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We study the problem of phase transitions from 3D topological to normal insulators without inversion sym-
metry. In contrast with the conclusions of some previous work, we show that a Weyl semimetal always exists as
an intermediate phase regardless of any constriant from lattice symmetries, although the interval of the critical
region is sensitive to the choice of path in the parameter space and can be very narrow. We demonstrate this
behavior by carrying out first-principles calculations on the noncentrosymmetric topological insulators LaBiTe3

and LuBiTe3 and the trivial insulator BiTeI. We find that a robust Weyl-semimetal phase exists in the solid
solutions LaBi1−xSbxTe3 and LuBi1−xSbxTe3 for x≈ 38.5 − 41.9% andx≈ 40.5 − 45.1% respectively. A
low-energy effective model is also constructed to describethe critical behavior in these two materials. In BiTeI,
a Weyl semimetal also appears with applied pressure, but only within a very small pressure range, which may
explain why it has not been experimentally observed.

PACS numbers: 73.43.Nq, 73.20.At, 78.40.Kc

I. INTRODUCTION

The significance of topology in determining electronic
properties has became widely appreciated with the discovery
of the integer quantum Hall effect and been highlighted fur-
ther by the recent interest in topological insulators (TIs).1–4

In topological band theory, a topological index, such as the
Chern number or theZ2 index, is well-defined only for gapped
systems, and the topological character is signaled by the pres-
ence of novel gapless surface states which cannot exist in
any isolated 2D system.3,4 Recently, the concept of topologi-
cal phases is further generalized to 3D bulk gapless systems,
whose topological behavior is protected by lattice transla-
tional symmetry, known as the Weyl semimetal (WSM).5–9

A Weyl semimetal is characterized by a Fermi energy that
intersects the bulk bands only at one or more pairs of band-
touching points (BTPs) between nondegenerate valence and
conduction bands. This can occur in the presence of spin-
orbit coupling (SOC), typically in a crystal with broken time-
reversal or inversion symmetry but not both, so that the pairs
are of the form (k0, −k0) in the Brillouin zone (BZ). The ef-
fective Hamiltonian around a single BTPk0 can be written as
H(k) = f0(k) + f(k) ·σ, wheref0 andf are scalar and vec-
tor functions respectively of wavevector in the BZ and theσj

are the Pauli matrices acting in the two-band space. If one ex-
pands the coefficientf(k) to linear order aroundk0, one gets a
Hamiltonian having the form of the Weyl Hamiltonian in rel-
ativistic quantum mechanics after a coordinate transformation
in k space. If the sign of the determinant of the Jacobian that
describes the coordinate transformation is positive (negative),
we call the BTP as a Weyl node with positive (negative) chiral-
ity, and the low-energy excitations around such a Weyl node
provide a condensed-matter realization of left-handed (right-
handed) Weyl fermions.

These pairs of Weyl nodes are topologically protected in the
sense that they are robust against small perturbations, which
can be see from the codimension argument as follows. One
can introduce a parameterλ that acts as a perturbation on
the BTP, and let bothf0 andf to be dependent onλ. In or-
der to get a band touching at(k0, λ0), the three coefficients

f ≡ (fx, fy, fz) have to vanish. However, since there are four
degrees of freedom, ifλ0 → λ0 + δλ, instead of opening
a gap, the Weyl node would just shift slightly in momentum
to compensate for the perturbation. In fact, there is no way
to remove a Weyl node unless two Weyl nodes with opposite
chirality annihilate each other.

If the two Weyl nodes are aligned in energy due to either
time-reversal or some lattice symmetry, and the bands are
filled right up to the Weyl nodes, then the Fermi energy would
be locked there regardless of weak perturbations. That is, the
Fermi level could be slightly shifted upward (downward) due
to some weak perturbation, such that there is an electron-like
(hole-like) Fermi surface, then there must also be a hole-like
(electron-like) Fermi surface to conserve the total numberof
electrons, which is impossible in such a a semimetal. It fol-
lows that the low-energy physics in the Weyl semimetal is
completely dominated by the linearly dispersing states around
the Weyl nodes, which leads to interesting surface states and
transport properties.

The presence of Weyl nodes in the bulk bandstructure is re-
sponsible for the presence of Fermi arcs at the surface, which
can be understood as follows.7,8 Consider a small loop in the
2D surface BZ that encloses the projection alongkz of one
Weyl point. When translated alongkz, this loop traces out a
surface in the 3D BZ, and the application of Gauss’s theorem
implies that the Chern number on this surface must equal the
chirality of the enclosed Weyl node. It follows that as(kx, ky)
is carried around the loop, a single electron is pumped up to
(or down from) the top surface, and this is only consistent
with charge conservation if a single surface state crosses the
Fermi energyEF during the cycle. Since this argument applies
for an arbitrary loop, surface states must exist atEF along
some arc emerging from the surface-projected Weyl point. If
there is another Weyl node with opposite chirality, then the
Chern number can vanish once the cylinder encloses both of
the nodes, such that the Fermi arc would only extend between
the two projected Weyl nodes.7,8

In a WSM with broken time-reversal (TR) symmetry, there
is also a non-zero anomalous Hall conductivity (AHC) that is
closely related to the positions of the Weyl nodes.10–12 Con-
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sider the AHCσxy with the crystal oriented such that the third
primitive reciprocal vector is alongz. If we track the Chern
numberCz of a 2D slice normal toz in the 3D BZ, we must
find that it changes by±1 wheneverkz passes a Weyl node,
with the sign depending on the chirality of the node. In the
simplest case, ifCz = 1 for kz between the two Weyl nodes
and zero elsewhere, then the AHC is just proportional to the
separation of the two Weyl nodes inkz. This is also inter-
preted as a consequence of the “chiral anomaly” in a WSM.13

Other interesting transport phenomena can arise due to the
chiral anomaly. For example, if a magnetic fieldB is applied
to a WSM in thez direction, Landau levels will be formed in
the (x, y) plane. The zeroth Landau level disperses linearly
alongkz , but in opposite directions for Weyl nodes with op-
posite chirality. As a result, if an electric fieldE is applied
alongz, electrons would be pumped from one Weyl node to
the other at a rate proportional toE ·B, with the Fermi arcs
serving as a conduit.5,8,12,14

As discussed above, a WSM requires the breaking of ei-
ther TR or inversion symmetry. Many of the previous works
are focused on WSMs without TR symmetry, such as in py-
rochlore iridates,7 magnetically doped TI multilayers,11 and
Hg1−x−yCdxMnyTe.15 In this paper, we study the WSM with
preserved TR symmetry but broken inversion symmetry.

