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We propose a new method for calculating the Chern-Simons orbital magnetoelectric coupling, conventionally
parametrized in terms of a phase angle θ. According to previous theories, θ can be expressed as a 3D Brillouin-
zone integral of the Chern-Simons 3-form defined in terms of the occupied Bloch functions. Such an expression
is valid only if a smooth and periodic gauge has been chosen in the entire Brillouin zone, and even then,
convergence with respect to the k-space mesh density can be difficult to obtain. In order to solve this problem,
we propose to relax the periodicity condition in one direction (say, the kz direction) so that a gauge discontinuity
is introduced on a 2D k plane normal to kz . The total θ response then has contributions from both the integral of
the Chern-Simons 3-form over the 3D bulk BZ and the gauge discontinuity expressed as a 2D integral over the k
plane. Sometimes the boundary plane may be further divided into subregions by 1D “vortex loops” which make
a third kind of contribution to the total θ, expressed as a combination of Berry phases around the vortex loops.
The total θ thus consists of three terms which can be expressed as integrals over 3D, 2D and 1D manifolds.
When time-reversal symmetry is present and the gauge in the bulk BZ is chosen to respect this symmetry, both
the 3D and 2D integrals vanish; the entire contribution then comes from the vortex-loop integral, which is either
0 or π corresponding to the Z2 classification of 3D time-reversal invariant insulators. We demonstrate our
method by applying it to the Fu-Kane-Mele model with an applied staggered Zeeman field.

PACS numbers: 03.65.Vf, 75.85.+t, 71.15.Rf

I. INTRODUCTION

Magnetoelectric coupling is an interesting but complicated
phenomenon that can occur in some insulating solids when
an electric polarization P is linearly induced by an external
magnetic field B, or conversely, when a magnetization M is
generated by an applied electric field E. The linear ME cou-
pling coefficient is a rank-2 tensor defined as

αab =
∂Mb

∂Ea

∣∣∣
E=0

=
∂Pa
∂Bb

∣∣∣
B=0

(1)

where a, b = {x, y, z} denote the directions in real space.
ME phenomena have contributions from both electronic and
lattice degrees of freedom, where the electronic contribu-
tion refers to the ME response when the ions are completely
frozen, while the lattice contribution takes into account the
response that is mediated by ionic displacements. Moreover,
depending on the origin of the E-induced magnetization, each
of the two contributions can be further decomposed into spin
and orbital components.1,2

The spin contribution to the ME response (from both elec-
tronic and lattice degrees of freedom) has been thoroughly
studied with well established theoretical methods in typical
magnetoelectrics such as Cr2O3.3–6 On the other hand, the or-
bital ME response is theoretically more challenging and in-
triguing. It has been shown that the frozen-ion orbital ME
coupling consists of two terms. One term can be expressed
as a standard linear response of the Bloch functions to exter-
nal electric or magnetic fields, denoted as the “Kubo term”,
while the other, known as the Chern-Simons term, is isotropic
and is completely determined by the unperturbed ground-state
wavefunctions.2,7

The Chern-Simons orbital ME coupling has drawn signifi-
cant attention recently due to the interest in topological phases

in condensed-matter physics. Not surprisingly, in the presence
of either time-reversal (T ) or inversion (P) symmetry, the ME
responses coming from the spin terms and from the Kubo-like
orbital terms all vanish. However, there can still be an exotic
isotropic ME response, which vanishes in an ordinary insula-
tor but takes values of ±e2/2h in T -respecting strong topo-
logical insulators8,9 and in P-respecting axion insulators,10,11

arising from the Chern-Simons term.11–13

This Chern-Simons coupling is conventionally
parametrized by a dimensionless phase angle θ via

αCS
ab =

θe2

2πh
δab , (2)

where θ is expressed as an integral of the Chern-Simons 3-
form over the 3D Brillouin zone (BZ),

θ = − 1

4π

∫
d3k εabc Tr [Aa∂bAc −

2

3
iAaAbAc] . (3)

Here Aa, Ab and Ac are the Berry connection matrices of the
occupied Bloch bands, and the trace is taken over the occupied
bands (see Sec. II A). For TIs and axion insulators, θ = ±π.
In the more general cases that T and P are both broken, θ is
no longer quantized as ±π, and other components of the ME
response contribute as well.

The Chern-Simons ME coupling has several interesting
properties. First, a material with a non-zero Chern-Simons
ME coupling can be considered as a medium exhibiting axion
electrodynamics,14 where an additional term ∆L = αCSE ·B
is added to the conventional Lagrangian of electromagnetic
fields in media. The electrodynamics with such an axion cou-
pling turns out to be invariant under θ → θ + 2π.14

Secondly, θ is physically measurable only if it varies in
space or time.7 In particular, for a time-independent crystal
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with a surface truncation, the presence of the bulk Chern-
Simons coupling manifests itself as a surface anomalous Hall
effect, where the anomalous Hall conductance is proportional
to θ through σxy = θe2/(2πh). The connection between the
surface anomalous Hall effect and the bulk Chern-Simons ME
coupling provides an intuitive explanation of the ambiguity
of θ as follows. Suppose an insulating quantum anomalous
Hall (QAH) layer with non-zero Chern number C is wrapped
around a 3D crystallite having an original bulk value of θ, such
that it interacts only weakly with all of the surfaces. Then
the the new surface anomalous Hall conductance would be
σxy = θe2/(2πh) + Ce2/h, which we can be interpreted as
a change θ → θ + 2πC. Thus, such a freedom to coat the
surfaces with Chern layers implies the need for a 2π ambigu-
ity in defining θ. The ambiguity in θ is closely analogous to
the ambiguity in the definition of the bulk electric polariza-
tion, which can be regarded as being due to the freedom of
adding or removing an integer number of charges per surface
unit cell, as by filling or emptying a surface band.15

Despite these intriguing properties, up to now it has re-
mained challenging to calculate θ accurately using Eq. (3) for
many systems of interest. For example, as reported in Ref. 16,
the calculated θ on an 11×11×11 first-principles k mesh for
Bi2Se3, one of the prototype TIs, is only ∼ 35% of π. Simi-
larly, in Ref. 13, the authors calculated the ME response of the
Fu-Kane-Mele model with applied staggered Zeeman field.
As the system approaches the TI phase, however, the authors
switched to some indirect methods to compute θ, because a di-
rect numerical implementation of Eq. (3) became difficult to
converge. In other words, despite its theoretical importance,
Eq. (3) has not been straightforward to calculate in practice.

The essential problem is that the integrand in Eq. (3) is
gauge-dependent. As a result, in order to implement Eq. (3)
numerically on a discrete k mesh, one has to adopt a smooth
and periodic gauge over the entire 3D BZ. On the other hand,
as is well known, nontrivial topological indices usually bring
some obstructions against constructing a smooth and periodic
gauge in the BZ. For example, for a 2D quantum anoma-
lous Hall (QAH) insulator (such as the Haldane model17) with
non-zero Chern number, it is simply impossible to construct
a smooth and periodic gauge in the entire 2D BZ. This im-
plies that Eq. (3) would completely break down for a 3D ana-
logue of a 2D QAH insulator,18 so we regard these cases as
beyond the scope of the present work. For 2D and 3D Z2

TIs, it is impossible to construct a smooth and periodic gauge
respecting T symmetry throughout the BZ,19,20 although in
principle a smooth and periodic gauge breaking T symmetry
is allowed.20 As a result, for Z2 TIs (and for T -broken systems
close to a Z2-odd phase) the constraint of being both smooth
and periodic is typically too strong, forcing the gauge to be
strongly twisted in the BZ to satisfy both conditions. This
makes the numeric implementation of Eq. (3) difficult.

In this paper we propose a new method to compute the
Chern-Simons orbital ME coefficient. The general idea is to
relax the periodicity condition on the gauge in one direction,
say the kz direction, thus introducing some gauge disconti-
nuity on a 2D k plane (normal to kz), denoted by S. Then
the total θ has one contribution from the bulk-BZ integral of

Eq. (3) plus a second one arising from the gauge discontinu-
ity. Furthermore, as will be shown in Sec. IV, S may also
be divided into subregions by 1D “vortex loops” (Sec. IV A),
each of which makes a contribution to the total θ in the form
of an average of two Berry phases computed around the loop.
The total θ can then be expressed as the sum of the 3D inte-
gral over the bulk BZ (θBK), the 2D integral over the gauge-
discontinuity plane (θGD), and the 1D integral(s) over the vor-
tex loop(s) (θVL).

This method can be generalized to situations where the BZ
is divided into multiple subvolumes, with these subvolumes
meeting at multiple 2D surface patches where the gauge dis-
continuities reside. Furthermore, the 2D surface patches may
meet at some 1D curves, which again have to be treated as as
vortex lines in general. And again, the subvolumes, surface
patches, and vortex lines all make contributions to the total
θ. However, the definition of a vortex line becomes trickier
in this more generalized case, which we therefore leave for
future study.

The advantage of our method is that the gauge can be made
smoother in the bulk BZ because the periodicity condition is
relaxed, so that it becomes much easier to get numeric con-
vergence using Eq. (3). The loss of periodicity is then com-
pensated by contributions from the gauge discontinuities, and
possibly from vortex loops as well. We will show that the
formulas for the gauge discontinuity and vortex terms take
simple forms and can be implemented efficiently in practical
numerical calculations.

This paper is organized as follows. In Sec. II we review the
definitions of the Berry connection and curvature and intro-
duce the bulk formula for θ. We also put the main idea into
a more specific context and make a formal statement of the
problem. In Sec. III we derive a formula for θGD, which is
expressed as a 2D integral over the boundary where the gauge
discontinuity resides, and discuss the properties of this for-
mula. In Sec. IV we discuss why the vortex-loop term is
needed and derive a formula for it. We also show that the
quantized θ in TIs is completely determined by the vortex-
loop term when a T -symmetric gauge is chosen in the bulk
BZ. In Sec. V, we demonstrate the method by applying it to
the Fu-Kane-Mele model with a staggered Zeeman field. Fi-
nally, we summarize in Sec. VI.

