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We study the problem of phase transitions from 3D topoldgizaormal insulators without inversion sym-
metry. In contrast with the conclusions of some previousawae show that a Weyl semimetal always exists as
an intermediate phase regardless of any constriant frdiodatymmetries, although the interval of the critical
region is sensitive to the choice of path in the parametetespad can be very narrow. We demonstrate this
behavior by carrying out first-principles calculations ba honcentrosymmetric topological insulators LaBiTe
and LuBiTeg and the trivial insulator BiTel. We find that a robust Weylsmetal phase exists in the solid
solutions LaBj_,Sh, Tes and LuBi,_,Sh,Te; for x ~ 38.5 — 41.9% andx ~ 40.5 — 45.1% respectively. A
low-energy effective model is also constructed to desdtibecritical behavior in these two materials. In BiTel,
a Weyl semimetal also appears with applied pressure, bytwaitthin a very small pressure range, which may
explain why it has not been experimentally observed.

PACS numbers: 73.43.Nq, 73.20.At, 78.40.Kc

I. INTRODUCTION f=(fs, [y, [-) have to vanish. However, since there are four
degrees of freedom, ik, — Ao + J2\, instead of opening

The significance of topology in determining electronic @ 9ap, the Weyl node would just shift slightly in momentum
properties has became widely appreciated with the disgovert@ compensate for the perturbation. In fact, there is no way
of the integer quantum Hall effect and been highlighted fur-t0 remove a Weyl node unless two Weyl nodes with opposite
ther by the recent interest in topological insulators (¥t) ~ chirality annihilate each other.

In topological band theory, a topological index, such as the If the two Weyl nodes are aligned in energy due to either
Chern number or th&, index, is well-defined only for gapped time-reversal or some lattice symmetry, and the bands are
systems, and the topological character is signaled by & pr filled right up to the Weyl nodes, then the Fermi energy would
ence of novel gapless surface states which cannot exist e locked there regardless of weak perturbations. Thatas, t
any isolated 2D systef¥ Recently, the concept of topologi- Fermi level could be slightly shifted upward (downward) due
cal phases is further generalized to 3D bulk gapless systemt some weak perturbation, such that there is an electken-li
whose topological behavior is protected by lattice transla(hole-like) Fermi surface, then there must also be a héte-li
tional symmetry, known as the Weyl semimetal (WS™). (electron-like) Fermi surface to conserve the total nundjer

A Weyl semimetal is characterized by a Fermi energy thaglectrons, which is impossible in such a a semimetal. It fol-
intersects the bulk bands only at one or more pairs of bandows that the low-energy physics in the Weyl semimetal is
touching points (BTPs) between nondegenerate valence af@mpletely dominated by the linearly dispersing statesrado
conduction bands. This can occur in the presence of spirthe Weyl nodes, which leads to interesting surface statés an
orbit coupling (SOC), typically in a crystal with broken @,  transport properties.
reversal or inversion symmetry but not both, so that thespair The presence of Weyl nodes in the bulk bandstructure is re-
are of the formkg, —ko) in the Brillouin zone (BZ). The ef- sponsible for the presence of Fermi arcs at the surface hwhic
fective Hamiltonian around a single BT can be written as  can be understood as folloW§.Consider a small loop in the
H(k) = fo(k) + f(k) - o, wheref, andf are scalar and vec- 2D surface BZ that encloses the projection aléngof one
tor functions respectively of wavevector in the BZ and#he  Weyl point. When translated alorig, this loop traces out a
are the Pauli matrices acting in the two-band space. If one exsurface in the 3D BZ, and the application of Gauss’s theorem
pands the coefficierf{(k) to linear order arounH,, one getsa  implies that the Chern number on this surface must equal the
Hamiltonian having the form of the Weyl Hamiltonian in rel- chirality of the enclosed Weyl node. It follows that(@s,, &)
ativistic quantum mechanics after a coordinate transftioma is carried around the loop, a single electron is pumped up to
in k space. If the sign of the determinant of the Jacobian thafor down from) the top surface, and this is only consistent
describes the coordinate transformation is positive (theg}a ~ with charge conservation if a single surface state crogses t
we call the BTP as a Weyl node with positive (negative) chiral Fermi energyr during the cycle. Since this argument applies
ity, and the low-energy excitations around such a Weyl noddor an arbitrary loop, surface states must existatalong
provide a condensed-matter realization of left-handeghtsi some arc emerging from the surface-projected Weyl point. If
handed) Weyl fermions. there is another Weyl node with opposite chirality, then the