It was argued some time ago that theZ2-odd andZ2-even
phases of a noncentrosymmetric insulator should always be
bridged by a critical WSM phase.16,17 If the transition is de-
scribed by some adiabatic parameterλ, then asλ increases
one expects first the appearance ofm higher-order BTPs in
the half BZ (and anotherm at the time-reversed points), where
m= 1 is typical of low-symmetry systems whilem> 1 can
occur when, e.g., rotational symmetries are present. These
higher-order BTPs generally have quadratic dispersion in one
direction while remaining linear in the other two, and are non-
chiral; we refer to such a point henceforth as a “quadratic
BTP.” Asλ increases, each quadratic BTP splits to form a pair
of Weyl nodes (4m altogether), which then migrate through
the BZ and eventually annihilate at a second critical value of
λ after exchanging partners. The previous work demonstrated
that this process inverts the strongZ2 index if m is odd.16,17

Recently, however, Yanget al. claimed that for systems with
certain high-symmetry lines in the BZ, the phase transition
could occur at a unique critical value ofλ at which the bands
would touch and immediately reopen, instead of over some fi-
nite interval inλ, even when inversion symmetry is absent.18

These authors suggested that BiTeI under pressure could serve
as an example to support their claim.18,19

In this paper, we address this issue carefully. We show
that an intermediate critical WSM phase should always ex-
ist for any topological phase transition (TPT) between a nor-
mal and aZ2-odd insulating phase. We find however that
the width of the critical WSM phase can be sensitive to the
choice of path in parameter space and can sometimes be very
small. To justify our conclusions, we take specific materials
as examples. We first study the TPT in the solid solutions
LaBi1−xSbxTe3 and LuBi1−xSbxTe3 using the virtual crystal
approximation, where the phase transition is driven by Sb sub-
stitution. The parent compounds atx= 100%, LaBiTe3 and

LuBiTe3, are hypothetical noncentrosymmetric materials that
are predicted to be strong topological insulators in Ref. 20and
in the present work respectively. Instead, the end members
LaSbTe3 and LuSbTe3 at x= 0% are trivial insulators.20 We
find that a WSM phase is obtained whenx is in the range of
about 38.5-41.9% for LaBiTe3 and 40.5-45.1% for LuBiTe3.
We further construct a low-energy effective model to describe
the topological and phase-transitional behavior in this class
of materials. We also revisit the TPT of BiTeI driven by ap-
plied pressure, where a WSM phase has not previously been
observed.19,21 Based on our calculations, we find that a small
interval of WSM phase does actually intervene as increasing
pressure drives the system from the trivial to the topological
phase.

The paper is organized as follows. In Sec. II we derive
the general behavior of TPTs in noncentrosymmetric insu-
lators and point out some deficiencies in the discussion of
BiTeI by Yanget al.18 In Sec. III we describe the lattice struc-
tures and basic topological properties of the materials, aswell
as the numerical methods used in the realistic-material cal-
culations, especially the methods used in modeling the al-
loyed and pressurized systems and in searching for BTPs in
the BZ. In Sec. IV we present the results for LaBi1−xSbxTe3,
LuBi1−xSbxTe3 and BiTeI, and discuss the sensitivity to the
choice of path. In Sec. V, we summarize our work.

II. TOPOLOGICAL TRANSITION IN
NONCENTROSYMMETRIC INSULATORS

A. General behavior

We consider the problem of TPTs in noncentrosymmetric
insulators in the most general case. In the space of the two
bands which touch at the TPT, the system can be described by
the effective Hamiltonian

H(k, λ) = fx(k, λ)σx + fy(k, λ)σy + fz(k, λ)σz , (1)

whereλ is the parameter that drives the TPT andσx,y,z are
the three Pauli matrices defined in the space spanned by the
highest occupied and the lowest unoccupied states atk. Since
we study the TPT between two insulating phases, we can as-
sume without loss of generality that the system is gapped for
λ<λ0, and that the first touching that occurs atλ=λ0 takes
place atk = k0. In other words,fi(k0, λ0) = 0, i= x, y, z.
Then we ask what happens ifk0 → k0+q andλ0 → λ0+δλ.

We first expand the coefficientsf around(k0, λ0) as f =
J · q + Λ δλ, whereq = k − k0, δλ = λ − λ0, J is the
Jacobian with matrix elementsJij = (∂fi/∂kj)|k0,λ0

, andΛ
is a 3-vector with componentsΛi=(∂fi/∂λ)|k0,λ0

. A natural
set of momentum-space coordinates can be defined in terms
of the eigensystemJ · vi = Jivi. Definingq =