II. PRELIMINARIES

In this section, we first review the definitions of some basic
quantities, such as Berry curvatures and Berry connections,
that will be used frequently in the paper. We also rewrite the
bulk formula for θ, Eq. (3), in a more explicit form. Finally
we explain the main idea in more detail and make a formal
statement of the problem and the goals.
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A. Definitions

We adopt the following definitions. The Berry connection
matrix is

Aa,mn(k) = i〈umk|∂a|unk〉 , (4)

where unk(r) = e−ik·rψnk(r) are the cell-periodic Bloch
functions, and a and b run over the three primitive recipro-
cal lattice directions with ∂a ≡ ∂/∂ka. Indices m and n run
over the occupied Block bands, possibly after the application
of a gauge transformation Unm(k) to smoothen them in k-
space. The wavevector components kx etc. are rescaled to run
over [0, 2π], and correspondingly the real-space coordinates x
etc. run over [0, 1]. We shall start dropping the explicit k ar-
guments and subscripts, keeping in mind that everything is a
function of k. Then the non-covariant Berry curvature tensor
is

Ωab,mn = i 〈∂aum|∂bun〉 − i 〈∂bum|∂aun〉 , (5)

while

Ω̃ab,mn = Ωab,mn − i[Aa, Ab]mn (6)

is the covariant one (that is, unlike Ωab,mn, it transforms in
the standard way under a gauge transformation).

The Chern-Simons coupling θ has been defined in Eq. (3),
where the trace is over the occupied band indices. Using the
cyclic property of the trace, Eq. (3) can be written in the more
explicit form

θ = − 1

4π

∫
d3k Tr

[
AxΩyz+AyΩzx+AzΩxy−2i[Ax, Ay]Az

]
.

(7)
We can also choose to replace one of the non-covariant Berry
curvatures with a covariant one to get

θ = − 1

4π

∫
d3k Tr

[
AxΩyz+AyΩzx+AzΩ̃xy−i[Ax, Ay]Az

]
,

(8)
which turns out to be convenient for the derivation of θGD as
will be shown in Sec. III.

B. Statement of the problem

Assume that the gauge has been chosen such that it is
smooth and periodic in the kx and ky directions and smooth
in kz ∈ [−π, π], but not periodic in kz . (The kz location
of the boundary can easily be generalized.) From now on
k = (kx, ky) denotes a point in the 2D slice at kz = ±π,
and |u(0)〉 and |u(1)〉 denote the wavefunctions just below and
above the discontinuity plane respectively. For this reason we
refer to |u(0)〉 and |u(1)〉 as associated with the “bottom” and
“top” planes, even though these are obtained from the top and
bottom of the original BZ, respectively. The corresponding
Berry potentials are A(0)

x and A(0)
y on the bottom plane and

A
(1)
x and A(1)

y on the top plane. The states at the top and bot-
tom are physically identical, so we can define a unitary matrix
U(k) relating them via

|ψ(1)
mk〉 =

∑
n

|ψ(0)
nk 〉Unm(k) (9)

for the original Bloch functions or

|u(1)
mk〉 = ei2πz

∑
n

|u(0)
nk〉Unm(k) (10)

for the cell-periodic Bloch functions. Our goal is to calculate
the contribution θGD coming from this gauge discontinuity,
such that if we add this contribution to the bulk volume inte-
gral θBK as in Eq. (7), we get the correct total θ. Later, we
shall see that there may also be a contribution θVL from vor-
tex loops around which the gauge discontinuity circulates by
an integer multiple of 2π, so that the total axion coupling is
given by

θ = θBK + θGD + θVL , (11)

i.e., a sum of contributions evaluated on 3D, 2D, and 1D man-
ifolds.

III. CALCULATION OF θGD ON A PLANAR SURFACE

In this section, we derive a formula for θGD and discuss var-
ious properties of the formula. We assume, as above, that the
gauge discontinuity occurs on the kz = ±π plane as schemat-
ically shown in Fig. 1, and is described by the unitary matrices
Uk as a function of k lying in the 2D plane. We let

U(k) = e−iB(k) (12)

whereB(k) is a Hermitian matrix that varies smoothly with k
in the 2D plane. Note that B(k) is basically just i ln(U(k)),
but a set of branch choices is involved in picking a particular
B. That is, in the representation that diagonalizes B, we can
add 2πnj to the j’th eigenvalue without changing U (nj is an
arbitrary integer). For now we insist that the branch choice
is made in such a way that B(k) is continuous, with no 2π
discontinuities in any of its eigenvalues throughout the 2D k
plane, but this condition will be relaxed in Sec. IV.

A. Formalism

Our strategy is to introduce a parameter λ and define
|ψmk(λ)〉 in such a way that it smoothly interpolates from one
gauge to the other as shown in Fig. 1, i.e.,

|ψmk(λ)〉 =
∑
n

|ψ(0)
nk 〉Wnm(k, λ) (13)

where

W (k, λ) = e−iλB(k) (14)
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top plane

bottom plane

FIG. 1. A planar gauge discontinuity S in the 3D BZ can be ex-
panded into a fictitious slab whose thickness dimension is described
by a parameter λ ∈ [0, 1] that interpolates smoothly between the
gauge just below (λ=0) and just above (λ=1) the plane S.

where W (k, λ) is a unitary matrix defined so that W (k, 0) =
1 and W (k, 1) = U(k). Note that W (k, λ) commutes with
B(k). We shall again begin dropping the k labels, and will
frequently use W and B below.

We then calculate the gauge-discontinuity contribution to
θ, denoted by θGD, by integrating Eq. (8) over the region
λ ∈ [0, 1], where Eq. (8) is applied in (kx, ky, λ) space in-
stead of (kx, ky, kz) space. A straightforward set of calcula-
tions shows that the Berry connections in the kx, ky , and λ
directions are respectively

Ax(λ) = W †(λ)A(0)
x W (λ) + iW †(λ) ∂xW (λ) , (15)

Ay(λ) = W †(λ)A(0)
y W (λ) + iW †(λ) ∂yW (λ) , (16)

Aλ(λ) = B , (17)

where A(0)
x(y) is the Berry connection evaluated at the bottom

plane as defined earlier. We also write

θGD = − 1

4π

∫
d2k G(k) , (18)

where

G =

∫ 1

0

dλ Tr
[
AxΩyλ −AyΩxλ +AλΩ̃xy − i[Ax, Ay]Aλ

]
(19)

is the contribution from a particular k. Then G can be written
as the sum of three contributions, G = G1 +G2 +G3, where

G1(k) =

∫ 1

0

dλ Tr [B Ω̃xy] , (20)

G2(k) =

∫ 1

0

dλ Tr [AxΩyλ −AyΩxλ] , (21)

G3(k) =

∫ 1

0

dλ Tr
[
− i [Ax, Ay]B

]
. (22)

The G1 term is easily evaluated. Because Ω̃xy is gauge-
covariant, it follows that Ω̃xy(λ) = W †(λ) Ω̃

(0)
xy W (λ). But

[B,W (λ)] = 0, so that the integrand is independent of λ, and
it follows that

G1(k) = Tr [B Ω̃(0)
xy ] . (23)

Here no λ integration is needed.
In order to evaluate G2 and G3, we need to evaluate objects

such as ∂xW (λ) in Eq. (15), which can be done by noting that
the derivative of an exponential of a matrix can be written as

∂xe
−iλM = −i

∫ λ

0

dµ e−i µM (∂xM)e−i (λ−µ)M . (24)

This motivates us to define

Ba(λ) =

∫ λ

0

dµ e−iµB Ba e
iµB , (25)

where Ba ≡ ∂aB. Then Eq. (14) gives

∂aW (λ) = ∂ae
−iλB = −iBa(λ)W (λ) (26)

where a = {x, y}, and Eqs. (15-16) become

Aa(λ) = W †AaW , (27)

where

Aa = A(0)
a +Ba . (28)

The dependence on λ is implicit.
Now for the G2 term we need to compute terms like ∂λAx.

Using Eq. (27) and ∂λW (λ) = −iBW (λ), it becomes

∂λAx = iW † [B,Ax]W +Bx . (29)

Recalling that Ωxλ = ∂xAλ − ∂λAx and ∂xAλ = Bx, we get
a nice cancellation, and can write

Ωxλ = −iW † [B,Ax]W ,Ωyλ = −iW † [B,Ay]W .

Substituting these expressions into Eq. (21) then gives

G2(k) =

∫ 1

0

dλ Tr
[
2i B [Ax,Ay]

]
. (30)

As it happens, this is almost the same as the expression for
G3 in Eq. (22). Since B commutes with W , we can use the
representation-invariance and cyclic properties of the trace to
write it as

G3(k) =

∫ 1

0

dλ Tr
[
− i B [Ax,Ay]

]
. (31)

Thus, this term cancels half of G2.
Restoring the explicit λ dependencies, we get

G = Tr
[
B
(

Ω̃(0)
xy + i

∫ 1

0

dλ [Ax(λ),Ay(λ)]
)]

, (32)

which is a remarkably simple result in the end. Using Eq. (28),
this can be written explicitly as

G(k) = Tr
[
B
(

Ω(0)
xy +B[x,y]+i[Bx, A

(0)
y ]−i[By, A(0)

x ]
)]

,

(33)
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where

Bx =

∫ 1

0

dλ Bx(λ) , (34)

By =

∫ 1

0

dλ By(λ) , (35)

B[x,y] = i

∫ 1

0

dλ [Bx(λ), By(λ) ] . (36)

Eq. (33) is one of the central results of this paper.
We would like to make some remarks on the formula for

θGD. First, the results are almost independent of the ac-
tual states at the top and bottom of the gauge discontinuity.
The only way these come in is through the Berry potentials
A

(0)
x and A(0)

y and the Berry curvature Ω
(0)
xy defined on one

of the planes. Second, it can easily be shown that the re-
sults are the same whether one uses the “bottom” surface in
Fig. 1 as a reference and integrates up in λ, as done above, or
chooses the “top” surface as a reference and integrates down.
Third, the integration over the λ axis can be carried out an-
alytically in the basis that locally diagonalizes B(k), as de-
tailed in Appendix B. Therefore only a 2D discrete integra-
tion over the k plane is needed, which is numerically effi-
cient. Lastly, in the single-band case all quantities such as
W , Bx and Bx obviously commute with each other, leaving
G = G1 = Tr

[
BΩ

(0)
xy

]
.21

In the following subsection, we discuss the properties of the
θGD formula in the presence of T symmetry, showing that if
a TR-symmetric gauge has been chosen in the bulk BZ and
assuming that B(k) varies smoothly in the 2D k plane, both
θBK and θGD must vanish.