These pairs of Weyl nodes are topologically protected in th€€hern number can vanish once the cylinder encloses both of
sense that they are robust against small perturbationshwhi the nodes, such that the Fermi arc would only extend between
can be see from the codimension argument as follows. Onie two projected Weyl nodé€s.
can introduce a parameterthat acts as a perturbation on  In a WSM with broken time-reversal (TR) symmetry, there
the BTP, and let botlf, andf to be dependent oA. In or- is also a non-zero anomalous Hall conductivity (AHC) that is
der to get a band touching &k, \o), the three coefficients closely related to the positions of the Weyl nod&g? Con-
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sider the AHCy,,,, with the crystal oriented such that the third LuBiTes, are hypothetical noncentrosymmetric materials that
primitive reciprocal vector is along. If we track the Chern are predicted to be strong topological insulators in Refr2d
numberC, of a 2D slice normal ta: in the 3D BZ, we must in the present work respectively. Instead, the end members
find that it changes by-1 wheneverk, passes a Weyl node, LaSbTe and LuSbTg atz = 0% are trivial insulatorg® We
with the sign depending on the chirality of the node. In thefind that a WSM phase is obtained wheris in the range of
simplest case, i€, =1 for k, between the two Weyl nodes about 38.5-41.9% for LaBifeand 40.5-45.1% for LuBiTe
and zero elsewhere, then the AHC is just proportional to th&\Ve further construct a low-energy effective model to déxeri
separation of the two Weyl nodes k. This is also inter- the topological and phase-transitional behavior in thassl
preted as a consequence of the “chiral anomaly” in a W8M. of materials. We also revisit the TPT of BiTel driven by ap-
Other interesting transport phenomena can arise due to th@ied pressure, where a WSM phase has not previously been
chiral anomaly. For example, if a magnetic fidddis applied  observed?2! Based on our calculations, we find that a small
to a WSM in thez direction, Landau levels will be formed in interval of WSM phase does actually intervene as increasing
the (z,y) plane. The zeroth Landau level disperses linearlypressure drives the system from the trivial to the topolalgic
alongk., but in opposite directions for Weyl nodes with op- phase.
posite chirality. As a result, if an electric fieH is applied The paper is organized as follows. In SE¢. Il we derive
along z, electrons would be pumped from one Weyl node tothe general behavior of TPTs in noncentrosymmetric insu-
the other at a rate proportional - B, with the Fermi arcs lators and point out some deficiencies in the discussion of
serving as a condud®:12.14 BiTel by Yanget al8 In Sec[IIl we describe the lattice struc-
As discussed above, a WSM requires the breaking of eitures and basic topological properties of the materialgedls
ther TR or inversion symmetry. Many of the previous worksas the numerical methods used in the realistic-material cal
are focused on WSMs without TR symmetry, such as in py<ulations, especially the methods used in modeling the al-
rochlore iridateg, magnetically doped Tl multilayefé,and  loyed and pressurized systems and in searching for BTPs in
Hg: ., Cd,Mn,Tel® In this paper, we study the WSM with the BZ. In Sed TV we present the results for LaBiSh, Tes,
preserved TR symmetry but broken inversion symmetry. ~ LuBi;_,Sh,Te; and BiTel, and discuss the sensitivity to the

It was argued some time ago that the-odd andZ,-even choice of path. In SeE.]V, we summarize our work.
phases of a noncentrosymmetric insulator should always be
bridged by a critical WSM phagé:l’ If the transition is de-

scribed by some adiabatic paramekerthen as) increases I[I. TOPOLOGICAL TRANSITIONIN
one expects first the appearancenothigher-order BTPs in NONCENTROSYMMETRIC INSULATORS
the half BZ (and another at the time-reversed points), where

m = 1 is typical of low-symmetry systems while > 1 can A. General behavior

occur when, e.g., rotational symmetries are present. These
higher-order BTPs generally have quadratic dispersiom& o

direction while remaining linear in the other two, and are-no insulators in the most general case. In the space of the two

chiral; we refer to such a point henceforth as a “quadrati . .
BTP.” As \ increases, each quadratic BTP splits to form a pai(ﬁoands which touch at the TPT, the system can be described by

of Weyl nodes 4{m altogether), which then migrate through the effective Hamiltonian
the BZ and eventually annihilate at a second critical value o
) after exchanging partners. The previous work demonstrated
that this process inverts the strofig index if m is odd8:1/
Recently, however, Yangt al. claimed that for systems with

certain high-symmetry lines in the BZ, the phase transitior]1ighest occupied and the lowest unoccupied statks @ince

could occur at a unique critical value afat which the bands . :
would touch and immediately reopen, instead of over some fioe study the TPT between two insulating phases, we can as-

nite interval in)\, even when inversion symmetry is abs&ht. sume without loss of generality that the system is gapped for

These authors suggested that BiTel under pressure coukl sel)‘ < Ao, and that the first touching that occursAa_i: Ao takes
as an example to support their clati place atk = kg. In other words,f;(ko, \o) =0, i =z, y, 2.
) Then we ask what happengi§ — ko+qandig — Ao+ 0.

In this paper, we address this issue carefully. We show : o _
that an intermediate critical WSM phase should always ex Y\ffri (se ; p\?v?grtgg ioiﬁflir;fs?/r\oing(ljo;\i\o)Jaissfth—e

ist for any topological phase transition (TPT) between a NOY 34cobian with matrix elements; = (9f;/9k;) | o> aNAA

mal and aZs-odd insulating phase. We find however thatisaS-vectorwith components = (9 f; /M) ... A natural

the width of the critical WSM phase can be sensitive t0 theggy ¢ momentum-space coordinates can be defined in terms
choice of path in parameter space and can sometimes be v

small. To justify our conclusions, we take specific material iytieje_l?_e\r:vseyzﬁr;]ir-]vl = Jivi. Definingq =3, pi v and
as examples. We first study the TPT in the solid solutions™* """’

LaBi;_,Sh,Tes and LuBj_,Sh, Tes using the virtual crystal 3

approximation, where the phase transition is driven by $b su f— Zpi w; + SAA. 2)

stitution. The parent compoundsat= 100%, LaBiTe; and

We consider the problem of TPTs in noncentrosymmetric

H(k, ) = fo(k,Noy + f,(k, Noy, + f.(k,No., (1)

where\ is the parameter that drives the TPT and, . are
the three Pauli matrices defined in the space spanned by the

