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Spin-orbit spillage as a measure of band inversion in insul@rs
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We propose a straightforward and effective approach fontijfying the band inversion induced by spin-orbit
coupling in band insulators. In this approach we define afifyaas a function of wavevector in the Brillouin
zone measuring the spillage between the occupied statesyefeam with and without SOC. Plots of the spillage
throughout the BZ provide a ready indication of the numbaet lcation of band inversions driven by SOC.
To illustrate the method, we apply this approach to the 2DekBiele model, a 2D Bi bilayer with applied
Zeeman field, and to first-principles calculations of somen®erials including both trivial and topological
insulators. We argue that the distribution of spillage i@ BY is closely related to the topological indices in
these systems. Our approach provides a fresh perspeativederstanding topological character in band theory,
and should be helpful in searching for new materials with-txauial band topology.

PACS numbers: 71.70.Ej, 03.65.Vf

I. INTRODUCTION surface states, as occurs fopBg; and B Te; 20713
In the case of a 3D strong Tl with inversion symmetry such
. . . , L ) as B Se;, the strongZs index can be uniquely determined
Spin-orbit coupling (SOC) is a relativistic effect origina py the parities of the occupied bands at the TR-invariant mo-
ing from the interaction between the spin and orbital MO-menia (TRIMY) in the Brillouin zone (BZ3 If the highest oc-
tions of electrons. It has played a key role in various as¢, hieq states and lowest unoccupied states at one of the TRIM
pects of condensed-matter physics, including the eleittron ,ssess opposite parities without SOC, and they are inberte
structure 20f solids and the transport properties in megisco |y t;rming on SOC, then the system transforms from a normal
systemg:? It has been known since the 1950s that SOC cang o topological insulator. For example, inoBie;, two pairs

inducg anisotr_opic spin splitting in some lI-V semiconeuc ¢ Kramers-degenerate occupied states at the BZ cehjer (
tors with the zinc-blende structure, known as the Dresselha ;o inverted by SOC, resulting in the nontriviad index. For

> ; . : :
splitting~ In 2D and quasi-2D systems, the SOC resultingrg \yithout inversion symmetry, the band inversion may hap-
from the electric field perpendicular to the 2D plane givesyen ot arbitrary points in the BZ, instead of at the TRIM. We
rise to a Rashbz 2spI|tt|ng linear i with interesting “heli- .o, jgentify such band inversion points as the points where a
cal” spin textures:® The SOC is also crucial in determining 1,14 touching occurs between valence and conduction bands
the transport behavior of low-dimensional electronicey®. 55 he SOC is adiabatically turned on; TR symmetry implies
One famous example is the weak antilocalization N SPiNyat an inversion ak, will always be accompanied by one at
orbit-coupled 2D electronic systems, where the backsuagte . ' Even in the absence of inversion symmetry, therefore,
amplitudes interfere destructively due to a geometric err 5 panq inversion driven by SOC is typically a hallmark of the
phasé associated with the intrinsic SOC, leading to a SUP-hon-trivial topology in TIs with TR symmetry.
pressed resistivity when an external magnetic field is atfsen The SOC also plays a crucial role in giving rise to the Chern

SOC is also respon5|ble for Spin precession in 1D and quaSisylator (Cl) state, also known as the quantum anomalous
1D systems, the spin Hall effectin paramagnetic metaisnd Hall state, which can occur in 2D insulators lacking time-
humerous other effects. reversal symmetry. The possibility of a Cl state was first
The SOC has received renewed attention recently becausatroduced by Haldan®&, who constructed an explicit model
of its central role in the physics of topological insulatffés)  that demonstrates the effect. Although the Haldane model is
and related topological states. Typically, the transifimm  a model of spinless Fermions on a honeycomb lattice, its key
a topologically trivial to a non-trivial phase is accomplsl  feature is the presence of complex second-neighbor hogping
by a SOC-driven inversion of states of different symmetrywhich can be regarded as arising from intrinsic atomic SOC
at the conduction-band minimum (CBM) and valence-bandhrough a second-order perturbation process in a moresreali
maximum (VBM). For example, such a SOC-driven topologi-tic system of spinor electrod§.An example is a Bi bilayer
cal band inversion betweén;-derived ¢-like) andI's-derived ~ with an applied Zeeman field, as will be discussed below.
(p-like) states at the zone center is responsible for the quan- The concept of topological band inversion has been much
tum spin Hall (QSH) state observed in HgTe/CdTe quantundiscussed in the topological-insulator literature, butie ab-
wells &7 Similarly, the Kane-Mele model of 2D graphene-like sence of symmetry it may be difficult to recognize when a
system&? enters the QSH state when two band inversions ocband inversion has actually occurred. The usual approdoh is
cur at the K and Kpoints as the SOC strength is increasedlook at the symmetry or orbital character at a high-symmetry
at a constant staggered potential. In 3D band insulatots witpoint in the BZ where a band inversion is suspected, but this
time-reversal (TR) symmetry, a SOC-induced band inversiomnly works if sufficient symmetry is present. Some authors
can transform the system from a trivial insulator into astyo have tried to deduce the presence of band-inversion behav-
Tl displaying an odd number of gapless Dirac cones in thaor by studying other properties of the system, such as by
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looking at the qualitative shape of the bands near the symmaevith and without SOC respectively. More explicitly,
try point’ or even more indirectly, by studying the variation

