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Spin-orbit spillage as a measure of band inversion in insulators
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We propose a straightforward and effective approach for quantifying the band inversion induced by spin-orbit
coupling in band insulators. In this approach we define a quantity as a function of wavevector in the Brillouin
zone measuring the spillage between the occupied states of asystem with and without SOC. Plots of the spillage
throughout the BZ provide a ready indication of the number and location of band inversions driven by SOC.
To illustrate the method, we apply this approach to the 2D Kane-Mele model, a 2D Bi bilayer with applied
Zeeman field, and to first-principles calculations of some 3Dmaterials including both trivial andZ2 topological
insulators. We argue that the distribution of spillage in the BZ is closely related to the topological indices in
these systems. Our approach provides a fresh perspective for understanding topological character in band theory,
and should be helpful in searching for new materials with non-trivial band topology.

PACS numbers: 71.70.Ej, 03.65.Vf

I. INTRODUCTION

Spin-orbit coupling (SOC) is a relativistic effect originat-
ing from the interaction between the spin and orbital mo-
tions of electrons. It has played a key role in various as-
pects of condensed-matter physics, including the electronic
structure of solids and the transport properties in mesoscopic
systems.1,2 It has been known since the 1950s that SOC can
induce anisotropic spin splitting in some III-V semiconduc-
tors with the zinc-blende structure, known as the Dresselhaus
splitting.1 In 2D and quasi-2D systems, the SOC resulting
from the electric field perpendicular to the 2D plane gives
rise to a Rashba splitting linear ink with interesting “heli-
cal” spin textures.1,2 The SOC is also crucial in determining
the transport behavior of low-dimensional electronic systems.
One famous example is the weak antilocalization in spin-
orbit-coupled 2D electronic systems, where the backscattering
amplitudes interfere destructively due to a geometric Berry
phase3 associated with the intrinsic SOC, leading to a sup-
pressed resistivity when an external magnetic field is absent.4

SOC is also responsible for spin precession in 1D and quasi-
1D systems,2 the spin Hall effect in paramagnetic metals,5 and
numerous other effects.

The SOC has received renewed attention recently because
of its central role in the physics of topological insulators(TIs)
and related topological states. Typically, the transitionfrom
a topologically trivial to a non-trivial phase is accomplished
by a SOC-driven inversion of states of different symmetry
at the conduction-band minimum (CBM) and valence-band
maximum (VBM). For example, such a SOC-driven topologi-
cal band inversion betweenΓ6-derived (s-like) andΓ8-derived
(p-like) states at the zone center is responsible for the quan-
tum spin Hall (QSH) state observed in HgTe/CdTe quantum
wells.6,7 Similarly, the Kane-Mele model of 2D graphene-like
systems8,9 enters the QSH state when two band inversions oc-
cur at the K and K′ points as the SOC strength is increased
at a constant staggered potential. In 3D band insulators with
time-reversal (TR) symmetry, a SOC-induced band inversion
can transform the system from a trivial insulator into a strong
TI displaying an odd number of gapless Dirac cones in the

surface states, as occurs for Bi2Se3 and Bi2Te3.10–13

In the case of a 3D strong TI with inversion symmetry such
as Bi2Se3, the strongZ2 index can be uniquely determined
by the parities of the occupied bands at the TR-invariant mo-
menta (TRIM) in the Brillouin zone (BZ).14 If the highest oc-
cupied states and lowest unoccupied states at one of the TRIM
possess opposite parities without SOC, and they are inverted
by turning on SOC, then the system transforms from a normal
to a topological insulator. For example, in Bi2Se3, two pairs
of Kramers-degenerate occupied states at the BZ center (Γ)
are inverted by SOC, resulting in the nontrivialZ2 index. For
TIs without inversion symmetry, the band inversion may hap-
pen at arbitrary points in the BZ, instead of at the TRIM. We
can identify such band inversion points as the points where a
band touching occurs between valence and conduction bands
as the SOC is adiabatically turned on; TR symmetry implies
that an inversion atk0 will always be accompanied by one at
−k0. Even in the absence of inversion symmetry, therefore,
a band inversion driven by SOC is typically a hallmark of the
non-trivial topology in TIs with TR symmetry.

The SOC also plays a crucial role in giving rise to the Chern
insulator (CI) state, also known as the quantum anomalous
Hall state, which can occur in 2D insulators lacking time-
reversal symmetry. The possibility of a CI state was first
introduced by Haldane,15 who constructed an explicit model
that demonstrates the effect. Although the Haldane model is
a model of spinless Fermions on a honeycomb lattice, its key
feature is the presence of complex second-neighbor hoppings,
which can be regarded as arising from intrinsic atomic SOC
through a second-order perturbation process in a more realis-
tic system of spinor electrons.16 An example is a Bi bilayer
with an applied Zeeman field, as will be discussed below.