∑

i pi vi and
ui = Jivi, we obtain

f =

3
∑

i=1

pi ui + δλΛ. (2)
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Following the argument of Yanget al.,18 the Jacobian ma-
trix J has to be singular at(k0, λ0) because otherwise there
would be band touching even whenλ<λ0, contradicting the
assumption that the system is insulating forλ<λ0. This im-
plies that at least one of the eigenvalues ofJ is zero. We as-
sume for the moment that the others are non-zero, i.e., thatJ

is rank-2, and let it be the first eigenvalue that vanishes. Since
thep1-dependence off then vanishes at linear order, we again
follow Ref. 18 by including a second-order term to obtain

f = p2 u2 + p3 u3 + δλΛ+ p21 w (3)

wherew= (1/2)∂2f/∂2p1|k0,λ0
. Now we also have the free-

dom to carry out an arbitrary rotation in the pseudospin rep-
resentation of the two-band space. That is, we redefinefi to
be the component in the pseudospin in directionei, with e3
given by(u2 × u3)/|u2 × u3|, ande1 ande2 chosen to form
an orthonormal frame withe3. Thenu23 andu33 vanish, and
we can write explicitly that

f1 = p2 u21 + p3 u31 + δλΛ1 + p21 w1,

f2 = p2 u22 + p3 u32 + δλΛ2 + p2
1
w2,

f3 = δλΛ3 + p2
1
w3. (4)

We assumeΛ3/w3 < 0, since otherwise there are solutions
at negativeλ. Then at positiveλ, there are always two solu-
tionsp1=±

√

−δλΛ3/w3 at whichf3=0. Plugging this into
the expressions forf1 andf2 in Eq. (4), we can obtainp2 and
p3 by solving the linear system

[

u21 u31

u22 u32

] [

p2
p3

]

+

[

Λ1 − w1Λ3/w3

Λ2 − w2Λ3/w3

]

δλ = 0. (5)

Solutions of the above equation always exist as long as the Ja-
cobian matrixJ is of rank two, which means a critical WSM
should always exist in the absence of a special lattice symme-
try that would lower the rank ofJ. From the above it also
follows that at the criticalλ = λ0 the dispersion aroundk0

is quadratic inp1 and linear inp2 andp3, and that for larger
λ the Weyl point displacements scale like|p1| ∼

√
δλ and

|p2,3| ∼ δλ. The same conclusions in the rank-two case have
been obtained by Murakamiet al.16 and restated by Yanget
al.18

If the Jacobian matrixJ turns out to be rank-one instead
at λ0, then the bands would first close at a doubly-quadratic
BTP. That is, there would be two vanishing eigenvalues of the
Jacobian matrix (which we take to be the first and second), and
the dispersion would be quadratic inp1 andp2 and linear in
p3. This implies that only the second-order terms associated
with p1 andp2 need to be included in Eq. (3), yielding

f1 = p3 u31 + δλΛ1 + p21 w
11

1 + p22 w
22

1 + 2p1p2 w
12

1 ,

f2 = p3 u32 + δλΛ2 + p2
1
w11

2
+ p2

2
w22

2
+ 2p1p2 w

12

2
,

f3 = p3 u33 + δλΛ3 + p21 w
11

3 + p22 w
22

3 + 2p1p2 w
12

3 , (6)

wherewij = (1/2)∂2f/∂pi∂pj|k0,λ0
(i, j = 1, 2). We can

make a similar transformation onf such that thef3 direction

is e3 = (u3 × w22)/|u3 × w22|, so thatf3 becomes inde-
pendent ofp3 andp2

2
. Then one also has the freedom to ro-

tate thep1 and p2 components to makew12

3
vanish. After

these two transformations,f3 only depends onp2
1

andδλ, and
one expects solutions atp1=±

√

−δλΛ3/w11
3

. Plugging this
into the expressions forf1 andf2 in Eq. (6), one obtains a
quadratic equation forp2 of the formaδλ+bp2

2
+c

√
δλp2=0,

wherea, b andc are some constants determined by the com-
ponents ofu3, Λ, andwij (i, j = 1, 2). If there are real solu-
tions for the above equation, then the doubly-quadratic BTPs
would split into four Weyl nodes whose trajectories scale as
p1 ∼ ±

√
δλ andp2 ∼ ±

√
δλ, p3 ∼ δλ. Otherwise, if there

is no solution forp2, a gap would be opened up immediately
after the band touching at(k0, λ0), which would represent the
rare case of an “insulator-insulator transition” using thelan-
guage of Ref. 18.

However, we do not expect that the strongZ2 index would
be inverted for such an insulator-insulator transition in the
rank-one case. This can be seen as follows. If the BTP
does not lie in any of the TR-invariant slices (kj = {0, π},
j = 1, 2, 3), then certainly the 2DZ2 indices of the TR invari-
ant slices would not change, and it follows that none of the
four 3DZ2 indices would change either. If the BTP happens
to reside in one of the TR invariant slices, then since the dis-
persion in the 2D slice must be quadratic in at least one direc-
tion, it should be topologically equivalent to the superposition
of an even number of linearly-dispersing Weyl nodes, which is
also not expected to flip the 2DZ2 index, as argued in Ref. 16.
Thus none of the 3DZ2 indices, including the strong index,
would change.

To summarize this section, we find without any lattice-
symmetry restriction that a critical WSM phase always ex-
ists in the rank-two case. In the rank-one case, an insulator-
insulator type transition is allowed in principle, but would not
be expected to be accompanied by a change in the strongZ2

index. Therefore, it is fair to claim that, regardless of special
lattice symmetry, there is always a WSM phase connecting
Z2-odd andZ2-even phases in a noncentrosymmetric insula-
tor.

B. Discussion of BiTeI

In this section we discuss the TPT in pressured BiTeI, a case
in which the TPT is driven in a system with C3v symmetry.
Contrary to the conclusions of Ref. 18, here we argue that a
critical WSM does exist in the TPT of BiTeI, although the
pressure interval over which it occurs may be rather narrow.