B. Time-reversal symmetry

Consider the situation in which the system has T symmetry
and is topologically normal, and a gauge respecting T sym-
metry has been chosen smoothly throughout the bulk BZ for
the 2N occupied bands. For such a system we can construct
2N localized Wannier functions (WFs) which fall into N T -
symmetric pairs,

T |wnR,1〉 = −|wnR,2〉 ,
T |wnR,2〉 = |wnR,1〉, (37)

where 1 ≤ n ≤ N is the index of a T -symmetric pair and
R denotes a real-space lattice vector. Typically |wnR,1〉 and
|wnR,2〉 are chosen to diagonalize the Sz operator in their two-
dimensional subspace,22 so that “1” and “2” can be interpreted
roughly as “spin indices.” The Fourier transform of the T -
symmetric WF pairs leads to a smooth gauge respecting T
symmetry in the bulk BZ,

T |ψnk,1〉=−|ψn−k,2〉
T |ψnk,2〉= |ψn−k,1〉 (38)

and

T |unk,1〉=−|un−k,2〉
T |unk,2〉= |un−k,1〉 (39)

where the indices “1” and “2” are again the “spin indices”,
even if the directions of the spin expectation values can have
some variations with k. Note that the states in Eq. (38) are
of Bloch form, but in general are not the eigenstates of the
Hamiltonian.

Henceforth we shall say that a gauge that obeys Eqs. (38-
39) is a T -symmetric gauge. However, in general a gauge
obeying these equations is not necessarily periodic. For ex-
ample, there may be a gauge discontinuity located at some
boundary plane in the 3D BZ. When the Z2 index of the
system is even, such a gauge discontinuity can typically be
removed by smoothening the gauge without breaking the T
symmetry. When the Z2 index is odd, however, the gauge
discontinuity can never be eliminated without breaking the T
symmetry in the gauge. For, if it could, one could again con-
struct T -respecting WFs, which is known to be impossible for
Z2-odd insulators.

If the gauge in the bulk BZ satisfies Eq. (39), it follows that
the Berry curvatures and Berry connections obey

Aa(k)=σy

(
Aa(−k)

)T
σy,

Ωab(k)=−σy
(

Ωab(−k)
)T

σy , (40)

where a and b run over the reciprocal-lattice directions. All
the quantities in Eq. (40) are 2N × 2N matrices. In partic-
ular, σy denotes the outer product between the 2 × 2 Pauli
matrix τy and the N ×N identity matrix, and the superscript
“T ” refers to matrix transpose for the 2N × 2N matrices.
Since the Berry curvature is odd in k, while the Berry con-
nections behave as even functions of k, it is easy to show that
both Tr

[
Aa(k) Ωbc(k)

]
and Tr

[
iAa(k) [Ab(k), Ac(k)]

]
are canceled by their time-reversal partners at −k. There-
fore, the bulk integral θBK in Eq. (7) vanishes if a smooth
T -respecting gauge is constructed in the bulk BZ.

In particular, at the boundary plane where the gauge dis-
continuity is located, the wavefunctions at the bottom and
top planes (say, kz = ±π) are connected via T |u(0)

nk,1〉 =

−|u(1)
n−k,2〉 and T |u(0)

nk,2〉= |u(1)
n−k,1〉, where k is now under-

stood to be a wavevector in the 2D plane. With such a T -
respecting gauge choice, the B matrix, the Berry connections,
and the Berry curvature satisfy the following relationships:

B(k) = σyB(−k)Tσy , (41)

A(0)
x (k) = σy

(
A(1)
x (−k)

)T
σy , (42)

A(0)
y (k) = σy

(
A(1)
y (−k)

)T
σy , (43)

Ω(0)
xy (k) = −σy

(
Ω(1)
xy (−k)

)T
σy . (44)

Again, superscripts “(0)” and “(1)” refer to the quantities
evaluated at λ = 0 and λ = 1 respectively. We now show
that if Eqs. (41)-(44) are satisfied, and if all the quantities in-
volved in the Eqs. (32)-(33) vary smoothly in the 2D plane,
then θGD must vanish.

First of all, it is straightforward to show that the first term
in Eq. (32) vanishes due to T symmetry. As the gauge-
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covariant Berry curvature on the top plane (λ = 1) is con-
nected the one on the bottom plane (λ = 0) via Ω̃

(1)
xy =

U† Ω̃
(0)
xy U , and U = e−iB commutes with B, it follows that

Tr
[
B(k)Ω̃

(1)
xy (k)

]
= Tr

[
B(k)Ω̃

(0)
xy (k)

]
. On the other hand,

from Eq. (41) and Eq. (44) we know that Tr
[
B(k)Ω̃

(0)
xy (k)

]
=

−Tr
[
B(−k)Ω̃

(1)
xy (−k)

]
, which leads to an exact cancellation

for the first term.
The second term in Eq. (32) is trickier. First, from the

representation-invariance of the trace and the fact that W =

e−iλB commutes with B, we know that Tr
[
i B [Ax,Ay]

]
=

Tr
[
i B [A

(λ)
x , A

(λ)
y ]
]
. Then we claim that the Berry connec-

tion matrix at (k, λ) is connected to the one at (−k, 1−λ) via
a T transformation

A(λ)
a (k)=σy

(
A(1−λ)
a (−k)

)T
σy , (45)

where A(λ)
a ≡ Aa(λ) with a = {x, y} as defined in Eq. (15)-

(16). Eq. (45) will be proved properly in Appendix C, but if
one considers λ as the third wavevector component, Eq. (45)
is indeed very intuitive. Combing Eq. (45) and Eq. (27), it
follows that

η(k, λ) = −η(−k, 1− λ) , (46)

where

η(k, λ) = Tr
[
i B(k) [A(λ)

x (k),A(λ)
y (k)]

]
= Tr

[
i B(k) [A(λ)

x (k), A(λ)
y (k)]

]
(47)

is exactly the second term in Eq. (32). Therefore, that term
also vanishes due to the cancellation between the integrands
at (k, λ) and (−k, 1−λ). It thus follows that θGD has to vanish
for a T -respecting gauge choice.

IV. VORTEX-LOOP CONTRIBUTION

In the previous section, we derived a formula for the gauge
discontinuity contribution θGD, as expressed in Eq. (18) and
Eqs. (32)-(33). We also demonstrated that for a system with T
symmetry, if a T -respecting gauge is constructed in the bulk
BZ, and if the branch choice is made in such a way that B(k)
varies smoothly over the entire 2D k plane, then both θBK and
θGD must vanish.

However, it is well known that θ = π for Z2 TIs, so one
may wonder where the quantized θ can come from? The an-
swer is that, in the Z2-odd case, it is topologically impossi-
ble to insist on a branch choice such that B remains smooth
throughout the (kx, ky) plane. In other words, the 2D k plane
has to be subdivided such that one or more of the eigenvalues
of B change by an integer multiple of 2π when crossing from
one subregion to another. We denote the boundaries of such
2D subregions as “vortex loops.” It turns out that the vortex-
loop contribution is exactly π for a Z2 TI.

In this section, we introduce such vortex loops and discuss
their contribution to the θ coupling. We first propose a formal
definition of a vortex loop in Sec. IV A, and then derive a for-
mula for the vortex-loop contribution θVL in Sec. IV B. This
formula turns out to be rather simple, involving two Berry
phases that are accumulated as one traverses the vortex loop,
one associated with the electronic Bloch-like functions and
the other with the eigenvectors of B(k). In Sec. IV C we dis-
cuss several properties of our formula for θVL. In particular,
we show that in systems with T symmetry, and for which the
gauge also respects T symmetry, θVL must be either 0 or π,
corresponding to the Z2 classification of 3D T -invariant insu-
lators.

A. What is a vortex loop

In Sec. II B we suggested that the complete formula for θ
should include three kinds of contributions, as expressed by
Eq. (11). Here we review the philosophy of the calculation,
explaining why the third vortex-loop contribution θVL may be
needed.

First, we choose a smooth gauge in the 3D bulk BZ, but the
periodicity condition in the kz direction is relaxed. Hence
some gauge discontinuity is introduced at a 2D boundary
plane normal to kz . The 3D bulk integral of Eq. (3) (excluding
the boundary plane) is the θBK term in Eq. (11).

Next, we identify the 2D boundary as S . Let us define S
as a directed area with surface normal n̂. In order to compute
the integral over the 2D plane S, n̂ is chosen in such a way
that x̂-ŷ-n̂ form a right-handed coordinate triad. The gauge
discontinuity in the n̂ direction is given by a unitary matrix
U(k) = e−iB(k) which varies smoothly with k lying in the
2D plane. Since the Hermitian matrix B(k) = i lnU(k) is
involved in the formula for θGD (Eq. (33)), a branch choice for
B has to be made. If possible we make a branch choice so
that B(k) is smooth and continuous over the entire k plane,
but this may not always be possible or desirable. In that case
S is divided into subregions within each of which B(k) is
smooth and continuous. For example, Fig. 2 shows S divided
into two subregions SGD and SGD separated by a boundary loop
C, which we refer to as a “vortex loop.” The 2D contribution
θGD is then computed by integrating over all subregions of S
using Eq. (32)-(33) of Sec. III.