of the band-energy differences with strain in the absence of Y(K) = noce — TIP(k)P(K)]
SOC*8 However, the reliability of such methods is question- Toee
able, as they do not give a direct and quantitative evaloatio = Ngee — Z | M ()2 (4)

of the SOC-induced band inversion.
In this paper, we propose that the calculation of spin-orbit
spillage, which measures the degree of mismatch between thghere
occupied band projection operators with and without SOC,
provides a simple and effective measure of SOC-driven band M (K) = (| Unic) (5)
inversion in insulators. We demonstrate that the mapping of

this spin-orbit spillage irk-space easily allows a direct iden- s the overlap between occupied Bloch functions with and
tification of any region in the BZ where band inversion hasyjithout SOC at the same wavevecior Equivalently, this
occurred, and that the maximum spillage is a useful indicatocan be written as\/,,, (k) = (umi|ini) if One prefers to

of topological character. We illustrate the method in the-co \ork in terms of the cell-periodig.,,,) defined asu,(r) =
text of both tight-binding models and realistic first-piijpples e ().

calculations. In the case of realistic DFT calculations in a plane-wave

The paper is organized as follows. In Sec. Il the formalpasis, the overlap matrix elements are easily evaluated as
definition of SOC-induced spillage is introduced, and the co

respondence between topological indices and spillagesés al
discussed. In Sec. Il the formalism is applied to various sy
tems, including the 2D Kane-Mele model, a Bi bilayer with
tunable SOC and exchange field, and realistic materials i
cluding B, Se;, InoSe;, and ShSe;. In Sec. IV we make a
brief summary.

m,n=1

My (k) =Y (Vmilk + G)(k + Gldni),  (6)
G

Where|k + G) is the plane wavei(x+S)r for reciprocal vec-
tor G normalized to the unit cell. The evaluation should also
be straightforward in other first-principles basis setgs. $tm-
ple lattice models the Hamiltonian is typically written in a

orthonormal tight-binding basis, so that the wavefunctiare
Il. FORMALISM

A. Definitions

[¥nic) = D Crjie [X1c) )
J

Mathematically, the spillage between two projection operaWhere|x;i) are the Bloch basis states
tors P and P, both of rank/, is defined as

_ _ _ Xik(®) = " e*Roi(r—R) 8)
¥y=N — Tr[PP] = Tr[PQ] = Tr[QP] Q) R

whereQ =1— P and@ — 1 _ P denote the complementary andy;(r — R) is thej'th tight-binding basis orbital in unit

projections. Clearly the spillage vanishesHf = P at one cellR. Then the spillage is trivially computed using

extreme, and rises t&V at the other extreme if there is no ~

overlap at all between the subspaces associated Widmd Mn(k) = Zc:;zj,kcnj,k- 9
P. Thus, the spillage provides a measure of the degree of Y

mismatch between the two subspaces.