In Refs. 18 and 19 the authors argued that if there exists
a high-symmetry line in the BZ such that the dispersion ex-
tremum evolves along the line as a function of the adiabatic
parameter (pressure), then one could get an insulator-insulator
type transition without going through a critical WSM. The au-
thors further pointed out that the high-symmetry lines fromA
to H in the BZ of BiTeI, shown in Fig. 1(d), satisfy some nec-
essary conditions for this to occur. Moreover, they showed
that the symmetry of BiTeI is such that if one concentrates on
the band dispersions along these A-H lines, one finds a pair



4

of extrema (one valence-band maximum and one conduction-
band minimum) which migrate along the A-H line as a func-
tion of the external parameter (pressure), coincide at a critical
value, and then separate again to reopen the gap. They further-
more showed that the dispersions are quadratic in the two or-
thogonal directions (except exactly at the critical value), rais-
ing the possibility that the extrema in question could be min-
ima and maxima in all threek-space directions. This would
correspond to the insulator-insulator transition withoutan in-
tervening WSM phase. However, our analysis in the previous
section shows that this cannot occur in the rank-two case, and
that the extrema in question actually become saddle points af-
ter the band touchings occur along the A-H lines. In this case,
as recognized in Ref. 18, a WSM phase does occur. As has
been verified in Ref. 18, the Jacobian does remain of rank two
on these lines in BiTeI, and we shall show below in Sec. IV B
that an intermediate WSM phase does occur. We also point
out that Fig. 2 of Ref. 18 does not demonstrate the absence of
the Weyl nodes, since they are expected to lie off the (kx, kz)
plane on which the dispersion was plotted.

Yang et al.18 gave another argument in favor of the
insulator-insulator scenario in BiTeI as follows. They noted
that the band touching first takes place on the A-H line, which
is invariant under the combination of time-reversal and mirror
operations. This imposes some constraints on the form of the
effective Hamiltonian around the BTP, and from these the au-
thors concluded that, if Weyl nodes do appear, they should mi-
grate along trajectories of the formp1∼±δλ1/2, p2∼±δλ3/2

andp3 ∼ δλ. Such a curve in 3D space possesses non-zero
torsion, so that the trajectories of the two Weyl nodes emerg-
ing from one quadratic BTP could never join again and form
a closed curve. This implies that if the WSM is formed by
such an event, then it would remain permanently, contradict-
ing the fact that BiTeI clearly becomes a globally-gapped TI
at higher pressures. Based on this reasoning, they concluded
that the TPT in BiTeI must be an insulator-insulator transition
without an intermediate WSM.

However, this argument neglects the fact that the C3v sym-
metry means that there are several A-H lines in the BZ of
BiTeI, and the gap first closes by the simultaneous appear-
ance of quadratic BTPs at equivalent positions on all of these
lines. Even though the two Weyl nodes which emerge from a
single quadratic BTP cannot meet each other, as shown from
the torsion of their trajectories, the Weyl nodes from differ-
ent BTPs can interchange partners and eventually annihilate
each other in such a way as to form a closed curve in the BZ.
This is exactly the mechanism of the topological phase tran-
sition in noncentrosymmetric TIs.16,17As will be discussed in
Sec. IV B, there are actually six quadratic BTPs in the full BZ
that appear simultaneously, according to the crystalline and
TR symmetries. These six Dirac nodes split into twelve Weyl
nodes, which are eventually gapped out by annihilation after
exchanging partners.

In the following section, we will study the TPTs in vari-
ous inversion asymmetric materials by first-principles calcu-
lations. We predict LaBi1−xSbxTe3 and LuBi1−xSbxTe3 to
be WSM candidates within a certain range of impurity com-
positionx. We also revisit the case of BiTeI, and find that

FIG. 1. (a) The lattice structure of LaBiTe3, LuBiTe3, LaSbTe3, and
LuSbTe3. (b) The BZ of La(Lu)Bi(Sb)Te3. (c) The lattice structure
of BiTeI. (d) The BZ of BiTeI.

a WSM phase emerges when external pressure is applied to
BiTeI, but only within a small pressure interval.

III. PRELIMINARIES

A. Lattice structures and basic topological properties

The assumed crystal structures of LaBiTe3 and LuBiTe3 are
very similar to Bi2Te3, where five atomic monolayers stack in
the [111] direction in anA-B-C-A-... sequence forming quin-
tuple layers (QLs) as shown in Fig. 1(a). The only difference
is that one of the two Bi atoms in the primitive unit cell is re-
placed by a La or Lu atom, which breaks the inversion symme-
try. The lattice structure of LaSbTe3 and LuSbTe3 is the same
as for LaBiTe3 and LuBiTe3, except that all the Bi atoms are
substituted by Sb. The in-plane hexagonal lattice parameters
for LaBiTe3 and LuBiTe3 area= 4.39 Å and 4.18Å respec-
tively, while the size of a QL alongc is 10.07Å and 10.29̊A
respectively. The lattice parameters of LaSbTe3 are slightly
different from LaBiTe3, with a = 4.24 Å and c = 10.13 Å.
The lattice parameters for LuSbTe3 have not been reported
before, so we use those from LuBiTe3. Among these four hy-
pothetical materials, LaBiTe3 has been previously reported as
a candidate for an inversion-asymmetric TI.20 LuBiTe3 is first
reported as a TI candidate in this paper; the non-trivial band
topology is confirmed by calculating the bulkZ2 index22 and
checking the existence of topological surface states. On the
other hand, LaSbTe3 and LuSbTe3 are trivial insulators.