=1
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Following the argument of Yanet al.X8 the Jacobian ma- is e3 = (uz x w??)/|us x w?2|, so thatf; becomes inde-
trix J has to be singular dko, \o) because otherwise there pendent ofp; andp3. Then one also has the freedom to ro-
would be band touching even whan< )\, contradicting the tate thep; andp, components to make}? vanish. After
assumption that the system is insulating for \o. Thisim-  these two transformationg; only depends op? ands), and
plies that at least one of the eigenvalueda$ zero. We as- one expects solutions pt = i\/W- Plugging this
sume for the moment that the others are non-zero, i.e.Jthat into the expressions fof; and f» in Eq. (6), one obtains a
is rank-2, and let it be the first eigenvalue that vanishesceSi  quadratic equation fgr, of the formad\+bp3 +eVoApa =0,
thep;-dependence dfthen vanishes at linear order, we againwherea, b andc are some constants determined by the com-
follow Ref.[18 by including a second-order term to obtain  ponents ofug, A, andw® (i, j = 1, 2). If there are real solu-

tions for the above equation, then the doubly-quadraticBTP
f=pous+psus+OAA+piw (3)  would split into four Weyl nodes whose trajectories scale as
p1 ~ £V0X andps ~ £v/0), ps ~ dX. Otherwise, if there
wherew = (1/2)9%f /9?1 i, ., Now we also have the free- is no solution forp,, a gap would be opened up immediately
dom to carry out an arbitrary rotation in the pseudospin repafter the band touching &k, Ao ), which would represent the

resentation of the two-band space. That is, we redgfite  rare case of an “insulator-insulator transition” using ke-
be the component in the pseudospin in direcégnwith e guage of Ref. 18.

given by(uz x u3z)/[uz x uzl, ande; ande, chosen to form However, we do not expect that the strdhgindex would
an orthonormal frame with;. Thenus; andus; vanish, and  be inverted for such an insulator-insulator transition lie t
we can write explicitly that rank-one case. This can be seen as follows. If the BTP
does not lie in any of the TR-invariant slicek; (= {0, 7},
f1 = pauo1 + psusy + 6N Ay + piw, j =1,2,3), then certainly the 2[Z, indices of the TR invari-
fa = pauas + p3usy + OA Ay + p? wo, ant slices would not change, and it follows that none of the

four 3D Z, indices would change either. If the BTP happens
to reside in one of the TR invariant slices, then since the dis
We assumehs /ws < 0, since otherwise there are solutions persipn in the 2D slice must be qugdratic in at least one direc
at negative\ T?Flengat p'ositive\ there are always two solu- tion, it should be topol_oglcally e_quwalpntto the superpoe_. :

: ’ of an even number of linearly-dispersing Weyl nodes, which i

tionsp; ==£/—0AA3 /w3 at which f3 =0. Plugging this into 5156 hot expected to flip the 2, index, as argued in Réf.116.
the expressions fof, and f> in Eq. {4), we can obtaip; and 1,5 none of the 3[X, indices, including the strong index,
ps3 by solving the linear system would change.

To summarize this section, we find without any lattice-
[um uﬂ {pz] + {Al B wlA:”/w:’} SA=0. (5) symmetry restriction that a critical WSM phase always ex-
U2z Usz2] |P3 Az — wahs/ws ists in the rank-two case. In the rank-one case, an insulator
insulator type transition is allowed in principle, but wdulot
Be expected to be accompanied by a change in the seong
index. Therefore, it is fair to claim that, regardless ofspk
fattice symmetry, there is always a WSM phase connecting
Zo-0dd andZ,-even phases in a noncentrosymmetric insula-
tor.

f3 = 0AAs + pf ws. (4)

Solutions of the above equation always exist as long as the J
cobian matrixJ is of rank two, which means a critical WSM
should always exist in the absence of a special lattice symm
try that would lower the rank of. From the above it also
follows that at the criticalh = \g the dispersion arouni,

is quadratic inp; and linear inp, andps, and that for larger
A the Weyl point displacements scale likg | ~ v/6) and
|p2,3] ~ 0. The same conclusions in the rank-two case have

been obtained by Murakaret ali® and restated by Yanet
ali8

at \o, then the bands would first close at a doubly-quadratidn Which the TPT is driven in a system with;Csymmetry.
BTP. That s, there would be two vanishing eigenvalues of th&ontrary to the conclusions of Ref./18, here we argue that a
Jacobian matrix (which we take to be the first and second), angfitical WSM does exist in the TPT of BiTel, although the
the dispersion would be quadraticjim andp, and linear in ~ Pressure interval over which it occurs may be rather narrow.
ps. This implies that only the second-order terms associated In Refs.[18 and 19 the authors argued that if there exists

B. Discussion of BiTel

with p; andp» need to be included in Eq(3), yielding a high-symmetry line in the_ BZ such that. the dispersipn ex-
tremum evolves along the line as a function of the adiabatic
f1 = pauss + AN + pTwit 4+ p3wi? + 2p1ps wi?, parameter (pressure), then one could get an insulatolatosu

type transition without going through a critical WSM. The au
fo = patizz+OAAg + piwy’ + p3wy® + 2pipz wy’ t%grs further pointed ogt thgt the h?gh-symmetry lines fram
f3 = p3usz + 6N Az + pFws' + piwi? 4 2pip2 wi?, (6)  to Hin the BZ of BiTel, shown in FidJ1(d), satisfy some nec-
essary conditions for this to occur. Moreover, they showed
wherew® = (1/2)02€/0piOpjlky.ne (i,5 = 1,2). We can  that the symmetry of BiTel is such that if one concentrates on
make a similar transformation dhsuch that thef; direction  the band dispersions along these A-H lines, one finds a pair



of extrema (one valence-band maximum and one conduction- (2) Lattice vectors (b)
band minimum) which migrate along the A-H line as a func- _—

tion of the external parameter (pressure), coincide ati@aki
value, and then separate again to reopen the gap. Theyrfurthe
more showed that the dispersions are quadratic in the two or-
thogonal directions (except exactly at the critical va)uajs-

ing the possibility that the extrema in question could be-min
ima and maxima in all threg-space directions. This would
correspond to the insulator-insulator transition withaatin-
tervening WSM phase. However, our analysis in the previous
section shows that this cannot occur in the rank-two cask, an
that the extrema in question actually become saddle pdints a
ter the band touchings occur along the A-H lines. In this case
as recognized in Ref. 18, a WSM phase does occur. As has
been verlf_led "? Re_Ei& the Jacobian does remam of rank tWEIG. 1. (a) The lattice structure of LaBiJeLuBiTes;, LaSbTg, and
on thes? lines in BiTel, and we shall show below in $ec.1V BLusbTe. (b) The BZ of La(Lu)Bi(Sb)Te. (c) The lattice structure
that an intermediate WSM phase does occur. We also poin¥ giTel. (d) The BZ of BiTel.