Since theB and U matrices have the same eigenvectors, the
eigenvalues of B may exhibit abrupt 2π jumps as they vary
from one subregion to another (from SGD to SGD in Fig. 2),
even though U remains smooth throughout the (kx, ky) plane.
The behavior of B is thus singular when crossing the vor-
tex loops. The vortex-loop contributions cannot be computed
from the formula for θGD; a new formula is needed to account
for them.

In more general cases, a 3D BZ may be divided into mul-
tiple subvolumes, and these subvolumes can meet on multiple
2D surface patches with gauge discontinuities. These surface
patches may further meet at one or more 1D lines or curves,
which may behave as vortex loops. For such cases the def-
inition of a vortex loop would need to be generalized, since
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FIG. 2. Schematic illustration of a 3D BZ containing a 2D plane of
gauge discontinuity that is divided into two patches SGD and SGD by
a vortex loop (red line).

the U(k) matrices obtained by approaching the meeting line
from different patches are in general no longer consistent, and
may not even commute with one another. We leave this more
complicated situation to a future study.

The presence or absence of vortex loops clearly depends on
how the branch choice of B is made in the 2D k plane. We
normally try to make this choice so as to avoid vortices. If the
system does not have T symmetry (and assuming vanishing
Chern numbers), then it is usually straightforward to do this,
since the eigenvalues of B typically remain non-degenerate
throughout the 2D k plane (degeneracies in a general Her-
mitian matrix are of codimension three, and so do not occur
without special tuning in a 2D k plane).

However, when the system is topologically nontrivial, this
may become impossible; a topological obstruction may force
the existence of at least one vortex loop. In particular, if T
symmetry is present, there must be a degeneracy between two
different eigenvalues of B at the four time-reversal invariant
momenta (TRIM) in the 2D k plane.23 As a result, the topolog-
ical properties of the bulk Hamiltonian become closely related
to the number of vortex loops. In the same vein as the Z2 clas-
sification based on the number of surface Dirac cones,24 when
there is an odd number of vortex loops, the system is Z2-odd,
corresponding to a T -respecting topological insulator. Other-
wise when the number of vortex loops is even, the system is
topologically trivial. In the topologically nontrivial case, it is
impossible to insist on the smoothness of all of the eigenvalues
of B throughout the 2D k plane. In principle the last vortex
loop can be made infinitesimally small by shrinking it around
one of the TRIM, but the symmetry-protected degeneracy at
the TRIM prevents it from being removed completely. There-
fore, we must consider the contribution from vortex loops in
such topologically nontrivial phases.

On the other hand, vortex loops may be present even in
topologically trivial cases unless one makes a proper branch
choice to remove them. In realistic calculations, for example,
one usually adopts some default branch choice for the eigen-
values of B (e.g., from -π to π), which is not necessarily the

one that makes B globally smooth. In such cases one has to
consider both θGD and θVL. In this regard, it would be useful
to have a formula for the vortex loop contribution, so that one
can evaluate the gauge-discontinuity contribution to θ for an
arbitrary branch choice.

In the remainder of this section we will derive a formula for
θVL and discuss properties of the formula. We will also show
that in the presence of T symmetry in both the Hamiltonian
and the gauge, the vortex-loop contribution alone determines
whether the system is Z2-odd (θVL = ±π) or Z2-even (θVL =
0).

B. The formula for θVL

Let us first consider the topologically trivial case in which
we can always find a proper branch choice such that B re-
mains smooth throughout the 2D plane. Assuming this has
been done, now shift the nth eigenvalue of B by 2πν(n)
within subregion SGD , thus creating a vortex loop C whose
interior is SGD as shown in Fig. 2. The above operation is
equivalent to making a different branch choice. However, a
physical quantity should be independent of the branch choice,
so θ should remain invariant after such an operation. Letting
θshift be the change in θGD arising from this redefinition of B
in the interior region SGD , it follows that we must have

θVL = −θshift . (48)

We begin by considering a simple case in which only one
of the eigenvalues of B is shifted by 2π within SGD . We make
the decomposition B = B0 + ∆B, where B0 is the original
smooth part and ∆B is the change arising from the 2π shift.
We then choose to connect the states at the bottom and top
planes in two steps. In the first step,

|ψ(λ)
m 〉 =

N∑
n=1

|ψ(0)
n 〉 (e−iλ∆B)nm, λ ∈ [0, 1). (49)

In the second step,

|ψ(λ)
m 〉 =

N∑
n=1

|ψ(1)
n 〉 (e−i(λ−1)B0)nm, λ ∈ [1, 2]. (50)

Note that the states at the top plane are now denoted as |ψ(2)
m 〉

instead of |ψ(1)
m 〉. In the second step, B0 is smooth over the

entire 2D BZ; one can define λ′ = λ − 1 with λ′ ∈ [0, 1],
and the formula for θGD derived in Sec. III applies. Thus,
θshift = −θVL is just the contribution to θGD coming from the
gauge twist of Eq. (49) in the loop interior SGD .

We assume without loss of generality that the first eigen-
value of B (denoted by b1) jumps by 2π in the subregion SGD .
Then ∆B can be written as

∆B =

{
V ∆1 V

† if k ∈ SGD

0 otherwise
(51)
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where ∆1 is an N ×N matrix (N is the number of occupied
bands), with (∆1)11 = 2π and all the remaining matrix el-
ements vanishing. Here V = (v1, v2, ..., vN ) is the unitary
matrix whose n’th column vn is the n’th eigenvector of B0.
Plugging this expression for ∆B into the expression for G in
Eq. (33), one obtains a formula for θshift, and θVL is simply the
opposite of θshift. After some considerable algebra, which we
defer to Appendix D, it turns out that many terms cancel, and
one obtains the surprisingly simple formula

θVL = −θshift =
[
φ1(C) + ξ1(C)

]
/2 . (52)

Here φ1 and ξ1 are two different, but related, Berry phases that
need to be computed around loop C (taking the positive sense
of circulation with respect to the unit normal to SGD ). The
second term ξ1(C) is easier to describe; it is just the Berry
phase of the N -component vector v1 (the first column of V )
as it is taken around the loop C. To understand the first term,
note that the elements of V can be used to build the linear
combinations

|ψ̄(0)
nk 〉 =

N∑
m=1

|ψ(0)
mk〉Vmn (53)

out of the Bloch functions |ψ(0)
mk〉 at the bottom plane (λ=0),

such that

|ψ̄(0)
1k 〉 =

N∑
m=1

v1,m |ψ(0)
mk〉 (54)

is precisely the state whose phase is shifted by 2π, while the
other N − 1 states are unaffected by ∆B. Then the first term
φ1(C) in Eq. (52) is just the Berry phase of |ψ̄(0)

1k 〉 as it is
carried around the loop C. The gauge-invariance and other
properties of this formula will be discussed further in the next
subsection.

In the most general case, there may be multiple vortex loops
{Ci, i = 1, ...L} in the 2D k plane, and inside the ith vortex
loop the nth eigenvalue of B may be shifted by 2πνn(i) with
νn(i) being an integer. Then Eq. (52) can be generalized in a
straightforward manner to

θVL =
∑
i

∑
n

φn(Ci) + ξn(Ci)
2

νn(i) (55)

where φn(Ci) and ξn(Ci) are the Berry phases around the loop
Ci of the nth Bloch-like state |ψ̄(0)

nk 〉 (Eq. (53)) and the nth
eigenvector of B respectively. Eq. (52), together with its gen-
eralized form Eq. (55), is the other central result of this paper.

C. Discussion

We discuss the properties of Eq. (55) in this subsection. We
first show that Eq. (55) is indeed gauge invariant modulo 2π,
which is consistent with the 2π ambiguity of θ. Secondly we
prove that Eq. (55) remains unchanged by interchanging the

two steps corresponding to Eqs. (49) and (50). Lastly we dis-
cuss the case of T symmetry and conclude that as long as a
gauge respecting T symmetry is used, θVL = ±π or 0 depend-
ing on whether the system is Z2-odd or Z2-even, respectively.

1. Gauge invariance

Eq. (55) is rather unexpected, as it involves the average of
two Berry phases in a manner that, to our knowledge, has not
been encountered before. Nevertheless, it is easy to confirm
that it obeys one important property, namely, that it is well-
defined modulo 2π, as required for any plausible formula for
θ. To prove this, we first note that the only gauge freedom
in Eq. (55) is a U(1) gauge transformation acting on vn, i.e.,
vn → vne

iβ (k-dependence is implicit). On the other hand,
since |ū(0)

n 〉 =
∑N
m=1 |u

(0)
m 〉 vn,m, the same gauge transfor-

mation must also be applied to |ū(0)
n 〉, i.e., |ū(0)

n 〉 → |ū(0)
n 〉eiβ .

As a result, if the gauge transformation has a non-zero wind-
ing number J , such that ξn is changed by 2πJ , then φn must
change by 2πJ as well. It follows that Eq. (55) is gauge in-
variant modulo 2π.

2. Order of the two steps

In Sec.IV B we decomposed B into two parts, B = B0 +
∆B, where B0 is the smooth part and ∆B is the contribution
from the 2π shift (equal and opposite to the vortex-loop con-
tribution). Then, in Eqs. (49) and (50), B was treated in two
steps in the fictitious λ space. The first step (0<λ< 1) dealt
with ∆B, while the second step (1<λ<2) treated the smooth
part B0. Here we would like to show that Eqs. (52) and (55)
remain correct regardless of the order of the λ integrations.

If the order is reversed, it is straightforward to show that
Eq. (52) remains unchanged, but the first term φ1 is interpreted
as the Berry phase of |ū(1)

1 〉, where |ū(1)
1 〉=

∑
n |u

(1)
n 〉 v1,n =∑

n,m |u
(0)
m 〉 (e−iB0)mn v1,n. The Berry phases of |ū(1)

1 〉 and

|ū(0)
1 〉 around the vortex loop C are exactly the same, because
|ū(1)

1 〉 =
∑
m,n,l |ū

(0)
l 〉 v∗l,m (e−iB0)mn v1,n = |ū(0)

1 〉 e−ib1 ,
where b1 is the first eigenvalue of B0. Since b1 is smooth
and single-valued everywhere in the 2D k-plane, the Berry
phase would not change under such a single-band transforma-
tion. Therefore, Eq. (52) and Eq. (55) remain valid even if the
order of Eq. (49) and Eq. (50) is reversed.