As shown in Fig. 1(c), BiTeI has a hexagonal lattice
structure with three atoms in the primitive cell stacked as
A-B-C-A-... along thez direction. The lattice parameters
in-plane and along the hexagonal axis area = 4.339 Å and
c = 6.854 Å. BiTeI itself is a trivial insulator with a large
Rashba spin splitting in the bulk,23 but it can be driven into a
TI state by applying pressure. Previous studies have suggested
that the transition to the topological phase is not mediatedby
a WSM phase,18,19 but we revisit this issue in Sec. IV B and
come to different conclusions.
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B. First-principles methodology

We carry out the bulk first-principles calculations using the
VASP package including SOC.24,25 The generalized-gradient
approximation is used to treat the exchange-correlation
functional.26,27 The BZ is sampled on an 8×8×8 Monkhorst-
Pack28 k mesh and an energy cutoff of 340 eV is used. The
output from the first-principles plane-wave calculations are
then interfaced to the Wannier90 package29 to construct re-
alistic tight-binding (TB) models for these materials.30

To describe the electronic structure of LaBi1−xSbxTe3 and
LuBi1−xSbxTe3, we adopt the virtual crystal approximation
(VCA) in which each Bi or Sb is replaced by a “virtual”
atom whose properties are a weighted average of the two con-
stituents. The VCA treatment typically gives a reasonable de-
scription for solid-solution systems in which the dopant and
host atoms have a similar chemical character. For example,
the VCA was shown to work well in describing Sb substi-
tution in Bi2Se3, because of the similar orbital character of
Sb5p and Bi6p, but not for In substitution, where In5s or-
bitals become involved.31 The VCA is implemented in the
Wannier basis by constructing separate 36-band models for
LaBiTe3 (LuBiTe3) and LaSbTe3 (LuSbTe3), including all the
valencep orbitals of the cations and anions, as well as the5d
and6s orbitals of the rare-earth elements.32 In the solid so-
lution, the Hamiltonian matrix elements are then taken as a
linear interpolation in impurity compositionx of the corre-
sponding matrix elements of the parent materials. That is,
we takeHVCA

mn = (1 − x)HBi
mn + xHSb

mn, whereHBi
mn and

HSb
mn denote the matrix elements of the TB models of LaBiTe3

and LaSbTe3. It worth noting that when generating the WFs
for the VCA treatment, the Wannier basis functions have to
be chosen as similar as possible before the averaging.31 We
therefore use WFs that are constructed simply by project-
ing the Bloch states onto the same set of atomic-like trial
orbitals without applying a subsequent maximal-localization
procedure.33,34

Similarly, to study the pressure-induced TPT in BiTeI, we
carry out first-principles calculations for the system at the
zero-pressure volume, where it is topologically normal, and
also at 85.4% of the original volume, a value chosen some-
what arbitrarily to be well inside the TI region.19 We denote
these two states asη=0 andη=1 respectively. Then from the
Wannier representation we again construct a realistic Hamil-
tonian for each system, denoted asH0 andH1 respectively,
including all the valencep orbitals of Bi, Te and I. Finally we
linearly interpolate these asH(η)=(1−η)H0+ηH1, treating
η as an adiabatic parameter that tunes the system through the
topological phase transition.

Using these Wannierized effective TB models, we can
search for BTPs very efficiently over the entire BZ. We first
sample the irreducible BZ using a relatively sparsek mesh,
e.g., 20×20×20, and find the pointk0 having the smallest
direct band gap on this mesh. A second-round search is con-
ducted by scanning over a denserk mesh within a sphere cen-
tered onk0. We then repeat the procedure iteratively until
convergence is reached. All of the trajectories of Weyl nodes
presented in Sec. IV are obtained using this approach.
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FIG. 2. Smallest direct band gap in the BZ vs. compositionx for (a)
LaBi1−xSbxTe3 and (b) LuBi1−xSbxTe3. Dashed gray line marks
our chosen threshold of 0.2 meV to signal a gap closure.

IV. RESULTS

A. LaBi1−xSbxTe3 and LuBi1−xSbxTe3

1. Band gap and Weyl chirality

For each of these materials we scan over a mesh in composi-
tion x, and for eachx we construct the Wannierized Hamilto-
nian for the corresponding solid solution within the VCA. We
then use the methods of the previous section to search for the
BTPs in the entire irreducible BZ. Plots of the smallest direct
band gap in the BZ vs.x are presented in Fig. 2. Clearly the
gap remains closed over a finite range ofx in both cases, from
38.5% to 41.9% for LaBi1−xSbxTe3 and 40.5% to 45.1% for
LuBi1−xSbxTe3. By checking the dispersion around the gap-
closure point, we confirm that the system is semimetallic with
the Fermi level lying at a set of degenerate Weyl BTPs over
this entire range.

To illustrate the topological character, we further calculate
the chirality of the BTPs, which is given by the determinant
of the Jacobian matrixJij = ∂fi/∂kj. Fig. 3 shows how
det(J) varies withx for the BTPs in LaBi1−xSbxTe3 and
LuBi1−xSbxTe3. The red and black open circles mark the
values ofdet(J) for the BTPs with positive and negative chi-
rality, which are mapped into each other by mirror operations
about thekx=0 and other equivalent mirror planes. One can
see that at the beginning of the band touching, the chirality
starts at zero, indicating the creation of a quadratic BTP. As
x increases, each quadratic BTP splits into two Weyl nodes
with opposite chirality. These then migrate through the BZ
and eventually annihilate each other at the point where the
chirality returns to zero.



6

       

−0.5

0

0.5

de
t (

J)

0.39 0.40 0.41 0.42 0.43 0.44 0.45

−0.5

0

0.5

❈♦♠♣♦s✐t✐♦♥ ①

de
t (

J)

✭❛✮

✭❜✮
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for (a) LaBi1−xSbxTe3 and (b) LuBi1−xSbxTe3.

2. Symmetry considerations

As mentioned earlier, the point group of this class of mate-
rials is C3v, which has a 3-fold rotation axis alongkz and three
mirror planes that contain thekz axis and intersect thekz =0
plane on the lineskx = 0 andky = ±kx/

√
3. We define an

azimuthal angleθ that measures the rotation of(kx, ky) from
the+ky axis in the clockwise direction as shown in Fig. 4(a).
As a result of the three-fold rotational symmetry, if a Weyl
node with positive chirality appears at someθ in the region
0≤ θ≤ π/3 and at somekz in the upper half BZ, then there
must be another two nodes with the same chirality and the
samekz located atθ + 2π/3 andθ − 2π/3. Taking into ac-
count the mirror symmetry, these must have negative-chirality
partners at the samekz but at−θ, −θ+2π/3 and−θ− 2π/3.
Finally, because of TR symmetry, each Weyl node atk is al-
ways accompanied by another at−k with the same chirality,
giving six more Weyl nodes in the lower half BZ. We thus
generically expect a total of twelve Weyl nodes in the entire
BZ for compositionsx in the region of the WSM phase.

