductivity. The above expressions are obtained from a
Bloch-Boltzmann description of transport; for a detailed
derivation, see Ref. 27. We note that Eq. (38) is written
in a form which is specific to cubic metals. The quantities
vnk,α and µnk,αβ are given by Eqs. (23) and (24), f(E) is
the Fermi-Dirac distribution function, and qe < 0 is the
electron charge. At low temperatures (−∂f/∂E) tends to
δ(E − Ef), and both σxx and σxy,z become FS integrals
of the form of Eq. (2). In the constant relaxation-time
approximation τnk drops out from Eq. (36) so that RH is
completely specified by the first and second band deriva-
tives at Ef .

Calculations were done for Li, Al, Cu and Pd. Unlike
Pb, in these metals the set of bands crossing the Fermi
level is not isolated. Therefore, in order to generate max-
imally localized WFs we first used the disentanglement
procedure summarized in Sec. II A to obtain an optimal
projected space. The number of bands contained therein
must be at least equal to the number of bands crossing
the Fermi level. However, it is often desirable to extract a
somewhat larger projected space if this produces a more
symmetric set of Wannier functions.

For lithium we obtained four atom-centered WFs per
primitive cell with sp3 character. For aluminum we ex-
tracted a nine-dimensional projected subspace. The re-
sulting WFs are atom-centered, but have no distinct sym-
metry characteristics. For Cu and Pd we used seven
WFs: five with d character on atom centers, and two
with s character located at the tetrahedral interstitial
sites. These have been previously described for Cu in
Ref. 14.

The computational details are the same as in Section
II C 5. We obtain the self-consistent ground state us-
ing a 16×16×16 Monkhorst-Pack mesh of k-points and a
fictitious Fermi smearing24 of 0.02Ry for the Brillouin-
zone integration. We use the local density approxima-
tion; for the materials studied we find the results are
not significantly altered by using a GGA such as PBE.28

To compute the Hall coefficient we use an ab-initio grid
of 12×12×12 q-points and obtain the required quantities
on a uniform mesh of 60×60×60 k-points. We implement
an adaptive mesh refinement scheme in which we iden-
tify those points of the k-space mesh at which at least
one band lies with 0.5eV of the Fermi energy and obtain
the required quantities on a 7× 7 × 7 submesh spanning

the original cell associated with this mesh point. We
find these parameters give converged values of the Hall
coefficient for the four metals studied. This is particu-
larly reassuring in the case of Pd, where previous tech-
niques encountered difficulties because of the occurrence
of bands crossings near the Fermi surface.10

The results for the Hall coefficient RH are compiled in
Table I. For Li, Al, and Cu we find excellent agreement
with previous calculations based on empirical TB fitting
to ab-initio bands,7 as well as ab-initio calculation com-
bined with SKW interpolation.10 The case of Pd is more
delicate as RH depends critically on the details of the ab-

initio calculation. For example a shift upwards (down-
wards) in the Fermi level of 0.002Ry causes a change of
−3 (+2) ×10−11m3C−1. In view of this we refine the po-
sition of the Fermi level in a final non-self-consistent step
by interpolating the band energies and gradients onto a
60 × 60 × 60 k-mesh and using the adaptive broadening
scheme. Our converged value of RH is intermediate be-
tween the two previously computed values, and shows a
relatively large discrepancy with experiment. Previous
authors have suggested7,29 that it maybe necessary to go
beyond the constant relaxation time approximation to
give a good description of the transport properties of Pd.

IV. MAGNETIC CIRCULAR DICHROISM

Magneto-optical effects in ferromagnets result from a
combination of exchange splitting and spin-orbit coupling
(SOC).30,31 The former breaks time-reversal (TR) in the
spin channel, and the latter transmits the TR-breaking
to the orbital motion of the electrons, endowing the op-
tical conductivity tensor with an antisymmetric compo-
nent. The simplest such effect to evaluate is magnetic
circular dichroism (MCD), the difference in absorption
between left- and right-circularly-polarized light, and we
have chosen it for illustrative purposes. It is given by
the imaginary part of the antisymmetric conductivity,

σ
(2)
A,αβ(ω) = −σ(2)

A,βα(ω).

A. Evaluation of the Kubo formula

Ab-initio calculations of magneto-optical effects de-
mand high accuracy and dense k-space sampling. The
spin-orbit interaction is typically a small perturbation
on top of the much larger exchange splitting, and the
modifications that it produces on the electronic structure
(both in the energy bands and in the matrix elements)
are subtly and strongly dependent on k-point and band
index.

The conductivity σ
(2)
A,αβ(ω) is evaluated from the Kubo

formula of linear-response theory in the electric-dipole
approximation.31 The needed ingredients are the energy
eigenvalues of the states involved in the optical transi-
tions and the transition matrix elements. We will eval-
uate the interband contribution to the magneto-optical
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absorption using Eq. (18) for the electric-dipole transi-
tion matrix elements, where it is now understood that
all Bloch functions |unk〉 are spinors determined from
a Hamiltonian that includes the spin-orbit interaction.
One finds

σ
(2)
A,αβ(ω) = − πe2ω

h̄

occ
∑

n

empty
∑

m

∫

dk

(2π)3
Im

(

Anm,αAmn,β

)

× [δ(ω − ωmn) − δ(ω + ωmn)] , (39)

where h̄ωmn = Em − En.
Eq. (39) is a type-III integral of the form of Eq. (3).