3. Time-reversal symmetry

We proceed to prove that θVL must be either ±π or 0 for
T -invariant systems when the gauge in the bulk BZ is cho-
sen to respect T symmetry. Again, let us consider the simple
case that there is only one vortex loop C in the 2D k plane,
and that only the first eigenvalue of B is shifted by 2π in-
side the vortex loop. Suppose that a smooth gauge respect-
ing T symmetry has been constructed in the bulk BZ, so that
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both the bulk integral θBK and the surface integral θGD vanish
as discussed in Sec. III B. Due to the T -respecting gauge of
Eq. (39), the B matrix must satisfy Eq. (41), with two eigen-
values being degenerate at each of the four TRIM, i.e., (0, 0),
(0, π), (π, 0) and (π, π). As a result, the vortex loop C has to
be a “T -symmetric” loop centered at one of the TRIM, which
means that for any k on the loop C, −k must also lie on the
loop. Then it is well known that the Berry phase around such
a T -symmetric loop enclosing a degeneracy point is ±π, as
has been demonstrated in the surface states of TIs and in T -
invariant systems with giant Rashba spin-orbit splitting.25,26 It
follows that ξ1 =±π in Eq. (52)

It can be further shown that φ1 in Eq. (52) is exactly the
same as ξ1 as a result of the T symmetry. Let us first make
a branch choice such that the vortex loop is negligibly small,
then the Berry connection of |ū(0)

1 〉 can be expressed as

Ā
(0)
a,11 = i 〈ū(0)

1 |∂aū
(0)
1 〉

= i
N∑

m,n=1

V ∗m1〈u(0)
m |∂au(0)

n 〉Vn1 + i
N∑
n=1

V ∗n1∂xVn1

= (V
†
A(0)
a V )11 + Ca,11 (56)

where N is the number of occupied bands, A(0)
a is the Berry-

connection matrix in the bottom-plane gauge with a={x, y},
and

Ca,mn = i

N∑
l=1

V ∗lm∂aVln , (57)

may be interpreted as the “Berry connection” in the gauge
space. As the vortex loop is chosen to be vanishingly small,
the variation of |u(0)

1 〉 within the vortex loop is negligible.
Therefore A(0)

a = 0, which means Ā(0)
a,11 comes only from the

gauge twist, i.e., Ā(0)
a,11 =Ca,11. It follows that ξ1 =φ1 =±π

for such a special branch choice, and θVL =±π according to
Eq. (52).

Now suppose the loop is enlarged while preserving T sym-
metry in the shape of the loop. We showed at the end of
Sec. IV C 3 that contributions to θGD coming from k and −k
always cancel when there is a T -respecting gauge in the bulk,
so θGD continues to vanish as the loop is enlarged. By the ar-
gument given around Eq. (48), this means θshift, and therefore
θVL, cannot change as the loop is enlarged, even if the vari-
ation of |u(0)

1 〉 is no longer negligible. In other words, given
a T -respecting gauge in the bulk BZ, θVL must be quantized
as ±π in the Z2-odd case regardless of the size of the vortex
loop.

We can generalize the discussion to a more general case
with multiple vortex loops. Obviously when there is an odd
number of vortex loops, θ is still quantized as ±π (modulo
2π). If there is an even number of vortex loops, they can ei-
ther enclose an even number of TRIM or fall into T partners
without enclosing any TRIM, and θ has to vanish (modulo 2π)
in either case.

V. APPLICATIONS

In this section, we apply our method to the Fu-Kane-Mele
(FKM) model,24 which is a 4-band tight-binding model of s
electrons on the diamond lattice. The model Hamiltonian is

H =
∑
〈i,j〉

tijc
†
i cj + i8λSO

∑
〈〈i,j〉〉

c†i s · (d
1
ij × d2

ij) cj , (58)

where tij is the first-neighbor spin-independent hopping and
λSO is the strength of the second-neighbor spin-dependent
hopping generated by spin-orbit coupling (SOC); d1

ij and d2
ij

are the two first-neighbor bond vectors connecting the two
second-neighbor sites i and j; and s = (sx, sy, sz) are Pauli
matrices representing the electronic spin. Hereafter we only
consider the case of half filling, i.e., two occupied bands. Set-
ting tij = t0 = 1 and λSO = 0.125, it is easy to check that the
system is a semimetal with gap closures at the three equiva-
lentX points in the BZ when the diamond-lattice symmetry is
preserved. An energy gap can be opened up if an appropriate
symmetry-lowering perturbation is added. For example, when
the first-neighbor bond along the [111] direction is distorted,
the system can be either a trivial insulator or a topological in-
sulator depending on the strength of the bond distortion.

In order to validate our method, we need to consider the
general case without T symmetry. Following Ref. 13, we
modify the system by applying a staggered Zeeman field with
amplitude h, direction ĥ along [111], and opposite signs on
the A and B sublattices. Moreover, the [111] first-neighbor
bond is distorted by changing the corresponding hopping am-
plitude from t0 to 3t0 + δ. We work in polar coordinates in
the (δ, h) parameter space, i.e., δ=m cosβ and h=m sinβ.
The Hamiltonian then becomes

H(β) =
∑

〈i,j〉=[111]

(3t0 +m cosβ) c†i cj +
∑

〈i,j〉6=[111]

t0 c
†
i cj

+ i8λSO

∑
〈〈i,j〉〉

c†i s · (d
1
ij × d2

ij) cj

+ m sinβ
∑
i

c†i ĥ · s τz ci (59)

where τz is the Pauli matrix defined in the space of the two
sublattices. When β= 0 and π, the Zeeman field vanishes so
that T symmetry is restored, but the topological index reverses
between these two cases. As β increases from 0 to π, the
system varies smoothly from a trivial to a topological insulator
along a T -breaking path without closing the bulk energy gap.

Setting t0 = 1, λSO = 0.125, and m = 0.5, we first study
the behavior of the B matrix of Eq. (12) in the (kx, ky) plane
with the branch choice (−7π/4, π/4] for the eigenvalues of
B(k). As shown in Fig. 3(a), when the system is in the Z2-
odd phase (β=π) there is a single vortex loop surrounding the
TRIM at (π, π). Within the loop, one of the eigenvalues of B
(shown in cyan) is shifted by 2π, while the other eigenvalue
remains continuous. Moreover, as a result of T symmetry, the
two eigenvalues of B are degenerate at each TRIM, leading
to quantized Berry phases as discussed in Sec. IV C. Fig. 3(b)
shows what happens if T symmetry is broken by setting β=



10

FIG. 3. 3D plots of the two eigenvalues (colored red and cyan) of
B(kx, ky) = i lnU(kx, ky) for the Fu-Kane-Mele model at half
filling: (a) when the system is a TI, i.e., β = π, with the branch
choice taken as (−7π/4, π/4]; (b) when β=0.95π, with the branch
choice (−7π/4, π/4]; (c) when β = π, with the branch choice
(−5π/4, 3π/4]; and (d) when β = 0.95π, with the branch choice
(−5π/4, 3π/4]. The wavevectors kx and ky are reduced such that
kj ∈ [0, 1] generates the 2D BZ.

0.95π. Even though the vortex loop is still present for this
value of β, the two eigenvalues of B are no longer degenerate
at the TRIM.

As discussed in Sec. IV A, for the Z2-odd case a vortex
loop has to be present regardless of the branch choice. The
best one can do is to compress the vortex loop to one of the
TRIM in the 2D plane. This is illustrated in Fig. 3(c), where
the system of Fig. 3(a) is reanalyzed using a branch choice
of (−5π/4, 3π/4]. Now the vortex loop is compressed to the
point (π, π) in the (kx, ky) plane. On the other hand, using
the same branch choice, the vortex loop can be completely
removed when β=0.95π, as shown in Fig. 3(d).

Using the methods developed in Secs. III and IV, we have
calculated the total axion response θ along the path from β=0
to π by taking the sum of θBK, θGD and θVL. We first ex-
plain the procedures for these calculations before discussing
any specific results. The parallel-transport technique,27 which
is detailed in Appendix A, is heavily used in the gauge con-
struction. As discussed earlier, the basic idea is that we first
construct a smooth gauge in the bulk BZ that is periodic only
in the kx and ky directions. Then we can extract the unitary
matrix U(kx, ky) describing the gauge discontinuity (Eq. (9))
by calculating the overlap matrix between the Bloch states
in the top-plane and bottom-plane gauges. The logarithm of
U(kx, ky), taken with a given branch choice, is the B matrix.
We also need to calculate the Berry curvature and Berry con-
nections either in the top-plane gauge or in the bottom-plane
gauge. Then all the formulas derived in previous sections can
be applied.

To be specific, we first need to construct a smooth and pe-
riodic gauge on an arbitrary (kx, ky) plane. For definiteness
suppose this is the kz = 0 plane. We start by constructing the
“1D maxloc” gauge (see Appendix A) along the ky direction
at kx=0, then make a set of separate parallel transports from
kx = 0 to kx = 2π at each ky , leaving some gauge discon-
tinuity at the line kx = 2π denoted by Y (ky) = e−iD(ky).
We then apply a local (in k space) unitary transformation
R(kx, ky) = eikxD(ky)/2π to the occupied states at each point
in the 2D plane to smooth out this discontinuity. In the above
operation, we have maintained the smoothness of the gauge
because the R matrix is defined so as to be smooth in the in-
terior of the 2D plane. Furthermore, the gauge discontinuity
at the boundary line kx = 2π has been removed. After these
operations, we have successfully constructed a smooth and
periodic gauge in the chosen kz=0 plane.