out that Fig. 2 of Ref. 18 does not demonstrate the absence of

the Weyl nodes, since they are expected to lie off the £.)

plane on which the dispersion was plotted. a WSM phase emerges when external pressure is applied to
Yang et ali® gave another argument in favor of the BiTel, but only within a small pressure interval.

insulator-insulator scenario in BiTel as follows. They et

that the band touching first takes place on the A-H line, which

is invariant under the combination of time-reversal andonir I11. PRELIMINARIES

operations. This imposes some constraints on the form of the

effective Hamiltonian around the BTP, and from these the au-  A. Latticestructuresand basic topological properties

thors concluded that, if Weyl nodes do appear, they showld mi

grate along trajectories of the forp ~ £0A/2, py ~ +0X%/2 The assumed crystal structures of LaBjad LuBiTe are
andps ~ ). Such a curve in 3D Space poSSesses NoN-Zelgyy similar to Bi,Tey, where five atomic monolayers stack in
torsion, so that the trajectories of the two Weyl nodes emergy, o [111] direction in aml-B-C-A-... sequence forming quin-

ing from one quadra_lti(; BTP could never join again and formtu'me layers (QLs) as shown in FIg. 1(a). The only difference
a closed curve. This implies that if the WSM is formed Dy iq that one of the two Bi atoms in the primitive unit cell is re-

such an event, then it would remain permanently, contradiCty|,ceq by a La or Lu atom, which breaks the inversion symme-
ing the fact that BiTel clearly becomes a globally-gapped Tl The jattice structure of LaSb@nd LuSbTg is the same
at higher pressures. Based on this reasoning, they comtludgs for LaBiTe and LuBiTe,, except that all the Bi atoms are

th_at the TP_T in BiTeI_ must be an insulator-insulator trdosit ¢ pstituted by Sh. The in-plane hexagonal lattice parasiete
without an intermediate WSM. for LaBiTe; and LuBiTe, area = 4.39 A and 4.18A respec-

However, this argument neglects the fact that the §m-  tively, while the size of a QL alongis 10.07A and 10.2%R
metry means that there are several A-H lines in the BZ Oﬁ‘espectivew_ The lattice parameters of LaShaee S||ght|y
BiTel, and the gap first closes by the simultaneous appeatifferent from LaBiTe, with a = 4.24A and ¢ = 10.13A.
ance of quadratic BTPs at equivalent positions on all oféhesThe |attice parameters for LuShiTéave not been reported
lines. Even thOUgh the two WEY| nodes which emerge from defore, so we use those from LuBBT@\mong these four hy-
single quadratic BTP cannot meet each other, as shown frofothetical materials, LaBiTehas been previously reported as
the torsion of their trajectories, the Weyl nodes from diffe 3 candidate for an inversion-asymmetric?¥ LuBiTe; is first
ent BTPs can interchange partners and eventually anmhilateported as a Tl candidate in this paper; the non-triviadban
each other in such a way as to form a closed curve in the BZopology is confirmed by calculating the buk index? and
This is exactly the mechanism of the topological phase tranchecking the existence of topological surface states. @n th
sition in noncentrosymmetric TE:L’ As will be discussed in  gther hand, LaSbTeand LuShTe are trivial insulators.
Sec[IVE, there are actually six quadratic BTPs in the full BZ  As shown in Fig.[]L(c), BiTel has a hexagonal lattice
that appear simultaneously, according to the crystallim® a structure with three atoms in the primitive cell stacked as
TR symmetries. These six Dirac nodes split into twelve Weyl4-B-C- A-... along thez direction. The lattice parameters
nodes, which are eventually gapped out by annihilatiorr aftejn-plane and along the hexagonal axis are- 4.339A and
exchanging partners. ¢ = 6.854A. BiTel itself is a trivial insulator with a large

In the following section, we will study the TPTs in vari- Rashba spin splitting in the buf,but it can be driven into a
ous inversion asymmetric materials by first-principlecaal Tl state by applying pressure. Previous studies have stagjes
lations. We predict LaBi_ ,Sb,Tes and LuBj_,Sh,Tes to that the transition to the topological phase is not mediated
be WSM candidates within a certain range of impurity com-a WSM phasé®1? but we revisit this issue in Selc. 1M B and
positionz. We also revisit the case of BiTel, and find that come to different conclusions.

Tel
La(Lu)
Te2
Bi(Sb)
Tel’

(d) &,
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B. First-principles methodology 10

We carry out the bulk first-principles calculations using th
VASP package including SO&:2° The generalized-gradient
approximation is used to treat the exchange-correlation
functional2®2’ The BZ is sampled on anx8x8 Monkhorst-
Pack® k mesh and an energy cutoff of 340eV is used. The
output from the first-principles plane-wave calculatioms a 0%
then interfaced to the Wannier90 pack&g® construct re-
alistic tight-binding (TB) models for these materid¥s.