When evaluating it by Wannier interpolation it must be
kept in mind that the Wannier-derived bands reproduce
the ab-initio ones only inside the inner energy window,
and therefore its range must be adjusted according to
the maximum desired absorption frequency. The matrix
elements Anm,α are to be evaluated in the Hamiltonian

gauge, and the interpolation of A
(H)
nm,α is based on the

two relations6

A(H)
α = A

(H)

α + iD(H)
α (40)

and

A(W)
nm,α(k) =

∑

R

eik·R 〈0n|r̂α|Rm〉 , (41)

where D
(H)
α is given by Eq. (25) and A

(H)

α and A
(W)
α are

related by Eq. (20). Inserting Eq. (40) into Im(. . .) in
Eq. (39), we find

Im
(

A(H)
nm,αA

(H)
mn,β

)

= Im
(

A
(H)

nm,αA
(H)

mn,β

)

+ Re
(

A
(H)

nm,αD
(H)
mn,β +D(H)

nm,αA
(H)

mn,β

)

− Im
(

D(H)
nm,αD

(H)
mn,β

)

. (42)

The contributions to σ
(2)
A,αβ(ω) from the three terms on

the right-hand side will be denoted as A–A, D–A, and
D–D, respectively.

B. Results for bcc Fe

Unlike the calculations presented earlier in the paper,
to calculate the MCD spectrum we have used relativis-
tic pseudopotentials which explicitly include spin-orbit
effects.34 The computational details for the ab-initio cal-
culation, WF-generation, and treatment of the spin-orbit
interaction are the same as in Ref. 6. The integral in
Eq. (39) was evaluated on a uniform k-mesh containing
125 × 125 × 125 points using the adaptive broadening
scheme, which we find to be essential for resolving the
fine details in the MCD spectrum. The spin magneti-

zation is along the z-axis, so that σ
(2)
A,xy(ω) is the only

independent non-zero component.
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FIG. 4: Magnetic circular dichroism spectrum of bcc iron.
The calculated spectrum (solid lines) is compared with the
experimental spectrum from Ref. 32 as reproduced in Ref. 33
(open circles).
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FIG. 5: (Color online.) Upper panel: decomposition of the
magnetic circular dichroism spectrum into the three terms de-
fined by the Wannier-interpolation procedure. Lower panel:
cumulative anomalous Hall conductivity (AHC) versus ω, de-
fined as the contribution to the AHC from frequencies higher
than ω in Eq. (43).

It is conventional to plot the MCD spectrum as

ωσ
(2)
A,xy(ω), and adopt this convention in Fig. 4. Our

calculated spectrum for bcc Fe is in excellent agree-
ment with the one computed in Ref. 33 using a com-
pletely different electronic structure method. (Previ-
ous calculations of magneto-optical effects have most
commonly used all-electron methods.) As remarked in
Ref. 30, this level of agreement between two different
calculations is non-trivial when it comes to the spin-

orbit-induced σ
(2)
A,xy(ω). It provides a strong validation

of the Wannier-interpolation scheme combined with the
pseudopotential-planewave method as a viable way of
computing magneto-optical effects.

The upper panel of Fig. 5 shows the decomposition of
the calculated MCD spectrum into the three contribu-
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tions (A–A, D–A, and D–D) defined by the Wannier-
interpolation procedure, as discussed following Eq. (42).
It is clear that the D–D contribution tends to dominate
the spectrum in the frequency range from 0 to 7 eV, es-
pecially at the lowest frequencies. For frequencies above
7 eV (not shown), the A–A and D–A terms become sig-
nificant.

The interband MCD spectrum σ
(2)
A,xy(ω) is related

to the Karplus-Luttinger anomalous Hall conductivity6

(AHC) σ
(1)
A,xy(0) by the Kramers-Krönig relation

σ
(1)
A,xy(0) =

2

π

∫ ∞

0

1

ω
σ

(2)
A,xy(ω) dω. (43)

In the lower panel of Fig. 5 we show the cumulative AHC
versus ω, defined as the contribution to the AHC from
frequencies higher than ω in Eq. (43). In practice we use
as the upper frequency limit in Eq. (43) the difference
from the Fermi energy to the top of the inner energy
window (18 eV). It is clear that the AHC is completely
dominated by the low-frequency contributions below ∼
5.5 eV.

It can be shown that applying the transformation (43)
separately to the D–D term of the MCD spectrum yields
the D–D term of the AHC, as defined in Ref. 6. This
explains the intriguing result that more than 99% of the
anomalous Hall conductivity can be recovered from the
D–D term alone.6 This is a consequence of (i) the low-
frequency part of the spectrum being weighted more in
the integral as a result of the 1/ω factor in the integrand,
and (ii) the D–D term overwhelming the other two at
very low frequencies.