Here we apply this concept to the band projection operators Since the use of Wannier interpolation methdd®'is be-
coming increasingly frequent, we also comment on this case

Noce here. In this approach, the occupied Bloch states are again
P(k) = Z [Vni) (V| (2)  written as in Eq.[{77), but this time the Bloch basis states are
n=1
) _ ikR, (L
associated with a given wavevectoin the BZ of a crystalline Xk () ; ¢ w;(r = R) (10)

insulator with N’ = n,.. occupied bands. We assume an ef-
fective single-particle Hamiltonian such as that appegin
density-functional theory (DFT2:2° Then the SOC-induced
spillagev(k) is defined as

wherew; (r — R) is thej’th Wannier function in unit celR.
Then the spillage is again computed using Egb. (4) &hd (9).
This will be accurate as long as the WFs for the systems with
~ and without SOC are chosen to be the same, or as similar as
v(k) = Tr[P(k)Q(k)] (3)  possible. As we shall see in the following section, the ttasul
_ from the Wannier basis match those of the direct plane-wave
where P and P (and their complements) refer to the systemcalculation very closely for the cases studied here.
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B. Relation to topological character TR symmetrydet(My) = det(M_y), So one would generi-
cally expecty(k) > 1 at two points kg and—ky) in the BZ.

Here we argue that the presence of non-trivial topologicafor the case of inversion-symmetric Tk, and -k, merge
indices will be reflected in certain features of the spilldge  at one of the TRIM, the two spillages add up, and one expects
tribution in the BZ. 7 = 2 atone of the TRIM. _ _

We first consider the relatively simple case in which the N the following section, we numerically test and confirm
SOC-driven band inversion is associated with the crossin§!€ above arguments by applying the formalism to systems in
of highest valence and lowest conduction states belongingifferent topological phases.
to two different irreducible representations (irreps) &igh-
symmetry pointkk = A in the BZ. Since the states belonging
to differentirreps have no overlap with each other, theapd
at Ag must be greater than or equal to the irrep dimension. In
TR-invariant Bi.Se;, for example, the four states around the A.  Application to the Kane-Mele model
Fermi level atl” consist of two Kramers doublets of opposite
parity. In this case the dimension of the irreps is two, so we The Kane-Mele model is a four-band TB model on
expect a peak in(k) centered af’ whose height iS/ax > 2. a graphene lattice, including nearest-neighbor (NN) spin-
As we shall show in SeE_TIMIC, this is exactly what we find in independent hoppings and both NN and next-NN spin-

Ill.  APPLICATIONS

Bi,Se;. dependent hoppings:
Next, we argue that a correspondence between topological ; ) ;
character and spillage should also remain valid for more gen H=) teiej+ Z iAsoVijC; 52Cj
eral cases without special lattice symmetry. Let us first con (i) ()
sider the case of Cls (i_.e., with broken TR symmetry). We + i/\RcZT(s % aij)zcj + ZE(_l)iCZCi- (11)
assume the Bloch functions,y are those of a normal system o T ;

with Chern numbet” = 0, while v, are topologically non-
trivial with a nonzero Chern number. We argue that this Here spin is implicit is the NN spin-independent hopping
implies the existence of at least one point in the BZ where th@mplitude, Ay, is the strength of the next-NN non-spin-flip
spillage is> 1. If we assume the contrary, i.ei(k) < 1 ev- SOC,Ar is the NN Rashba-like SOC amplitude, an the
erywhere in the BZ, then the determinant of the overlap mamagnitude of on-site energy, with sigtid for A and B sub-

trix of Eq. (8) betweeny,i and ¢, obeysdet(My) > 0 lattices respectively. Alsay;; = +1 with the sign depgndlng
everywhere, since a singuldd would imply v > 1. Be-  onthe chirality of the next-NN bond from sit¢o j, andd,; is
cause the systei,,i) is topologically normal, we know it the unit vector pointing from siteto its NN j. In this model,

is possible to choose a smooth and periodic gauge for it, ands, competes withA\g ande, in the sense thak,, tends to

we assume without loss of generality that this has been dondrive the system to the QSH phase whilg and ¢ tend to

But if My is nowhere singular, the),,,.) can be used as “trial  retain the trivial band topology.