To describe the electronic structure of LaBjSh, Tes and
LuBi;_,Sbh, Tes, we adopt the virtual crystal approximation
(VCA) in which each Bi or Sb is replaced by a “virtual”
atom whose properties are a weighted average of the two con-
stituents. The VCA treatment typically gives a reasonable d
scription for solid-solution systems in which the dopand an 033 0.40 002 ) 0.46
host atoms have a similar chemical character. For example, Composition
the VCA was shown to work well in describing Sb substi-
tution in Bi;Se;, because of the similar orbital character of FIG. 2. Smallest direct band gap in the BZ vs. compositidor (a)
Sb5p and Bi6p, but not for In substitution, where Ifis or-  LaBii—.Sh.Te; and (b) LuBi—.Sh, Te;. Dashed gray line marks
bitals become involved The VCA is implemented in the ©ur chosen threshold of 0.2meV to signal a gap closure.
Wannier basis by constructing separate 36-band models for
LaBiTe; (LuBiTes) and LaSbTe (LuSbTe), including all the
valencep orbitals of the cations and anions, as well asitie
and6s orbitals of the rare-earth elemer#sin the solid so-
lution, the Hamiltonian matrix elements are then taken as a
linear .interpolqtion in impurity compositiom of the corre- A. LaBi,_,Sb,Te; and LuBi;_,Sh,Tes
sponding matrix elements of the parent materials. That is,
we take HYSA = (1 — 2)HE + xHS?, where HE! and
ijff}t denote the matrix elements of the TB models of LaBiTe 1. Band gap and Wey! chirality
and LaSbTe. It worth noting that when generating the WFs
for the VCA treatment, the Wannier basis functions have to ) ) ,
be chosen as similar as possible before the averagiide ~ For each of these materials we scan overamesh incomposi-
therefore use WFs that are constructed simply by projection @, and for each we construct the Wannierized Hamilto-
ing the Bloch states onto the same set of atomic-like triaflian for the corresponding solid solution within the VCA. We
orbitals without applying a subsequent maximal-locaiézat then use the mgthqu of the previous section to search f_or the
proceduré334 BTPs in the entire irreducible BZ. Plots of the smallestclire

band gap in the BZ vs: are presented in Figl 2. Clearly the
t first-princiol lculati for th tem a th 98P remains closed ove(aflnlte rangecof both cases, from
carry our IrS=princpies taiciations for e sys em 38.5% to 41.9% for LaBi_,Sh, Te; and 40.5% to 45.1% for

zero-pressure volume, where it is topologically normall an . : ) :
also at 85.4% of the original volume, a value chosen someI=UB'1—$Sb1Te3' By checking the dispersion around the gap-

what arbitrarily to be well inside the TI regidf.We denote closure point, we confirm that the system is semimetallib wit
these two states as—0 andn— 1 respectively. Then from the the Fermi level lying at a set of degenerate Weyl BTPs over

Wannier representation we again construct a realistic Hami this entire range.
tonian for each system, denoted Ag and H; respectively, To illustrate the topological character, we further catel
including all the valence orbitals of Bi, Te and I. Finally we the chirality of the BTPs, which is given by the determinant
linearly interpolate these d$(n) = (1 —n)Ho+nHy, treating  of the Jacobian matrixl;; = 9f;/0k;. Fig.[3 shows how
n as an adiabatic parameter that tunes the system through thet(J) varies withx for the BTPs in LaBj_,Sh,Te; and
topological phase transition. LuBi;_,Sb,Tes. The red and black open circles mark the
Using these Wannierized effective TB models, we carvalues ofdet(J) for the BTPs with positive and negative chi-
search for BTPs very efficiently over the entire BZ. We first rality, which are mapped into each other by mirror operation
sample the irreducible BZ using a relatively spaksmesh,  about thek, =0 and other equivalent mirror planes. One can
e.g., 20k20x20, and find the poink, having the smallest see that at the beginning of the band touching, the chirality
direct band gap on this mesh. A second-round search is costarts at zero, indicating the creation of a quadratic BT$. A
ducted by scanning over a denkemesh within a sphere cen- 2« increases, each quadratic BTP splits into two Weyl nodes
tered onky. We then repeat the procedure iteratively until with opposite chirality. These then migrate through the BZ
convergence is reached. All of the trajectories of Weyl mode and eventually annihilate each other at the point where the
presented in SeC. 1V are obtained using this approach. chirality returns to zero.
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IV. RESULTS

Similarly, to study the pressure-induced TPT in BiTel, we
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2. Symmetry considerations —0.05 \. - M

. . . . -0.05 0 0.05
As mentioned earlier, the point group of this class of mate- Ky

rials is G,,, which has a 3-fold rotation axis alokg and three

mirror planes that contain thie axis and intersectthe. =0 FIG. 4. Trajectories of Weyl nodes in thé.( k,) plane (in units

plane on the line&, = 0 andk, = +k,/v/3. We define an of A~'). Dashed red lines indicated Weyl nodes of positive chiral-

azimuthal angl® that measures the rotation @, k, ) from ity; solid black lines are negative. The **’ andd’ denote respec-

the+k, axis in the clockwise direction as shown in Hi§). 4(a). tively the points of creation or annihilation of Weyl node®) For

As a result of the three-fold rotational symmetry, if a Weyl LaBi1—.Sh.Tes. (b) For LuBii . Sh; Tes.

node with positive chirality appears at soithén the region

0< 6 < 7/3 and at somé:, in the upper half BZ, then there

must be another two nodes with the same chirality and théines shown in the figure. Eventually, after exchanging-part

samek, located a¥) + 27/3 andf — 27 /3. Taking into ac- ners, the Weyl nodes meet and annihilate each other in an-

count the mirror symmetry, these must have negative-atyiral other set of high-symmetry planes,(= 0 and other equiva-

partners at the samie but at—6, —0 + 27 /3 and—0 — 27 /3. lent planes), at.o = 41.9% for LaBi;_,Sh,Te; and45.1%