V. CONCLUSIONS

We have presented a Wannier-interpolation scheme
to compute efficiently and accurately Fermi-surface and
spectral properties from first principles. As an example
of the former we computed the low-field Hall conductiv-
ity for several cubic metals. As an example of the latter
we calculated the magnetic circular dichroism spectrum
of bcc Fe.

The scheme naturally resolves a number of difficul-
ties which have plagued existing interpolation schemes.
Firstly, by preserving the information about band con-
nectivity, band crossings and avoided crossings are
treated correctly. In addition, the evaluation of the ve-
locity matrix elements needed to compute both the Hall
coefficient and the MCD spectrum can be done analyt-
ically in the Wannier representation. Furthermore, the
scheme does not become any more complex upon inclu-
sion of the spin-orbit interaction in the Hamiltonian. In
particular, there are no additional contributions to the
velocity matrix elements; all the spin-orbit-related cor-
rections are contained in the spinor WFs. Also, the
Wannier-interpolation scheme is decoupled from the par-
ticular choice of basis set used for performing the original

ab-initio calculation, nor does it depend on the specific
level of single-particle theory. As such, the calculation of
a given property can be implemented in a universal way
inside the Wannier module, which can then be interfaced
with any desired electronic structure code.

The appeal of the present approach is that it combines
the simplicity of a tight-binding-like scheme with the
power and accuracy of ab-initio methods. Most impor-
tantly, it allows operators other than the Hamiltonian to

be interpolated in the same manner as the Slater-Koster
interpolation of energy bands. As such, it can be ap-
plied to a wide variety of problems in condensed mat-
ter physics. It should be particularly useful for study-
ing metallic systems. A number of properties of met-
als remain extremely challenging to compute from first-
principles, as a result of difficulties in sampling the Fermi
surface with sufficient accuracy. Wannier interpolation
provides an elegant and powerful framework for investi-
gating such problems with ab-initio techniques.
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APPENDIX: CONVERGENCE PROPERTIES OF

THE INTERPOLATION SCHEME

For a given operator Ô the agreement inside the inner

energy window between O(H)
nm(k) obtained by Wannier

interpolation and Onm(k) calculated using a full first-
principles calculation is determined by N0, the number of
points in the q-grid. The resulting WFs are periodic over
the the conjugate real-space supercell spanning N0 unit
cells. For any finite N0 there is some overlap between a
WF and its neighboring periodic images, which affects
the matrix O(R). It is generally accepted that WFs
decay exponentially; numerical studies have confirmed
this for several materials,35 and recently there has been
a claim of a formal proof for multiband time-reversal-
invariant insulators.36 The error in O(R), and therefore
in the interpolation, should accordingly also decrease ex-
ponentially beyond some supercell size.

We report numerical tests for two cases: the isolated
set of four valence bands in Pb, and the low-lying bands
of Li, using the same WFs as in Secs. II C 5 and III, re-
spectively. The band energies are computed via both
Wannier interpolation and non-self-consistent diagonal-
ization of the planewave Hamiltonian on a 200×200×200
BZ grid. For Li we collect data from the bottom of the
inner energy window to 0.5eV below the top of the inner
energy window; points close to the top of the inner win-
dow may show larger discrepancies, as they result from
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FIG. 6: Convergence of the Wannier interpolated band ener-

gies as a function of the linear dimensions N
1/3

0
of the ab-initio

q-point grid. We plot the maximum error (squares) and mean
absolute error (circles), where the error is the difference be-
tween the Wannier interpolated band energy and the value
obtained from a full non-self consistent diagonalization of the
planewave Hamiltonian. The lines are linear fits to the points

with N
1/3

0
> 8.

an interpolation between q-points inside and outside the
inner window. Fig. 6 shows several measures of the dif-

ference in the energies as a function of N
1/3
0 . In both

cases we find that the error decreases exponentially for
N0

>∼ 10. It is particularly reassuring that this occurs in
Li, since the decay properties of disentangled WFs has
yet to be investigated thoroughly, and they probably fall
outside the scope of existing formal proofs of exponential
decay.

Finally, we examine the optimal choice of supercell in
which to define the set of lattice vectors R for the Fourier
transform in Eq. (15). To illustrate the discussion in-
troduced earlier in the vicinity of Eq. (15), we compare
the results for parallelepipedal and Wigner-Seitz super-
cells. In the upper part of Fig. 7 we compare the inter-
polated energy bands for a 4×4×4 grid of q-points. For
such a sparse q-grid the interpolated bands do not agree
precisely with the exact ab-initio bands from a non-self-
consistent diagonalization of the planewave Hamiltonian;
this is most noticeable in the deviation of the curvature
of the three upper bands between K and Γ. However, it is
clear that the Wigner-Seitz supercell yields significantly
better results than the parallelepipedal cell. This is most
clear for the upper band from L to Γ, which displays large
oscillations for the parallelepipedal cell. In the lower por-
tion of Fig. 7, we show several measures of the error in the

interpolated bands as a function of N
1/3
0 ; for any given q-

grid the Wigner-Seitz cell gives the more accurate results.
The superiority of the Wigner-Seitz choice can be easily
understood, as it ensures the largest minimum distance
between a WF and its periodic images.
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