3. Weyl trajectories

Figure 4 shows the trajectories of the Weyl nodes
in LaBi1−xSbxTe3 and LuBi1−xSbxTe3 projected onto the
(kx, ky) plane asx passes through the critical region. The
red dashed line represents the trajectory of Weyl nodes with
positive chirality, while the solid black one denotes thosewith
negative chirality, and the “*” and “⊕” denote the creation and
annihilation points of the Weyl nodes respectively. Asx in-
creases, six quadratic BTPs are simultaneously created in the
mirror planes; this occurs atxc1=38.5% for LaBi1−xSbxTe3
and40.5% for LuBi1−xSbxTe3. Each quadratic BTPs then
splits into two Weyl nodes of opposite chirality, and these
twelve nodes migrate along the solid black and dashed red
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FIG. 4. Trajectories of Weyl nodes in the (kx, ky) plane (in units
of Å−1). Dashed red lines indicated Weyl nodes of positive chiral-
ity; solid black lines are negative. The ‘*’ and ‘⊕’ denote respec-
tively the points of creation or annihilation of Weyl nodes.(a) For
LaBi1−xSbxTe3. (b) For LuBi1−xSbxTe3.

lines shown in the figure. Eventually, after exchanging part-
ners, the Weyl nodes meet and annihilate each other in an-
other set of high-symmetry planes (ky = 0 and other equiva-
lent planes), atxc2 = 41.9% for LaBi1−xSbxTe3 and45.1%
for LuBi1−xSbxTe3.

Figure 5(a)-(b) shows the trajectory of the Weyl nodes in
the kz direction. At x = xc1, six quadratic BTPs are cre-
ated, three in the top half-BZ and three in the bottom half-
BZ, but all of them fairly close to the BZ boundary plane
at kz = ±π/c. As x increases, the six BTPs split to form
twelve Weyl nodes, and these begin to move toward the above-
mentioned BZ boundary plane. Finally, after interchanging
partners, Weyl nodes of opposite chirality annihilate in pairs
atxc2 on the BZ boundary plane atkz =±π/c. Forx > xc2

a global gap opens up and the system is again an insulator but
with an invertedZ2 index.

The locus of Weyl points can be regarded as forming a loop
in the 4D space of (kx, ky, kz , x), and just as this loop can
be projected ontokz as in Figs. 5(a-b), it can also be pro-
jected onto the direction of impurity compositionx as shown
in Figs. 5(c-d). Again, it is clear that the Weyl nodes are
created atxc1 in the mirror planes and annihilated atxc2 at
θ = ±π/6. These plots may also be helpful in seeing how
the high six-fold symmetry contributes to the narrowness of
the WSM region. If the symmetry of the system were lower,
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FIG. 5. (a-b): Trajectories of Weyl nodes in thekz direction (in units
of Å−1) for (a) LaBi1−xSbxTe3 and (b) LuBi1−xSbxTe3. Dashed
red (solid black) lines refer to the Weyl nodes with positive(negative)
chirality. θ is the azimuthal angle in the (kx, ky) plane, as indicated in
Fig. 4(a). The “*” and “⊕” denote the creation and annihilation point
of the Weyl nodes respectively. (c-d): Trajectories of Weylnodes in
the direction of impurity compositionx for (c) LaBi1−xSbxTe3 and
(d) LuBi1−xSbxTe3.

the period of oscillation inθ in Figs. 5(c-d) would be longer,
which would allow the Weyl nodes to oscillate farther in the
x direction, giving a wider window of concentration for the
WSM phase. In contrast, a fictitious system with anN -fold
rotational symmetry would force the width of the WSM region
to vanish asN → ∞. Here we haveN=6, which is evidently
large enough to limit the WSM phase to a rather small interval
in x.

4. Surface Fermi arcs

One of the most characteristic features of WSMs is the ex-
istence of Fermi arcs in the surface bandstructure. Here we
calculate the surface states using the surface Green’s-function
technique,35 which is implemented in the context of the VCA
effective Hamiltonian in the Wannier basis. The surface BZ is
sampled by a 64×64 k mesh, and the surface spectral func-
tions calculated on this mesh are then linearly interpolated
to fit a 128×128k mesh. Fig. 6 shows the normalized sur-
face spectral functions averaged around the Fermi level for
LaBi1−xSbxTe3 at x = 0.405 and for LuBi1−xSbxTe3 at
x = 0.43. The averaging is done over an energy window of
±4.5meV around the Fermi energy, which is determined by
the position of the bulk Weyl nodes. Six Fermi arcs connect-
ing the projected Weyl nodes of opposite chirality are visi-
ble, confirming the existence of the WSM phase in these two
solid-solution systems. Note that because of the small pro-
jected bulk gap on the loops where the Fermi arcs reside,
some non-negligible spectral weight is visible even outside
the Fermi arcs in Fig. 6, coming from the artificial smearing
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FIG. 6. Surface spectral function averaged around the Fermilevel
(kx andky in units ofÅ−1) for (a) LaBi1−xSbxTe3 atx=0.405, (b)
LuBi1−xSbxTe3 atx=0.43.

of the Green’s functions.

5. Simplified six-band model

In order to capture the essential physics in these materials,
we construct a six-band TB model to describe the interesting
critical behavior. From the bandstructures plots presented in
Fig. 7, it is clear that the band inversion occurs around the
Z point of LaBiTe3 and LuBiTe3, so we focus our attention
on the six states atZ closest to the Fermi level. A symmetry
analysis shows that these six states belong to two copies of
the two-dimensionalZ6 irreducible representation (irrep) of
the C3v group atZ, plus a Kramers pair of one-dimensional
complex-conjugateZ4 andZ5 irreps corresponding to linear
combinations ofjz=±3/2 orbitals.