Finally, because of TR symmetry, each Weyl nod& & al-  for LuBi;_,Sbh,Tes.

ways accompanied by another-ak with the same chirality,  Figure[B(a)-(b) shows the trajectory of the Weyl nodes in

giving six more Weyl nodes in the lower half BZ. We thus the 1, direction. Atz = 2., six quadratic BTPs are cre-

generically expect a total of twelve Weyl nodes in the entireateq, three in the top half-BZ and three in the bottom half-

BZ for compositions in the region of the WSM phase. BZ, but all of them fairly close to the BZ boundary plane
atk, = +x/c. As zx increases, the six BTPs split to form
twelve Weyl nodes, and these begin to move toward the above-

3. Weyl trajectories mentioned BZ boundary plane. Finally, after interchanging

partners, Weyl nodes of opposite chirality annihilate ifrgpa

Figure [4 shows the trajectories of the Weyl nodesatz.2 onthe BZ boundary plane &t = +n/c. Forz > e
in LaBi,_,Sb,Te; and LuBi,_,Sh,Te; projected onto the a_global_gap opens up and the system is again an insulator but
(kz, ky) plane asz passes through the critical region. The with an invertedZ, index.
red dashed line represents the trajectory of Weyl nodes with The locus of Weyl points can be regarded as forming a loop
positive chirality, while the solid black one denotes thodth in the 4D space ofi(, ky, k., =), and just as this loop can
negative chirality, and the “*” and#s” denote the creation and be projected ontd, as in Figs[b(a-b), it can also be pro-
annihilation points of the Weyl nodes respectively. As-  jected onto the direction of impurity compositiaras shown
creases, six quadratic BTPs are simultaneously creatéein tin Figs.[B(c-d). Again, it is clear that the Weyl nodes are
mirror planes; this occurs at.; =38.5% for LaBi;_,Sh, Tes created atr.; in the mirror planes and annihilated at; at
and 40.5% for LuBi,_,Sh,Te;. Each quadratic BTPs then 6 = +7/6. These plots may also be helpful in seeing how
splits into two Weyl nodes of opposite chirality, and thesethe high six-fold symmetry contributes to the narrowness of
twelve nodes migrate along the solid black and dashed rethe WSM region. If the symmetry of the system were lower,
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FIG. 5. (a-b): Trajectories of Weyl nodes in thedirection (in units
of ,&*1) for (a) LaBi;—.Sh,Te; and (b) LuBi—.Sh,Te;. Dashed
red (solid black) lines refer to the Weyl nodes with posi(iwegative)
chirality. 0 is the azimuthal angle in thé4, &, ) plane, as indicated in
Fig.[4(a). The “*" and *»” denote the creation and annihilation point -0.05 0 0.05
of the Weyl nodes respectively. (c-d): Trajectories of Waytles in ks

the direction of impurity composition for (c) LaBi;_..Sh, Te; and )
(d) LuBi;_ . Sh, Te;. FIG. 6. Surface spectral function averaged around the Fleal

(k- andk, in units of,&’l) for (a) LaBi;—,Sh, Tes atz=0.405, (b)
LuBi;—,Sh,Tes atx =0.43.

the period of oscillation i in Figs.[B(c-d) would be longer,
which would allow the Weyl nodes to oscillate farther in the
x direction, giving a wider window of concentration for the
WSM phase. In contrast, a fictitious system with /grfold
rotational symmetry would force the width of the WSM region
to vanish asV — oo. Here we haveéV =6, which is evidently
large enough to limit the WSM phase to a rather small interval
in .

of the Green'’s functions.

5. Simplified six-band model

In order to capture the essential physics in these matgrials
we construct a six-band TB model to describe the interesting
critical behavior. From the bandstructures plots preskinte

_ Fig.[d, it is clear that the band inversion occurs around the
4. Surface Fermi arcs Z point of LaBiTe; and LuBiTe, so we focus our attention
on the six states af closest to the Fermi level. A symmetry
One of the most characteristic features of WSMs is the exanalysis shows that these six states belong to two copies of

istence of Fermi arcs in the surface bandstructure. Here wihe two-dimensionaF irreducible representation (irrep) of
calculate the surface states using the surface Greenctidun  the G, group atZ, plus a Kramers pair of one-dimensional
technique®® which is implemented in the context of the VCA complex-conjugateZ, and Zs irreps corresponding to linear
effective Hamiltonian in the Wannier basis. The surface 8Z i combinations ofj, =+3/2 orbitals.

sampled by a 6464 k mesh, and the surface spectral func- We thus build our six-band TB model out of basis states

tions calculated on this mesh are then linearly interpdlate having the symmetry dp., 1) and|p., ) on the Te atoms at

to fit a 128<128k mesh. Fig[b shows the normalized sur- the top and bottom of the quintuple layer, dpg+ip,, 1) and

face spectral functions averaged around the Fermi level fop, — ip,,|) combinations located on the central Te atoms.