Taking this gauge in the kz=0 plane as a “reference gauge,”
at each (kx, ky) we further carry out two sets of parallel trans-
ports along the positive and negative kz directions from kz=0
to kz =±π. However, now the periodicity condition in kz is
relaxed so that the states are as aligned to each other as pos-
sible in the interval kz ∈ (−π, π). This makes the numeric
convergence of the bulk integral, Eq. (7), much easier. The
overall result is a gauge that is smooth everywhere in the bulk
BZ and periodic only in the kx and ky directions. Some gauge
discontinuity is left at the plane kz =±π, which is described
by the U matrix introduced in Sec. II B. We are now prepared
to apply the formulas derived in Sec. III and Sec. IV to our
system of interest.

The above procedures have to be implemented with caution
if the system is in the Z2-odd phase. In this case, it is desirable
to construct a bulk gauge respecting T symmetry, so that both
θBK and θGD vanish, and the remaining contribution from θVL
is quantized as ±π. For a 3D strong TI, however, the 2D Z2

indices for the kz = 0 plane and the kz = π plane must be
opposite. Since it is impossible to construct a smooth and
periodic T -symmetric gauge in the Z2-odd plane,19 one has to
select the Z2-even plane for the construction of the reference
gauge. Since standard methods for computing Z2 indices are
now available,28,29 even in the absence of P symmetry, the
selection of the Z2-even plane should be straightforward.

The axion response θ for the FKM model is shown as blue
circles in Fig. 4. As β increases from 0 to π, the system
evolves from a Z2-even to a Z2-odd phase without closing the
bulk energy gap, and θ increases smoothly from 0 to π. When
β is below ∼ 0.85π, a conventional 3D numeric integral us-
ing a fully smooth and periodic gauge throughout the BZ is
still practical, and the results obtained from our method are
perfectly consistent with those from the conventional method
in this regime. Nevertheless, it is much easier to reach nu-
merical convergence using our method. For example, when
β=0.85π, the conventional method requires a 120×120×120
k mesh to reduce the numerical error to within 1%, while only
an 80× 80× 80 k mesh is needed to obtain the same numer-
ical convergence using our method. When β exceeds 0.85π,
it becomes impractical to get the expected convergence using
the conventional method, and the advantage of our method be-
comes more obvious. For example, when β = 0.9π, the bulk
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FIG. 4. Axion response θ for the Fu-Kane-Mele model. Blue circles
denote the total response. Red diamonds indicate the contribution
from the gauge discontinuity, including both the 2D surface integral
θGD and the 1D vortex-loop integral θVL. Black crosses represent the
contribution from the bulk integral without enforcing periodicity in
the kz direction.

integral using the conventional method (enforcing periodicity
in all three directions) does not converge to the expected value
even for a 200×200×200 k mesh,30 while it converges eas-
ily for a 100×100×80 k mesh for θBK in our method. The
2D integral θGD also converges with a 100×100 2D k mesh
after the bulk gauge is constructed. The convergence for the
vortex-loop integral (θVL) is even easier; discretizing the loop
into∼40 k points would typically be enough to get converged
values of Berry phases (a 100×100 2D k mesh discretizes the
vortex loop into 41 k points when β = 0.9π with the branch
choice (−7π/4, π/4]). Summing over all three terms θBK, θGD
and θVL eventually leads to the results indicated by blue cir-
cles in Fig. 4.

Note that the axion coupling of the FKM model has been
calculated previously using other methods. In Ref. 13, when
β approaches π, Essin et al. switched to some indirect meth-
ods such as calculating the total polarization of a finite
sample subject to a weak external magnetic field; while in
Ref. 31 Taherinejad et al. calculated θ in the “hybrid-Wannier-
function” basis. The results obtained from our method also
agree very well with these previous results when β is close to
π.

As shown in Fig. 4, it is helpful to decompose the total θ
into the bulk-BZ integral θBK and the remainder θGD + θVL,
which are indicated by black crosses and red diamonds re-
spectively. One finds that as β increases, θGD + θVL becomes
more and more dominant. Eventually when β = π, θ comes
entirely from by the vortex-loop term, which equals π, be-
cause both θGD and θBK vanish due to the T -symmetric bulk
gauge.

It should be noted that none of the three terms θBK, θGD
or θVL, is independently gauge invariant. As the size of the
vortex loop is dependent on the branch choice, in general both
θVL and θGD are branch-choice dependent, but the sum of them
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FIG. 5. Difference between the θ values calculated with two different
branch choices (see text) for the Fu-Kane-Mele model. The blue
diamonds, black pluses and red circles denote the differences for θGD,
θVL and θVL + θGD respectively.

should remain invariant if the bulk gauge is fixed.
The above statement is verified by computing θVL and θGD

using different branch choices for a given gauge in the bulk
BZ as shown in Fig. 5, where the blue diamonds (black plus
signs) denote the difference between the values of θGD (θVL)
calculated using the two different branch choices (−2π, 0] and
(−7π/4, π/4]. For the first branch choice (−2π, 0], a vor-
tex loop appears when β = 0.35π and then grows as β in-
creases, while for the other branch choice the B matrix re-
mains continuous throughout the 2D k plane until β=0.65π.
It is clearly seen from Fig. 5 that both θVL and θGD depend
on the branch choice. On the other hand, the red circles in
Fig. 5 represent the difference of the total θGD + θVL com-
puted for the two different branch choices. The difference
remains vanishingly small throughout the adiabatic path, thus
numerically confirming that the sum of θVL and θGD remains
branch-choice-invariant.

Besides the branch choice, there is still the freedom to
choose the gauge in the bulk BZ; both θBK and θGD + θVL
depend on this gauge choice. However, since the bulk gauge
was chosen in such a way as to align the states with each other
as much as possible in the kz direction, the bulk integral θBK
is typically small, explaining why θGD + θVL dominates over
θBK in Fig. 4.

VI. SUMMARY

To summarize, we have developed a new method for com-
puting the Chern-Simons axion coupling θ. The basic idea
is to relax the periodicity condition of the gauge in one of
the k directions, thus introducing a gauge discontinuity resid-
ing at a 2D k plane in the BZ. The total θ then has both a
bulk contribution θBK, obtained as a conventional 3D integral
over the interior of the bulk BZ, and a gauge-discontinuity
contribution θGD, which is expressed as a 2D integral over
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the gauge-discontinuity plane as given by Eqs. (18) and (33).
Moreover, it may happen that discontinuities are introduced
for a given branch choice ofB(k), the logarithm of the unitary
connection matrix describing the gauge discontinuity; this is
sometimes done for convenience, but may also be required de-
pending on the topological properties of the system. In such
cases the gauge-discontinuity plane is further divided into sub-
regions by 1D vortex loops, and one must also consider the
vortex-loop contribution as expressed in Eq. (55). The total θ
is then θ=θBK + θGD + θVL.

Since the periodicity condition in one of the k directions
(e.g., the kz direction) is relaxed, the gauge in the bulk BZ
does not twist as strongly as in the case when both period-
icity and smoothness are required. This leads to improved
numerical convergence of the 3D bulk integral of Eq. (7). The
loss of periodicity is compensated by extra contributions from
the gauge discontinuity (θGD) and possible vortex loops (θVL).
The formulas for both terms turn out to be fairly simple and
can be implemented numerically without difficulty.

It is interesting to note that if a T -respecting gauge has been
constructed in the bulk BZ for a T -invariant system, then both
θBK and θGD must vanish. The only surviving term θVL is then
either 0 or π, corresponding to the Z2 classification of 3D
T -invariant insulators. Our theory thus provides a new inter-
pretation to the formally quantized magnetoelectric response
in TIs.

We have applied our method to the Fu-Kane-Mele model
with staggered Zeeman field. We calculated the axion re-
sponse for the model along a T -breaking path connecting
the Z2-even and Z2-odd phases. Our results agree well
with the previous results obtained from other methods.13,31 In
particular, we find that the gauge-discontinuity contribution
θGD + θVL becomes increasingly dominant as the system ap-
proaches the Z2-odd phase. In the TI phase, as mentioned
above, θ is completely determined by the vortex-loop term for
a T -symmetric gauge in the bulk BZ, and the π quantization
of θ is due to the π quantization of the Berry phase around a
single vortex loop.

Our method may be generalized to the case that the 3D BZ
is divided into multiple subvolumes. These subvolumes may
meet each other at multiple 2D surface patches, each with its
own gauge discontinuity. The surface patches may further
meet at 1D lines or curves, which may be vortex loops. In
such more complicated cases, the formula for θGD still ap-
plies, but the definition of a vortex line has to be generalized
to the situation that the U matrices obtained by approaching
the vortex loop from different surface patches may no longer
commute with each other. Thus the formula for θVL may need
to be modified. We leave this problem for future study.

From a theoretical point of view, the results presented in
this paper provide a step forward in understanding the ax-
ion coupling in 3D insulators. We introduced the gauge-
discontinuity and vortex-loop contributions to θ, and found
that the latter can be expressed in an unusual way as the sum
of two closely related Berry phases. From the perspective of
first-principles calculations, we have proposed a numerically
efficient method for computing the Chern-Simons orbital ME
coupling in solids. Our method can be implemented straight-

forwardly in standard first-principles code packages. This
makes it possible to compute the orbital ME coefficients ef-
ficiently for realistic materials, thus facilitating the search for
functional materials with enhanced ME couplings.
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Appendix A: Parallel transport

In this section, we discuss how to carry out the paral-
lel transport operation and construct the “1D maxloc” gauge
starting from a set of occupied eigenstates with an arbitrary
gauge on a given k path. The basic idea is to recursively make
the (periodic part of) the Bloch states at each k point on the
path as aligned as possible with the states at the immediately
previous k point. If the k path is chosen to be a closed loop,
the states obtained at the end of the loop may differ from those
at the start by some phase factors after the parallel-transport
operation, with the mismatch giving exactly the Berry phases
of the Bloch states around the loop. The Berry phases accu-
mulated along the k path can be smeared out by smoothly dis-
tributing the phase to the states at every k point on the loop.
After such an operation, one obtains a gauge which is both
smooth and periodic along the path (loop), and which we re-
fer to as a 1D maxloc gauge.27