We thus build our six-band TB model out of basis states
having the symmetry of|pz, ↑〉 and|pz, ↓〉 on the Te atoms at
the top and bottom of the quintuple layer, and|px+ipy, ↑〉 and
|px − ipy, ↓〉 combinations located on the central Te atoms.
A schematic illustration of the six-band model is shown in
Fig. 8, where the top, bottom and central Te atoms are denoted
by Te1, Te1′ and Te2 respectively. First of all, six inter-layer
spin-independent hopping terms are included in the model. As
shown in Fig. 8, we consider the first-neighbor hopping be-
tween the central and top (bottom) Te atomst1 (t2), the inter-
QL (intra-QL) hopping between the top and bottom Te atoms
t3 (t4), and some further-neighbor hoppingstu andtv that are
crucial in obtaining a nontrivialZ2 index. Second, to cap-
ture the Rashba spin-splitting in the first-principles bandstruc-
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FIG. 7. Bulk bandstructures of (a) LaBiTe3 and (b) LuBiTe3.

ture, in-plane Rashba-like spin-dependent hoppings within the
top and bottom Te monolayers are included and are denoted
by λ1 andλ2 respectively. For completeness, the inter-layer
first-neighbor Te1-Te2 (λ3) and Te1′-Te2 (λ4) Rashba-like
hopping terms are also included. Lastly, to reproduce the
first-principles bandstructure better, we also introduce first-
neighbor spin-independent hopping terms within the Te1, Te2
and Te1′ monolayers, denoted byv1, v2 andv3 respectively.
The onsite energies are also different and are labeled byE1

for Te1,E2 for Te2, andE3 for Te1′. As our model is only
intended to be semiquantitative, we use the same model pa-
rameters to describe both LaBiTe3 and LuBiTe3.

We take all of the parameters in the model to depend a scal-
ing parameterδ that drives the TPT. Whenδ is zero, the sys-
tem is a trivial insulator; asδ increases, the system becomes
a topological insulator by going through a critical WSM. The
dependence of the parameters onδ defines a path in param-
eter space. It is important to note that the width of the criti-
cal WSM region can be highly sensitive to this path, with an
improper choice sometimes leading to an extremely narrow
WSM phase. Our choice is specified in Table I.

Following the path we have chosen, a WSM phase is ob-
tained for0.067eV<δ<0.074eV. As shown in Fig. 9(b), the
smallest direct band gap in the BZ vanishes when0.067eV<
δ < 0.074eV, indicating the existence of BTPs in BZ. If one
further checks the position of the BTPs, one finds that when
δ ≈ 0.067eV, six quadratic BTPs are created in the mirror
planes, which then split into twelve Weyl nodes and propa-
gate in the BZ following the solid black and dashed red lines in
Fig. 9(c) and (d). These Weyl nodes eventually annihilate with

FIG. 8. Top: Schematic diagram of the inter-layer spin-independent
hopping terms in the six-band model. Orbitals on sites Te1, Te2, and
Te1′ make up a quintuple layer; A, B and C label in-plane hexagonal
positions. Bottom: Phase diagram for the topological behavior of the
six-band model.

each other atδ ≈ 0.074eV after exchanging partners, which
qualitatively reproduces the phase-transition behavior of the
VCA effective Hamiltonians very well. Whenδ > 0.074eV,
the system becomes a strong TI. The bulk bandstructure at
δ= 0.09 eV in the TI phase is shown in Fig. 9(a), which very
well captures the low-energy dispersions aroundZ that were
found in the first-principles calculations.

6. Discussion

To conclude this section, we would like to comment that the
width of the WSM phase depends on two ingredients. On one
hand, as discussed above, it depends on the symmetry of the
system; other things being equal, the WSM interval tends to
be wider in systems with lower symmetry. On the other hand,
even for fixed symmetry, it also depends on the the detailed
choice of path connecting the topological and trivial phases.
Choosing a different path may broaden or reduce the WSM
region. For example, if one artificially changes the strength
of the atomic SOC strength in LaBiTe3 and LuBiTe3 in the
Wannierized TB models, and scales the variation of the ac-
tual atomic SOC by a single scaling parameterλ, then we find
that the WSM region only shows up forλ in the range of 76.8-
77.3%, which is significantly narrower than for the VCA case.
However, if an average SOC is applied to the entire system,
such that the SOC strength on Te is artificially high and that
on Bi is artificially low, we find that a much wider WSM re-

TABLE I. Parameters of the six-band model (in eV).

t1 0.2− δ/4 λ3 0.15 − δ/2 v3 0

t2 0.15 − δ/4 λ4 0.12 − δ/2 E1 0.1 + δ − 6v1

t3 δ tu 0.12 + δ/2 E2 −6v2

t4 0.1− δ/4 tv 0.06 − δ/2 E3 −0.1− δ

λ1 0.24 − δ/2 v1 0.05

λ2 0.2− δ/2 v2 0.1
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FIG. 9. (a) Bulk bandstructure of the six-band model atδ=0.09 eV.
(b) Smallest direct band gap in the BZ vs.δ. (c) Trajectory of Weyl
nodes projected onto the (kx, ky) plane. Dashed red (solid black)
line refers to the Weyl node with positive (negative) chirality. The
“*” and “ ⊕” denote the creation and annihilation point of the Weyl
nodes respectively.θ is the azimuthal angle in the (kx, ky) plane. (d)
Trajectory of Weyl nodes alongkz . Units ofkx, ky andkz areÅ−1.

gion results. Thus, it may potentially be possible to engineer
the width of a critical WSM phase if one can modify the trans-
formation path, as by epitaxial strain, pressure, or additional
chemical substitution.