LaBi;_,Sb,Te; at + = 0.405 and for LuBi_,Sh,Te; at A schematic illustration of the six-band model is shown in

2 = 0.43. The averaging is done over an energy window ofFig.[8, where the top, bottom and central Te atoms are denoted

+4.5meV around the Fermi energy, which is determined byby Tel, Tel’ and Te& respectively. First of all, six inter-layer

the position of the bulk Weyl nodes. Six Fermi arcs connectspin-independenthopping terms are included in the model. A

ing the projected Weyl nodes of opposite chirality are visi-shown in Fig[8, we consider the first-neighbor hopping be-

ble, confirming the existence of the WSM phase in these twdween the central and top (bottom) Te atomét.), the inter-
solid-solution systems. Note that because of the small proQL (intra-QL) hopping between the top and bottom Te atoms
jected bulk gap on the loops where the Fermi arcs reside; (¢4), and some further-neighbor hoppingsandt, that are
some non-negligible spectral weight is visible even owtsid crucial in obtaining a nontriviaZ, index. Second, to cap-
the Fermi arcs in Fid.16, coming from the artificial smearingture the Rashba spin-splitting in the first-principles kstnat-
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FIG. 8. Top: Schematic diagram of the inter-layer spin-petalent
hopping terms in the six-band model. Orbitals on sites Te2, and
Tel make up a quintuple layer; A, B and C label in-plane hexagonal
positions. Bottom: Phase diagram for the topological binaf the
six-band model.

each other at ~ 0.074 eV after exchanging partners, which
qualitatively reproduces the phase-transition behavidhe
VCA effective Hamiltonians very well. Whea > 0.074 eV,

the system becomes a strong Tl. The bulk bandstructure at
5= 0.09eV in the Tl phase is shown in Figl 9(a), which very
well captures the low-energy dispersions arouhthat were
found in the first-principles calculations.

FIG. 7. Bulk bandstructures of (a) LaBiJand (b) LuBiTe.

. . . . . 6. Discussion
ture, in-plane Rashba-like spin-dependent hoppings mitie

top and bottom Te monolayers are included and are denoted

by A1 and \, respectively. For completeness, the inter-layer .To conclude this section, we would like to commentthat the
first-neighbor Té-Te2 (\s) and Te'-Te2 (\,) Rashba-like width of the WSM phase depends on two ingredients. On one

hopping terms are also included. Lastly, to reproduce th&and, as discussed above, it depends on the symmetry of the
first-principles bandstructure better, we also introducst-fi SYStém; other things being equal, the WSM interval tends to
neighbor spin-independent hopping terms within the Te2, Te P& Wider in systems with lower symmetry. On the other hand,
and Te’ monolayers, denoted by, v, anduv; respectively.  €Ven for fixed symmetry, it also depequ on the_ the detailed
The onsite energies are also different and are labeled;by ch0|ce_of path connecting the topological and trivial pisase
for Tel, B, for Te2, andE; for Tel’. As our model is only Choosing a different path may broaden or reduce the WSM

intended to be semiquantitative, we use the same model pét_agion. For example, if one artificially changes the strangt
rameters to describe both LaBiTand LuBiTe,. of the atomic SOC strength in LaBiJand LuBiTe in the

We take all of the parameters in the model to depend a Sca}(vannlerlz_ed B mode_ls, and sc_:ales the variation of Fhe ac-
ing parameted that drives the TPT. Whe#fiis zero, the sys- wal atomic SOC t_)y asingle scaling pqrameta]hen we find
tem is a trivial insulator; as increases, the system becomesthat the W.SM _regllon.qnly shows up farin the range of 76.8-

a topological insulator by going through a critical WSM. The //-3%. which is significantly narrower than for the VCA case.
dependence of the parametersddefines a path in param- However, if an average SOC is applled to _the entire system,
eter space. It is important to note that the width of the -criti such that the SOC strength on Te is artificially high and that

cal WSM region can be highly sensitive to this path, with an®n Bi is artificially low, we find that a much wider WSM re-
improper choice sometimes leading to an extremely narrow
WSM phase. Our choice is specified in Table I.

Following the path we have chosen, a WSM phase is ob- TABLE |. Parameters of the six-band model (in eV).
tained for0.067 eV < § <0.074 eV. As shown in Fig. B(b), the
smallest direct band gap in the BZ vanishes wh@67 eV < b 02-06/4 A 015-06/2  ws 0
§ < 0.074eV, indicating the existence of BTPs in BZ. Ifone t2  0.15—6/4 Ay 012-4/2 Ei  01+0—06w
further checks the position of the BTPs, one finds that whents 5 t, 0.1244/2 E» —6v2
0 ~ 0.067eV, six quadratic BTPs are created in the mirror ¢, 0.1-6/4 t, 006-6§/2 Es -01-6
planes, which then split into twelve Weyl nodes and propa-), 024 -6§/2 0.05
gate inthe BZ following the solid black and dashedredlimesi ,, g2 _5/2 o, 01

Fig.[Q(c) and (d). These Weyl nodes eventually annihilath wi
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FIG. 9. (a) Bulk bandstructure of the six-band modef at0.09 eV.
(b) Smallest direct band gap in the BZ vs.(c) Trajectory of Weyl -0.05 0.2
nodes projected onto thé.(, k,) plane. Dashed red (solid black)
line refers to the Weyl node with positive (negative) chiyal The 0

“*” and “ &” denote the creation and annihilation point of the Weyl 0.05

-0.05 0
k

nodes respectively is the azimuthal angle in thé&, k) plang. (d) *
Trajectory of Weyl nodes along.. Units of k., k, andk, areA™*.