The concept of topological band inversion has been much
discussed in the topological-insulator literature, but inthe ab-
sence of symmetry it may be difficult to recognize when a
band inversion has actually occurred. The usual approach isto
look at the symmetry or orbital character at a high-symmetry
point in the BZ where a band inversion is suspected, but this
only works if sufficient symmetry is present. Some authors
have tried to deduce the presence of band-inversion behav-
ior by studying other properties of the system, such as by
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looking at the qualitative shape of the bands near the symme-
try point,17 or even more indirectly, by studying the variation
of the band-energy differences with strain in the absence of
SOC.18 However, the reliability of such methods is question-
able, as they do not give a direct and quantitative evaluation
of the SOC-induced band inversion.

In this paper, we propose that the calculation of spin-orbit
spillage, which measures the degree of mismatch between the
occupied band projection operators with and without SOC,
provides a simple and effective measure of SOC-driven band
inversion in insulators. We demonstrate that the mapping of
this spin-orbit spillage ink-space easily allows a direct iden-
tification of any region in the BZ where band inversion has
occurred, and that the maximum spillage is a useful indicator
of topological character. We illustrate the method in the con-
text of both tight-binding models and realistic first-principles
calculations.

The paper is organized as follows. In Sec. II the formal
definition of SOC-induced spillage is introduced, and the cor-
respondence between topological indices and spillage is also
discussed. In Sec. III the formalism is applied to various sys-
tems, including the 2D Kane-Mele model, a Bi bilayer with
tunable SOC and exchange field, and realistic materials in-
cluding Bi2Se3, In2Se3, and Sb2Se3. In Sec. IV we make a
brief summary.

II. FORMALISM

A. Definitions

Mathematically, the spillage between two projection opera-
torsP andP̃ , both of rankN , is defined as

γ = N − Tr[PP̃ ] = Tr[PQ̃] = Tr[QP̃ ] (1)

whereQ = 1− P andQ̃ = 1− P̃ denote the complementary
projections. Clearly the spillage vanishes ifP = P̃ at one
extreme, and rises toN at the other extreme if there is no
overlap at all between the subspaces associated withP and
P̃ . Thus, the spillage provides a measure of the degree of
mismatch between the two subspaces.

Here we apply this concept to the band projection operators

P (k) =

nocc∑

n=1

|ψnk〉〈ψnk| (2)

associated with a given wavevectork in the BZ of a crystalline
insulator withN = nocc occupied bands. We assume an ef-
fective single-particle Hamiltonian such as that appearing in
density-functional theory (DFT).19,20 Then the SOC-induced
spillageγ(k) is defined as

γ(k) = Tr[P (k)Q̃(k)] (3)

whereP andP̃ (and their complements) refer to the system

with and without SOC respectively. More explicitly,

γ(k) = nocc − Tr[P (k)P̃ (k)]

= nocc −
nocc∑

m,n=1

|Mmn(k)|2 (4)

where

Mmn(k) = 〈ψmk|ψ̃nk〉 (5)

is the overlap between occupied Bloch functions with and
without SOC at the same wavevectork. Equivalently, this
can be written asMmn(k) = 〈umk|ũnk〉 if one prefers to
work in terms of the cell-periodic|unk〉 defined asunk(r) =
e−ik·rψnk(r).

In the case of realistic DFT calculations in a plane-wave
basis, the overlap matrix elements are easily evaluated as

Mmn(k) =
∑

G

〈ψmk|k+G〉〈k +G|ψ̃nk〉 , (6)

where|k+G〉 is the plane waveei(k+G)·r for reciprocal vec-
tor G normalized to the unit cell. The evaluation should also
be straightforward in other first-principles basis sets. For sim-
ple lattice models the Hamiltonian is typically written in an
orthonormal tight-binding basis, so that the wavefunctions are

|ψnk〉 =
∑

j

Cnj,k |χjk〉 (7)

where|χjk〉 are the Bloch basis states

χjk(r) =
∑

R

eik·R ϕj(r−R) (8)

andϕj(r − R) is thej’th tight-binding basis orbital in unit
cellR. Then the spillage is trivially computed using

Mmn(k) =
∑

j

C∗
mj,kC̃nj,k . (9)

Since the use of Wannier interpolation methods21–23 is be-
coming increasingly frequent, we also comment on this case
here. In this approach, the occupied Bloch states are again
written as in Eq. (7), but this time the Bloch basis states are

χjk(r) =
∑

R

eik·Rwj(r−R) (10)

wherewj(r −R) is thej’th Wannier function in unit cellR.
Then the spillage is again computed using Eqs. (4) and (9).
This will be accurate as long as the WFs for the systems with
and without SOC are chosen to be the same, or as similar as
possible. As we shall see in the following section, the results
from the Wannier basis match those of the direct plane-wave
calculation very closely for the cases studied here.