B. BiTeI: revisited

In order to justify the discussion in Sec. II B, we revisit the
TPT in BiTeI driven by pressure. In our calculations, the pres-
sure is applied by compressing the volume of the primitive
cell. The fully compressed volumeV is taken to be 85.4%
of the original volumeV0, such that the former is well in-
side the topological region,19 and both the lattice vectors and
atomic positions are relaxed at the compressed volume. As
discussed in Sec. III B, we searched for BTPs over the en-
tire irreducible BZ for a transitional Hamiltonian scaled as
H(η) = (1 − η)H0 + ηH1 for 0 ≤ η ≤ 1, whereH0 and
H1 represent the Hamiltonians of the uncompressed and fully
compressed BiTeI, with even and oddZ2 indices respectively.
As shown in Fig. 10(a), as the pressure is increased from 0%
to 100% (alternatively, asV is deceased from 100% to 85.4%
of V0), a semimetallic phase emerges forη in the range of
about 54-56%.

The point group of BiTeI is the same as for LaBiTe3 and
LuBiTe3, namely C3v. Therefore, as explained in Sec. IV A,
one would expect the emergence of twelve Weyl nodes in the
entire BZ during the phase-transition process. The trajecto-
ries of the Weyl nodes are plotted in Fig. 11(a-b). When
η≈54%, six quadratic BTPs are first created at the BZ bound-
arykz=π/c in theky=0 and other equivalent high-symmetry
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FIG. 10. (a) Smallest direct band gap in the BZ of BiTeI vs. the
pressure-scaling variableη. (b) Surface spectral function of BiTeI in
the WSM phase (at 55% of the full pressure).

planes. These BTPs then split into twelve Weyl nodes which
propagate along the directions indicated by solid black (an-
timonopoles) and dashed red (monopoles) lines. They anni-
hilate each other in the three mirror planes after exchanging
partners. Note that in this case the system goes from a normal
to topological insulator asη increases, which is the reverse of
the LaBi1−xSbxTe3 and LuBi1−xSbxTe3 cases.

The results shown in Fig. 11 support our conclusions in
Sec. II B. In particular, even though the torsion argument im-
plies that the trajectories of the two Weyl nodes which split
off from a given quadratic BTP would never meet each other,
a closed curve is still formed in the 3D BZ of BiTeI through
the interchange of partners among the Weyl nodes.

Fig. 10(b) shows the surface spectral function of BiTeI av-
eraged around the Fermi level forη=0.55, in the WSM phase.
It is clear that there are six Fermi arcs extending between the
six pairs of projected Weyl nodes, which is again the hallmark
of a WSM phase.

We therefore conclude that a WSM phase does exist in the
TPT of BiTeI, but it occurs only within a narrow pressure
range. Ifη is changed by 2.5%, the volume is only changed
by 0.39%, which might be difficult to measure experimen-
tally. Again, the narrowness of the WSM interval can be at-
tributed in part to the high symmetry of the system. However,
as emphasized in the previous section, the width of the criti-
cal WSM is also sensitive to the choice of path in parameter
space. The critical WSM could get broadened by choosing a
different path, as for example by applying uniaxial pressure.
We leave this for a future study.
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FIG. 11. (a) Trajectories of Weyl nodes in the (kx, ky) plane (in
units of Å−1). Dashed red (solid black) lines indicate the trajecto-
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spectively. (b) Trajectory of Weyl nodes in thekz direction (units of
Å−1).

V. SUMMARY

In this paper, we have investigated the nature of the TPT in
a noncentrosymmetric TI in the most general case. We find
that an intermediate WSM phase is always present, regardless
of other lattice symmetries, as long as inversion symmetry is
absent. We discussed separately the cases in which the Jaco-
bian matrix is rank-one or rank-two when the gap first closes.
In the rank-two case, each quadratic BTP would always split
into a pair of Weyl nodes, which annihilate each other after ex-
changing partners. If the rank of the Jacobian is one, then the
doubly-quadratic BTP in this case would either split into four
Weyl nodes, or else immediately be gapped out again, cor-
responding to an “insulator-insulator transition.” However, in
the latter case, the bulkZ2 indices are not expected to change.
Therefore, we conclude thatZ2-even andZ2-odd phases of a
noncentrosymmetric insulator must always be separated by a
region of WSM phase, even if other symmetries are present.

To illustrate our conclusions, we have carried out cal-
culations on specific noncentrosymmetric insulators. For
LaBi1−xSbxTe3 and LuBi1−xSbxTe3 we have used Wannier-
ized VCA Hamiltonians to find a WSM phase in the region
x≈ 38.5%− 41.9% andx≈ 40.5%− 45.1% respectively. A
six-band TB model was also constructed to describe the topo-
logical and critical behavior in these materials. We found that
the width of the critical WSM phase can be highly sensitive
to the choice of path in the parameter space, suggesting that
there is flexibility to engineer the WSM phase.

We have also revisited the TPT of BiTeI as a function
of pressure, where previous work suggested the absence of
a WSM phase.18 Using a carefully constructed algorithm to
search for the minimum gap in the full three-dimensional BZ,
we found that a WSM phase is indeed present over a narrow
interval of pressure, although this range may be so narrow as
to make its experimental observation difficult.

In summary, we have clarified the theory of a general
Z2-even toZ2-odd topological phase transition in a three-
dimensional time-reversal-invariant insulator with broken in-
version symmetry, and demonstrated that an intermediate
WSM phase must always be present. We have also de-
tailed the behavior of LaBi1−xSbxTe3 and LuBi1−xSbxTe3 as
promising candidates for WSMs of this kind. While we have
not considered disorder or interactions explicitly, we expect
our conclusions to survive at least for weak disorder or inter-
actions. Our work is a step forward in the general understand-
ing of topological phase transitions, and may provide useful
guidelines for the experimental realization of new classesof
Weyl semimentals.
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