To be specific, let us consider a set of occupied bands
|unk〉, with n = 1, ...N , which are isolated from other bands
(in energy) everywhere in the BZ. Let us take a closed k
path along kz running from 0 to 2π, with the path sampled
by J discrete points, so that kj = 2π(j − 1)ẑ/J . As-
sume that the eigenstates with some arbitrary gauge |u0

nkj
〉

are given for j = 1, ...J , and a periodic gauge is chosen at the
(J + 1)th point so that |u0

nkJ+1
〉 = e−i2πz|u0

nk1
〉. To carry

out the parallel transport, we need to insist that each over-
lap matrix between the occupied states at kj+1 and kj , i.e.,
Mmn(j) = 〈u0

mkj
|u0
nkj+1

〉, is positive-definite Hermitian.
This can be done as follows. At each kj , make a singular-
value decomposition to the overlap matrix Mj = VjΣjW

†
j ,

where V and W are unitary and Σ is real positive diagonal.
Then apply a unitary transformation Lj = WjV

†
j to |u0

nkj+1
〉,

|ũnkj+1
〉 =

∑N
m=1 Lj,mn|u0

mkj+1
〉, so that the overlap ma-

trix between the unitarily transformed states at neighboring
k points becomes positive-definite Hermitian. If one repeats
such an operation from j = 1 to j = J , the states will be-
come as aligned to each other as possible at all k points on the
path. However, there is still some gauge discontinuity left at
the boundary, |ũnkJ+1

〉 = e−i2πz
∑
m Λmn|ũmk1〉, where Λ

is a unitary matrix. The logarithms of the eigenvalues of Λ,
βn = −i lnλn, are then identified as the non-Abelian Berry
phases (also known as Wilson loop eigenvalues) of the Bloch
states.

The gauge obtained from the parallel-transport operation is
smooth along the k path, but not periodic. To restore the pe-
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riodicity, we need to rotate all the states on the k path to the
basis that diagonalizes Λ, i.e., |u′nkj

〉 =
∑N
m=1 |ũmkj

〉Lmn,
where L is the eigenvector matrix of Λ. Then we gradually
smear out the discontinuity by applying the following phase
twist to the states at kj : |unkj

〉 = e−i(j−1)βn/J |u′nkj
〉. This

results in a “1D maxloc gauge” that is both smooth and peri-
odic along the k path.

Appendix B: Integration over λ in the formula for θGD

In deriving the expression in Eq. (18) for the gauge discon-
tinuity contribution θGD in Sec. III A, we arrived at Eq. (33)
involving the quantities Bx, By , and B[x,y] which were ex-
pressed as integrals over λ in Eqs. (34-36). We show here that
these three quantities can all be computed analytically in the
sense that the λ integral does not have to be discretized.

The plan is as follows. Suppose that A(0)
x (k), A(0)

y (k),
Ω

(0)
xy (k), B(k), Bx(k), and By(k) are known. The first term

in Eq. (33) is independent of λ and is trivial. For the remain-
ing terms, at each k, locally diagonalize B(k), then transform
all of the matrices A(0)

x (k), A(0)
y (k), Bx(k), and By(k) to the

basis that locally diagonalizes B(k), i.e.,

B(k)→ V †(k)B(k)V (k),

Ba(k)→ V †(k)Ba(k)V (k),

Aa(k)→ V †(k)Aa(k)V (k),

Ωxy(k)→ V †(k) Ωxy(k)V (k) , (B1)

where V (k) is the eigenvector matrix of B(k), and a =
{x, y}. Then one can compute the trace in this basis. Let-
ting Bmn = bn δmn, we find

Bx,mn(λ) =

∫ λ

0

dµ e−iµbm Bx,mn e
iµbn

= gmn(λ)Bx,mn , (B2)

where

gmn(λ) =
e−iλ(bm−bn) − 1

−i(bm − bn)
. (B3)

Then

Bx,mn =
(∫ 1

0

gmn(λ) dλ
)
Bx,mn

=
(ei(bn−bm) − 1

−(bn − bm)2
− 1

i(bn − bm)

)
Bx,mn

(B4)

and

B[x,y]mn =i
∑
l

(∫ 1

0

gml(λ) gln(λ) dλ
)
×(

Bx,mlBy,ln −By,mlBx,ln
)
. (B5)

Because we are interested in the trace of BB[x,y] in the ba-
sis that B is locally diagonal, only the diagonal matrix ele-
ments of B[x,y] are relevant. After carrying out the integral in
Eq. (B5) one obtains the following expression:

B[x,y]nn =i
∑
m

( 2

(bn − bm)2
− 2 sin(bm − bn)

(bm − bn)3

)
×(

Bx,nmBy,mn −By,nmBx,mn
)
. (B6)

If two eigenvalues bm and bn are degenerate, one needs to take
the limit (bn − bm) → 0. It turns out that both quantities are
finite:

lim
bn→bm

Bx,mn = Bx,mn/2 , (B7)

and

lim
bm→bn

B[x,y]nn =
i

3

(
Bx,nmBy,mn−By,nmBx,mn

)
. (B8)

Of course the entire calculation still has to be done on a
discretized mesh on the k plane, with finite-difference expres-
sions used to evaluate objects likeA(0)

x (k), so it it not “exact”.
However, it is convenient that we don’t have to discretize the
λ axis, instead doing all λ integrals analytically.

Appendix C: Derivation of Eq. (45)

In Sec. III B we considered the effect of time-reversal sym-
metry on the gauge discontinuity on the boundary plane and
showed that θGD has to vanish for a T -respecting choice of
gauge. The demonstration rested on the use of Eq. (45), which
was only introduced heuristically there.

Here we prove it properly. From Eqs. (27), (28) and (25),
we know that

A(λ)
a = Ã(λ)

a + Γa(0, λ) (C1)

where

Ã(λ)
a = W †(λ)A(0)

a W (λ) , (C2)

and the function Γa(λ1, λ2) is defined as

Γa(λ1, λ2) =

∫ λ2

λ1

dµW †(µ)BaW (µ) . (C3)

Letting λ = 1, we get the expression

A(1)
a = Ã(1)

a + Γa(0, 1), (C4)

Applying a unitary transformation W (1 − λ) to the matrix
A

(1)
a , one obtains

W (1− λ)A(1)
a W †(1− λ) = Ã(λ)

a + Γa(λ− 1, λ) ,

= A(λ)
a + Γa(λ− 1, 0) ,

(C5)
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where a variable transformation (λ + ν − 1)→ µ has been
made to obtain the second term Γa(λ − 1, λ) on the RHS of
the first line in Eq. (C5). The integral from λ − 1 to λ in
Γa(λ − 1, λ) is further divided into two integrals: one from
λ − 1 to 0, and the other from 0 to λ. A

(λ)
a in the second

line is then obtained by combining the integral from 0 to λ
together with W †(λ)A

(0)
a W (λ) (Eq. (C1)). Therefore

A(λ)
a = W (1− λ)A(1)

a W †(1− λ) − Γa(λ− 1, 0) (C6)

and it immediately follows that

A(1−λ)
a = W (λ)A(1)

a W †(λ)− Γa(−λ, 0)

= W (λ)A(1)
a W †(λ)−

∫ λ

0

dµW (µ)BaW
†(µ) ,

(C7)

where we let µ → −µ in going from the first to the second
line in Eq. (C7). Equation (45 then follows by combining
Eq. (42)-(43) and Eq. (C7):

A(1−λ)
a (−k) = e−iλB(−k)A(1)

a (−k) eiλB(−k) −
∫ λ

0

dµ e−iµB(−k)Ba(−k) eiµB(−k)

= σy e
−iλBT (k)

(
A(0)
a (k)

)T
eiλB

T (k) σy + σy

∫ λ

0

dµ e−iµB
T (k)BTa (k) eiµB

T (k) σy

= σy

(
W †(λ)A(0)

a (k)W (λ) +

∫ λ

0

dµW †(µ)Ba(k)W (µ)
)T

σy . (C8)

The last line in Eq. (C8) is simply σy
(
A

(λ)
a (k)

)T
σy , thus

proving Eq. (45) and thereby confirming that θGD vanishes for
a TR-invariant gauge.

Appendix D: Derivation of Eq. (52)

In Sec. IV B we proposed a formula for the vortex-loop con-
tribution as expressed in Eq. (52). We only explained the main
idea there, and the formula was introduced without proof.
Here we provide a rigorous derivation.

To derive Eq. (52), it is convenient to decompose G(k) into
four termsG1,G2,G3 andG4 corresponding to the four terms
on the right-hand side (RHS) of Eq. (33):

G1 = B Ω(0)
xy , (D1)

G2 = iB [Bx(λ), By(λ) ] , (D2)

G3 = iB [A(0)
x , By(λ) ] , (D3)

G4 = iB [Bx(λ), A(0)
y ] . (D4)

Since all the quantities such as Ωxy and Ax(y) are defined in
the bottom-plane gauge, we will drop the superscript “(0)” (in-
dicating the bottom-plane gauge) in later steps. Recalling that
the change ∆B in the interior region was expressed in Eq. (51)
as V∆1V

†, where V is the unitary matrix that diagonalizes B
and ∆ is diagonal with 2π-integer entries, we can transform

the needed matrices to the B-diagonal representation via

A′a = V †Aa V , (D5)
Ω′xy = V † Ωxy V , (D6)

B
′
a = V †Ba V . (D7)

We will prove Eq. (52) by explicitly calculating the four terms
in Eqs. (D1)-(D4).