functions” to construct a smooth and periodic gauge for the For simplicity, we first drop the Rashba coupling, so that
|¥nk), as follows. At eactk, carry out a singular value de- spin is a good gquantum number. The system is in the QSH
composition to expresd/ = VISW (V andW are unitary phase wher8y/3)\,, > ¢, and in the normal phase other-
andX is real positive diagonal), and then use the unitary mawise. Without the Rashba term, the Kane-Mele model can
trix VIW to transform the original),,, to a new seh[;ﬁlk. be considered as a superposition of two copies of the Haldane
ThenM = VIXV, i.e., it is Hermitian and positive defi- model with opposite Chern numbéssif one calculates the
nite. Intuitively, this means that a smooth and periodicggau 2D Chern numbers for spin-up and spin-down electrons sepa-
has been chosen for the statgg. to make them “maximally  rately, one would find that the two Chern numbers &fein
aligned” with the stateg,,,.. But a smooth and periodic gauge the QSH phase. While the Haldane-model system goes from
is inconsistent with a nonzero Chern number, completing the normal insulator to a Cl via a band inversion at either the
proof by contradiction. Thus, iff < 1 everywhere in the K or K’ point, the Kane-Mele model transitions to the QSH
BZ, thenM,,,, x is nonsingular everywhere, and the systemstate via simultaneous band inversions at both K ahdlt

lvni) is normal. Conversely, a topological system must havéor opposite spins at these two points.

~v(k) > 1 somewhere in the BZ, which provides both a signal The SOC-induced spillage without the Rashba term is
for the topological phase and an indication of where in the Bzshown in Fig[1(a). In this case the spins act independently,
the band inversion has occurred. so the spin-up and spin-down spillages(k) = nocc/2 —

For the TR-invarianZ. Tls, similar arguments can be put Z;;"nfl |Myo.mo(k)|? (Whereo = {1, ]}) are shown sep-
forward that work even in the absence of inversion symmetryarately. Clearly the spin-up band inversion at K is respon-
If the system of¢,.x) is in theZ,-even phase, one can always sible for v+ = 1, and conversely at K The total spillage
make a smooth gauge choice over the entire BZ that respectsk) = v+ (k) + 7, (k) is shown by the solid line in Fifl] 1(b).
TR symmetry. In theZ,-odd case, however, such a gaugeThe symmetry between the behavior at K arichis been re-
choice does not exiéf:2> Therefore,det(M;) must vanish  stored by summing over spins. Note that the peak values are
somewhere in BZ, or else the smooth gauge could be trans- =1 exactly; the fact that they do not exceed one is an artifact
ferred to thely,k), resulting in a contradiction. Due to the of the simplicity of the model.
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FIG. 1. Spin-orhit spillage of the Kane-Mele model in the QSH
phase, with =1, Aso =0.1¢, ande =0.1¢. (a) Spin-resolved spillage
without Rashba coupling; solid (green) and dashed (redklite-
note spin-up and spin-down spillage. Inset shdwsl-K-M-K '-T"
path used here (blue) and R-M-K path used in Figll2 (magenta).
(b) Total spillage without (solid line) and with (dasheddjrRashba
coupling.

FIG. 2. (a) Spin-orbit spillage of the Bi bilayer far = 1 (dashed
blue) andC = —2 (solid red) phases, plotted along thelKM-K
path (magenta path in inset of F[d. 1(a)). (b) Spillage o= 1
phase plotted in the 2D BZ{ andk, in units of,&*l). (c) Same for
C = -2 phase.

realized at\spc =2.4€eV and 0.6 eV respectively. If the SOC

L is completely turned offC’ =0.
When the Rashba coupling is included, as shown by the The spillage for the Bi bilayer is shown along a high-

dashed line in Fig]1(b), spin is no longer a good quantum P o TS
number, so that %:lséi% dgcompositiongis no? We"(_qdeﬁnedsymmetryk-path in Fig[2(a), and as a distribution in the 2D

; Co BZ in Figs[2(b-c), for the two parameter sets giving the- 1
As expected, adding the Ras_hba term does .not &gmﬂcantlgndc :g—zmp(has)es. In both cgses the spillagge digtribution is
ch_ange the resulf€; one still flnds_that the _sp|_llag_e reaches concentrated df, indicating a band inversion there, although
unity at K and K as before, providing an indication of the ' '