FIG. 10. (a) Smallest direct band gap in the BZ of BiTel vs. the
pressure-scaling variable (b) Surface spectral function of BiTel in

. . . . . the WSM phase (at 55% of the full pressure).
gion results. Thus, it may potentially be possible to engine

the width of a critical WSM phase if one can modify the trans-
formation path, as by epitaxial strain, pressure, or aoioiti

chemical substitution. planes. These BTPs then split into twelve Weyl nodes which

propagate along the directions indicated by solid black (an
timonopoles) and dashed red (monopoles) lines. They anni-
hilate each other in the three mirror planes after exchangin
partners. Note that in this case the system goes from a normal
to topological insulator ag increases, which is the reverse of
In order to justify the discussion in S&c_I B, we revisit the the LaBi,_,Sb, Tes and LuBi;_,Sh, Te; cases.
TPT in BiTel driven by pressure. In our calculations, thespre ~ The results shown in Fig._11 support our conclusions in
sure is applied by compressing the volume of the primitiveSec[IIB. In particular, even though the torsion argument im
cell. The fully compressed volumg is taken to be 85.4% plies that the trajectories of the two Weyl nodes which split
of the original volumelj, such that the former is well in- off from a given quadratic BTP would never meet each other,
side the topological regiok?, and both the lattice vectors and a closed curve is still formed in the 3D BZ of BiTel through
atomic positions are relaxed at the compressed volume. Athe interchange of partners among the Weyl nodes.
discussed in Se€ 1B, we searched for BTPs over the en- Fig.[10(b) shows the surface spectral function of BiTel av-
tire irreducible BZ for a transitional Hamiltonian scalesl a eraged around the Fermilevel fipe=0.55, in the WSM phase.
H(n) = (1 —n)Hy + nH; for 0 <n < 1, whereHy, and Itis clear that there are six Fermi arcs extending between th
H, represent the Hamiltonians of the uncompressed and fullgix pairs of projected Weyl nodes, which is again the halknar
compressed BiTel, with even and odd indices respectively. of a WSM phase.
As shown in Fig[ID(a), as the pressure is increased from 0% We therefore conclude that a WSM phase does exist in the
to 100% (alternatively, aB' is deceased from 100% to 85.4% TPT of BiTel, but it occurs only within a narrow pressure
of 1), a semimetallic phase emerges fpin the range of range. Ify is changed by 2.5%, the volume is only changed
about 54-56%. by 0.39%, which might be difficult to measure experimen-
The point group of BiTel is the same as for LaBiTend tally. Again, the narrowness of the WSM interval can be at-
LuBiTez, namely G,. Therefore, as explained in SEc. IV A, tributed in part to the high symmetry of the system. However,
one would expect the emergence of twelve Weyl nodes in thas emphasized in the previous section, the width of the criti
entire BZ during the phase-transition process. The traject cal WSM is also sensitive to the choice of path in parameter
ries of the Weyl nodes are plotted in Flg.] 11(a-b). Whenspace. The critical WSM could get broadened by choosing a
n=54%, six quadratic BTPs are first created at the BZ bound-different path, as for example by applying uniaxial pressur
aryk,=m/cinthek, =0 and other equivalent high-symmetry We leave this for a future study.

B. BiTel: revisited
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(a) fé" (b)
0.04f . \ 0.015

To illustrate our conclusions, we have carried out cal-
culations on specific noncentrosymmetric insulators. For
LaBi;_,Sb,Te; and LuBi;_,. Sh, Te; we have used Wannier-
ized VCA Hamiltonians to find a WSM phase in the region
2 ~38.5% — 41.9% andx ~40.5% — 45.1% respectively. A

s ; six-band TB model was also constructed to describe the topo-
—0.04 \ logical and critical behavior in these materials. We foulmat t

: e g™ -0.015 the width of the critical WSM phase can be highly sensitive
20.02 0 0.04 _ to the_choic_e_c_)f path in_the parameter space, suggesting that
there is flexibility to engineer the WSM phase.

We have also revisited the TPT of BiTel as a function
FIG. 11. (a) Trajectories of Weyl nodes in the.(k,) plane (in  of pressure, where previous work suggested the absence of
units of A~'). Dashed red (solid black) lines indicate the trajecto- g \WSM phasé§ Using a carefully constructed algorithm to
ries of Weyl nodes with positive (negative) chirality. The& and  gearch for the minimum gap in the full three-dimensional BZ,
“@" denote the creation and annihilation point of the Weyl mode — \a found that a WSM phase is indeed present over a narrow
Sop,eft'vely' (b) Trajectory of Weyl nodes in the direction (units of o405 of pressure, although this range may be so narrow as
AT to make its experimental observation difficult.

In summary, we have clarified the theory of a general
V. SUMMARY Z_Q-ever_w toZQ_-odd topolog_ical phas_e transitior_l in a t_hree-
dimensional time-reversal-invariant insulator with beakin-
In this paper, we have investigated the nature of the TPT ir¥ e;s'\l/lonpﬁ ;/Sn;mgtd)sl,t :Wafse?gns:;ztggt.th%eaz a:\r/l;erarlnsidﬁ(t:

a noncentrosymmetric Tl in the most general case. We fing._. : d :

; . . ailed the behavior of LaBi_,Sb, Te; and LuBi,_,Sh, Tes as
that an mter_medlate WS.M phase is a'W‘?‘yS present, regardI(.efjromising candidates for WSMs of this kind. While we have
of other lattice symmetries, as long as inversion symmeiry | not considered disorder or interactions explicitly, we entp

absent. We discussed separately the cases in which the JagOii conclusions to survive at least for weak disorder orinte

F'at?] matr||>(< LS rank-one orr:ank—fjwot.vvhBe_PF}he g?é) f||rst Close‘ls.ﬁ-'ctions. Our work is a step forward in the general understand
n the rank-two case, éach quadratic would always Spii g of topological phase transitions, and may provide usefu

Into a pa|rof Weyl nodes, which annihilate e_ach. other after e guidelines for the experimental realization of new classes
changing partners. If the rank of the Jacobian is one, then thW

doubly-quadratic BTP in this case would either split intarfo eyl semimentals.
Weyl nodes, or else immediately be gapped out again, cor-
responding to an “insulator-insulator transition.” Howeyn

the latter case, the bulk; indices are not expected to change.
Therefore, we conclude thdk-even andZ,-odd phases of a
noncentrosymmetric insulator must always be separated by a This work is supported by NSF Grants DMR-10-05838 and
region of WSM phase, even if other symmetries are present.14-08838.
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