1. The G1 term

Plugging Eq. (51) first into the expression for G1 in
Eq. (D1), one obtains

Tr
[
G1

]
= Tr

[
V ∆1 V

†Ωxy V V
†
]

= Tr
[

∆1 V
†Ωxy V

]
. (D8)

Note that Ω′xy = V †Ωxy V is associated with the Berry cur-
vature of the Bloch states in the bottom-plane gauge that are
unitarily transformed by V : |ū(0)

n 〉 =
∑N
m=1 |u

(0)
m 〉Vmn. One

can express the Berry curvature of |ū(0)
n 〉 (denoted by Ω̄xy) in

terms of Ax, Ay , Ωxy , V and the partial derivatives of V ,

Ω̄xy = Ω′xy + Λxy + i[Cx, A
′
y ]− i[Cy, A′x ] , (D9)

where Cx and Cy are defined in Eq. (57), and

Λxy = ∂xCy − ∂yCx (D10)
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can be considered as the Berry curvature in the “gauge space.”
From Eq. (D9) it immediately follows that

Tr
[
G1

]
=Tr

[
∆1 Ω̄xy −∆1 Λxy − i∆1 [Cx, A

′
y ]

+i∆1 [Cy, A
′
x ]
]
. (D11)

Before further simplifying Eq. (D11), let us go to the other
terms and come back to G1 later.

2. The G3 and G4 terms

Let us deal with theG3 andG4 terms. SinceBx andBy are
involved in G3 and G4, let us first evaluate these two terms.

Bx = ∂x(V ∆1 V
† )

= ∂xV ∆1 V
† + V ∆1 ∂xV

†

= iV [ ∆1, Cx ]V † . (D12)

Similarly, By = iV [ ∆1, Cy ]V †. Plugging the expressions
for Bx and By into Eq. (25), one immediately obtains

Ba(λ) =

∫ λ

0

duV e−iu∆1 i[ ∆1, Ca ] eiu∆1 V † .

(D13)

We now evaluate Tr [G3] by carrying out the trace in the
basis that diagonalizes B using Eqs. (D5-D7). We find

Tr
[
G3

]
= Tr

[
i∆1 [A′x, B

′
y, ]
]

= Tr
[ ∫ λ

0

du i∆1 [A′x, e
−iu∆1 i[ ∆1, Cy ] eiu∆1 ]

]
= Tr

[ ∫ λ

0

du iA′x [ e−iu∆1 i[ ∆1, Cy ] eiu∆1 , ∆1 ]
]

= Tr
[
iA′x

∫ λ

0

du ∂u

(
e−iu∆1 [ ∆1, Cy ] eiu∆1

) ]
= Tr

[
iA′x e

−iλ∆1 [ ∆1, Cy ] eiλ∆1 − iA′x [ ∆1, Cy ]
]
,

(D14)

where we have used the equation

[ e−iu∆1 i[ ∆1, Cy ] eiu∆1 , ∆1 ] = ∂u

(
e−iu∆1 [ ∆1, Cy ] eiu∆1

)
(D15)

when going from the third to the fourth line in Eq. (D14).
Making use of the cyclic property of trace, one immediately
realizes that the second term in the last line of Eq. (D14) can-
cels the last term on the RHS of Eq. (D11), which will be
dropped in later steps. Therefore,∫ 1

0

dλTr
[
G3

]
=

∫ 1

0

dλTr
[
iA′x e

−iλ∆1 [ ∆1, Cy ] eiλ∆1

]
=

∫ 1

0

dλTr
[
−A′x ∂λ( e−iλ∆1 Cy e

iλ∆1 )
]

= Tr
[
−A′x ( e−iλ∆1 Cy e

iλ∆1 )|λ=1
λ=0

]
= 0 , (D16)

where the following equation has been used to go from the
second to the third line in Eq. (D16):

ie−iλ∆1 [ ∆1, Cy ] eiλ∆1 = −∂λ( e−iλ∆1 Cy e
iλ∆1 ) .

(D17)
Similar derivations can be applied to the G4 term, i.e.,

Tr
[
G4

]
= Tr

[
iA′y e

−iλ∆1 [Cx,∆1 ] eiλ∆1 − iA′y [Cx,∆1 ]
]
.

(D18)

The second term on the RHS of Eq. (D18) cancels the
third term on the RHS of Eq. (D11). Dropping the sec-
ond term in Eq. (D18) and integrating over λ, one obtains∫ 1

0
dλTr

[
G4
]

= 0.

3. The G2 term

In the basis that locally diagonalizes B,

Tr
[
G2

]
= Tr

[
i∆1 [B

′
x, B

′
y ]
]
. (D19)

On the other hand, combining Eq. (D13), Eq. (D7) and
Eq. (D17), we get

B
′
a = −

∫ λ

0

dµ∂u( e−iu∆1 Ca e
iu∆1 )

= Ca − C̃a , (D20)

where C̃a = e−iλ∆1 Ca e
iλ∆1 . It follows that

Tr
[
G2

]
= Tr

[
i∆1 [ C̃x − Cx , C̃y − Cy ]

]
. (D21)

If one expands the RHS of Eq. (D21), one would obtain four
commutators between Ca and C̃b (a, b = x, y). Since e±iλ∆1

commute with ∆1, the term involving [ C̃x, C̃y ] is equal to the
term with [Cx, Cy ]. Therefore,

Tr
[
G2

]
= Tr

[
∆1

(
2i[Cx, Cy ]−i[Cx, C̃y ]−i[ C̃x, Cy ]

) ]
.

(D22)
The second term on the RHS of Eq. (D22) can be written as a
total derivative of λ as

Tr
[
− i∆1 [Cx, C̃y ]

]
= −Tr

[
∂λ( e−iλ∆1 Cy e

iλ∆1 Cx )
]
.

(D23)
We need to use ∆1 e

±iλ∆1 = ∓i∂λ(e±iλ∆1) to obtain the
above equation. Integrating Eq. (D23) over λ, one obtains
zero. Similarly, after integrating over λ, the third term on the
RHS of Eq. (D22) also vanishes. Therefore,∫ 1

0

dλTr
[
G2

]
= Tr

[
2∆1 i[Cx, Cy ]

]
. (D24)

Note that the gauge-covariant Berry curvature defined in the
gauge space Λ̃xy = Λxy − i[Cx, Cy ] has to vanish (Λxy de-
fined in Eq. (D10)), because Λ̃xy is the Berry curvature pro-
jected onto the unoccupied subspace, which is zero. There-
fore, Λxy = i[Cx, Cy ]. It can also be shown by explicitly
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writing out the commutator of Cx and Cy:

i[Cx, Cy ] = i(−V † ∂xV V †∂yV + V † ∂yV V
†∂xV )

= i(V † V ∂xV
†∂yV − V † V ∂yV †∂xV )

= i∂x(V † ∂yV )− i∂y(V † ∂xV )

= Λxy . (D25)

We have used the fact that V V † = 1 and ∂a(V V †) = 0 in
the above derivations. Therefore,

∫ 1

0

dλTr
[
G2

]
= Tr

[
2∆1 Λxy

]
. (D26)

Combining Eqs. (D11), (D14), (D18) and (D26), we get

θshift =
−1

4π

∫
dkxdky

∫ 1

0

dλTr
[
G1 +G2 +G3 +G4

]
=
−1

4π

∫
S
dkxdky Tr

[
∆1Ω′xy + ∆1Λxy

]
=
−1

4π

∫
S
dkxdky

(
2π (Ω′xy)11 + 2π (Λxy)11

)
= −

[
φ1(C) + ξ1(C)

]
/2 . (D27)

This completes the derivation of Eq. (52), demonstrating that
θVL is just the average of the two Berry phases φ1(C) and
ξ1(C) appearing above.
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3 J. Íñiguez, Phys. Rev. Lett. 101, 117201 (Sep 2008)
4 E. Bousquet, N. A. Spaldin, and K. T. Delaney, Phys. Rev. Lett.

106, 107202 (Mar 2011)
5 A. Malashevich, S. Coh, I. Souza, and D. Vanderbilt, Phys. Rev.

B 86, 094430 (Sep 2012)
6 M. Ye and D. Vanderbilt, Phys. Rev. B 89, 064301 (Feb 2014)
7 A. M. Essin, A. M. Turner, J. E. Moore, and D. Vanderbilt, Phys.

Rev. B 81, 205104 (May 2010)
8 M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (Nov

2010)
9 X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (Oct 2011)

10 T. L. Hughes, E. Prodan, and B. A. Bernevig, Phys. Rev. B 83,
245132 (Jun 2011)

11 A. M. Turner, Y. Zhang, R. S. K. Mong, and A. Vishwanath, Phys.
Rev. B 85, 165120 (Apr 2012)

12 X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78, 195424
(2008)

13 A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett. 102,
146805 (Apr 2009)

14 F. Wilczek, Phys. Rev. Lett. 58, 1799 (May 1987)
15 D. Vanderbilt and R. King-Smith, Phys. Rev. B 48, 4442 (1993)
16 S. Coh, D. Vanderbilt, A. Malashevich, and I. Souza, Phys. Rev.

B 83, 085108 (Feb 2011)
17 F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (Oct 1988)
18 A 3D QAH insulator is defined as a 3D insulator with the property

that for at least one orientation of 2D k slices through the BZ,
the Chern number of these slices is non-zero. Such a system is

adiabatically connected to one made by stacking QAH layers in
the third spatial dimension.

19 L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006)
20 A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 85, 115415 (Mar

2012)
21 A similar simplification occurs in the multiband case if B is glob-

ally diagonal (i.e., at all k), but this cannot normally be expected.
22 In general the spin quantization axis can be chosen to be different

for different T -symmetric pairs.
23 Let us consider the gauge-discontinuity plane as an isolated 2D

BZ without worrying about its kz value.
24 L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007)
25 S.-Q. Shen, Phys. Rev. B 70, 081311 (Aug 2004)
26 H. Murakawa, M. Bahramy, M. Tokunaga, Y. Kohama, C. Bell,

Y. Kaneko, N. Nagaosa, H. Hwang, and Y. Tokura, Science 342,
1490 (2013)

27 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)
28 A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 235401

(JUN 2 2011), ISSN 1098-0121
29 R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys. Rev. B

84, 075119 (Aug 2011)
30 The convergence of θ using the conventional method is trapped

into some local minimum when β > 0.85π. For example, when
β=0.9π, the converged value for θ with a 200×200×200 mesh
is 0.819, which is about 38.5% of the value obtained from our
method.

31 M. Taherinejad and D. Vanderbilt, Phys. Rev. Lett. 114, 096401
(Mar 2015)