spin-Hall phase it is m_uch more sharply _peaked in tlie= 1 case. Clearly
’ the spillages provide a signature of the presence of a Chern-
insulator phase, including the location of the band inwersi
and the magnitude (but not the sign) of the Chern number.
B. Application to Chern insulators Here again the peak values of the spillage are exactly equal t
the magnitude of the Chern number. For more realistic sys-
We now consider the case of broken TR symmetry, so thalems with more bands included, the spillage can be expected
the Z, index is no longer well-defined, but the possibility of to exceed these values slightly, but a clear correlationden
Cl phases appears. As discussed in Bec. I, SOC is importaiite peak values of spillage and the Chern number is still ex-
here as well. Here we study a buckled honeycomb Bi bilayepected.
with a Zeeman field applied normal to the plane, which can be
regarded as having been cut from a 3D Bi crystal dild)
plane. The Bi(111) bilayer has been proposed as a candidate C. Application to 3D topological insulators
for QSH insulato?’ If a Zeeman field is further applied, it
is possible to obtain CI phases with Chern numbkgrs- 1 In this subsection we apply our formalism to realistic first-
or C = —2.18628To describe this system we use a TB modelprinciples calculations of BBe;, In,Se; and ShSe;. Bi,Se;
based on Bi 6and & orbitals, where the first-neighbes, sp, is a well-known strong T}2 where the SOC-induced band in-
ppo, andppr hoppings, as well as the second-neighbar version takes place &t We also consider fSe; and ShSe;
hoppings, are included. The hopping parameters are taken the same crystal structure (known agphase for 1nSe;
from a TB model for 3D bulk B2® In order to obtain non- and not realized experimentally for $§8s;), which are theo-
zero Chern numbers, an on-sjeshell SOC fsoc) and a  retically predicted (and experimentally confirmed fos $e;)
Zeeman field H,) are further applied. It turns out thatH,  to be trivial insulatorg329=3?Here it is interesting to note that
is fixed at 0.8 eV, then the phases with= —2 and+1 are  even though Sb and In have very similar atomic SOC strength,



FIG. 3. (a) Lattice structure of B5e;. (b) The BZ of BLSe;; the
spillage and bandstructures shown in Elg. 4(a) and[Fig. plated
along the black path.

the substitution of In atoms tends to drive,Bgsinto a trivial-
insulator phase much faster than does Sb substitution,adue t -0.5 0 0.5
the existence of I5s orbitals32 ks

As shown in Fig[B, the considered structure is rhombohe-
dral, with two cations and three Se atoms in the primitive: uni FIG. 4. (&) Spin-orbit spillage of rhombohedral,Bie;, SbSe; and
cell. The five 2D monolayers are stacked in4nB-C-A-... '32S§f 3;5 I',“d'catﬁd b)t/hblue,.lci;reen and “t?dd“;‘es r%gpect:tlvely.dSoll
sequence along the (111) direction to form quintuple Iayer% ashed) lines show the spillage computed from direct plame:
(QLs). Experimentally the in-plane hexagonal parameters a \llgzra]r;n;?kr-t:alge(i)nﬁglglfj?y%ns. (b) Spillage 08é; in the (ko ky)
a = 4.138 and 4.05, and the QL size is: = 9.547 and P o ’
9.803A, for Bi»,Se; and InSe; respectively. In our calcu-
lations, we take the experimental lattice parameters g5 8i ] ] ] ]
and In,Se;, but relax their internal atomic coordinates. As for functional?® We find that the WFs generated by this projec-
Sh,Se;, because its rhombohedral structure is not adopted i§on method are almost the same for the systems with and
nature, both the lattice parameters and atomic positiensear  Without SOC, so that the matrix elements,,,, (k) defined
laxed. The ground state of rhombohedra} S is predicted in Sec[IA can be evaluated with good accuracy.
to be a trivial insulator witlu=4.11 A andc=10.43 A. The spillage from the direct plane-wave calculations are

We use the QANTUM ESPRESSO packa$eto carry  shown as the solid lines in Figl 4(a). For,Bi;, the spillage
out first-principles calculations on these systems bottn wit 7(k) has a peak value of 2.12 &t which is slightly larger
and without SOC. The PBE generalized-gradient approxthan 2, indicating that two Kramers degenerate bands at
imation (GGA) is taken to treat the exchange-correlatiorhave been inverted by SOC. On the other hand, the effect of
functional®#35 and norm-conserving pseudopotentials areSOC in InSe; and ShSe; seems to be negligible everywhere
generated from OPIUM packad®3’ The energy cutoff is in the BZ, which is consistent with the fact that they are both
taken as 65 Ry for lsSe; and 55 Ry for BjSe; and ShSe;,  trivial insulators.
with an 8x8x8 Monkhorst-Pack mesh2® The wavefunc- The calculations carried out in the Wannier basis are shown
tions defined in the plane-wave basis are extracted fronethedy the dashed lines in Fi] 4(a). The spillage is typically
calculations and Eq[{ 6) is applied to evaluate the spillage slightly larger for the direct plane-wave calculationsgcsi the

As mentioned in Se€l 1, the spillage can also be calculatethct that the WFs have a slightly different plane-wave rep-
in the Wannier basis. Starting from the first-principlesoéd-  resentation with and without SOC is not taken into account
tions, we use the WANIER90 packag® to construct Wannier  in the Wannier-based calculations. Still, the qualitafiea-
functions (WFs) and a corresponding realistic TB méd@r  tures are the same, showing that the Wannier-based approach
each of the three materials. The basis WFs are constructedn successfully provide the same kind of information about
by projecting 30 atomig trial orbitals onto the Bloch sub- the nature and location of the topological band inversian. |
space ofp-like bands to generate a 30-band spinor model forFig.[4(b) we also show the spillage of Beg; in the (., k)
Bi»Se and ShSe;, whereas four additional 16s projectors  plane atk, = 0, as calculated in the Wannier basis, which
and bands are included in the model fos3®;. In order that  again indicates a highly localized band inversion neand
they will retain their atomic-like identity as much as padsj  is fully consistent with the expected picture of the bancinv
the projected WFs are not optimized to minimize the spreagion in B Se;.



1 non-trivial spillage distributions is evident. In the Kakkele
model, one gets two peaks of spillage at K andwith the

0.8 peak value of 1, which indicates that a single band is inderte
at these two points corresponding to an odd2Dindex. In

0.6 the Bi bilayer with applied Zeeman field, a peak of spillage
shows up al’, with the peak value corresponding to the ab-

0.4 solute value of the Chern number. In,Big;, the spillage is
slightly greater than 2 at one of the TRIM, namé&lyimply-

0.2 ing that two bands are inverted by SOC there and signaling

the presence of a nontrivial strofg index.

As mentioned above, other methods exist for the direct
computation of topological Chern arig}, indices, with or
without inversion symmetr#:4%42 and we still recommend
these if a direct and definitive determination of the topelog
ical indices is needed. However, the present spillageebase
approach has the advantage of providing a BZ map of the

To see the band inversion from another perspective, we pigitrength, position, and degree of localization of the band i
in Fig.[  the bulk bandstructures of $%e, and Bi,Se; pro-  version responsible for the topological character, thumgi
jected onto St5p and Bi6p orbitals respectively. It is clear Valuable physical intuition about the origin of the topdlog
that for ShSe;, the Sb5p orbitals are almost all concentrated @l properties of the material in question. In addition, eom
in the conduction bands, whereas in,8&; there is a local- pared with direct methods for topological index calculatio
ized region around’ where the corresponding Bp orbitals the spillage calculation only requires the evalu_atlon (l_érev
contribute mostly to the top valence band. This is precisely@Ps between two wavefunctions at the sakngoint, which

the region of the band inversion corresponding to the peak a¢ €asy to implement and numerically very efficient. There-
Tin Fig.[d. fore, it is our hope that the calculation of SOC spillage will

prove to be a widely useful tool that can be applied both for

high-throughput screening for topological materials aod f
IV. SUMMARY obtaining a deeper understanding of the critical featuféseo

bandstructures in known topological materials.

L

FIG. 5. (a) Wannier-interpolated bandstructure of S&. (b) Same
for Bi2Se;. Color coding indicates weight of Sip or Bi 6p orbitals.

To summarize, we have introduced the SOC-induced
spillage~(k) as a useful quantitative tool for evaluating the
degree of band inversion driven by SOC and mapping it as a
function ofk in the BZ. We have applied this method to the
2D Kane-Mele model and a tight-binding model of a Bi bi-
layer with applied Zeeman field, as well as to realistic mater  This work was supported by NSF Grant DMR-10-05838.
als including both trivial and topological insulators. Aeat  We appreciate valuable discussions with Hongbin Zhang and
correspondence between non-trivial topological indiced a Huagqing Huang.
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