3

B. Relation to topological character

Here we argue that the presence of non-trivial topological
indices will be reflected in certain features of the spillagedis-
tribution in the BZ.

We first consider the relatively simple case in which the
SOC-driven band inversion is associated with the crossing
of highest valence and lowest conduction states belonging
to two different irreducible representations (irreps) at ahigh-
symmetry pointk=Λ0 in the BZ. Since the states belonging
to different irreps have no overlap with each other, the spillage
atΛ0 must be greater than or equal to the irrep dimension. In
TR-invariant Bi2Se3, for example, the four states around the
Fermi level atΓ consist of two Kramers doublets of opposite
parity. In this case the dimension of the irreps is two, so we
expect a peak inγ(k) centered atΓ whose height isγmax≥2.
As we shall show in Sec. III C, this is exactly what we find in
Bi2Se3.

Next, we argue that a correspondence between topological
character and spillage should also remain valid for more gen-
eral cases without special lattice symmetry. Let us first con-
sider the case of CIs (i.e., with broken TR symmetry). We
assume the Bloch functionsψnk are those of a normal system
with Chern numberC = 0, while ψ̃nk are topologically non-
trivial with a nonzero Chern number̃C. We argue that this
implies the existence of at least one point in the BZ where the
spillage is≥ 1. If we assume the contrary, i.e.,γ(k) < 1 ev-
erywhere in the BZ, then the determinant of the overlap ma-
trix of Eq. (5) betweenψnk and ψ̃nk obeysdet(Mk) > 0
everywhere, since a singularM would imply γ ≥ 1. Be-
cause the system|ψnk〉 is topologically normal, we know it
is possible to choose a smooth and periodic gauge for it, and
we assume without loss of generality that this has been done.
But if Mk is nowhere singular, the|ψnk〉 can be used as “trial
functions” to construct a smooth and periodic gauge for the
|ψ̃nk〉, as follows. At eachk, carry out a singular value de-
composition to expressM = V †ΣW (V andW are unitary
andΣ is real positive diagonal), and then use the unitary ma-
trix V †W to transform the original̃ψnk to a new setψ̃′

nk.
ThenM = V †ΣV , i.e., it is Hermitian and positive defi-
nite. Intuitively, this means that a smooth and periodic gauge
has been chosen for the statesψ̃′

nk to make them “maximally
aligned” with the statesψnk. But a smooth and periodic gauge
is inconsistent with a nonzero Chern number, completing the
proof by contradiction. Thus, ifγ < 1 everywhere in the
BZ, thenMmn,k is nonsingular everywhere, and the system
|ψ̃nk〉 is normal. Conversely, a topological system must have
γ(k) ≥ 1 somewhere in the BZ, which provides both a signal
for the topological phase and an indication of where in the BZ
the band inversion has occurred.

For the TR-invariantZ2 TIs, similar arguments can be put
forward that work even in the absence of inversion symmetry.
If the system of|ψnk〉 is in theZ2-even phase, one can always
make a smooth gauge choice over the entire BZ that respects
TR symmetry. In theZ2-odd case, however, such a gauge
choice does not exist.24,25 Therefore,det(Mk) must vanish
somewhere in BZ, or else the smooth gauge could be trans-
ferred to the|ψ̃nk〉, resulting in a contradiction. Due to the

TR symmetry,det(Mk) = det(M−k), so one would generi-
cally expectγ(k)≥ 1 at two points (k0 and−k0) in the BZ.
For the case of inversion-symmetric TIs,k0 and−k0 merge
at one of the TRIM, the two spillages add up, and one expects
γ ≥ 2 at one of the TRIM.

In the following section, we numerically test and confirm
the above arguments by applying the formalism to systems in
different topological phases.

III. APPLICATIONS

A. Application to the Kane-Mele model

The Kane-Mele model is a four-band TB model on
a graphene lattice, including nearest-neighbor (NN) spin-
independent hoppings and both NN and next-NN spin-
dependent hoppings:

H=
∑

〈ij〉

tc†i cj +
∑

〈〈ij〉〉

iλsoνijc
†
iszcj

+
∑

〈ij〉

iλRc
†
i (s× d̂ij)zcj +

∑

i

ǫ(−1)ic†ici . (11)

Here spin is implicit,t is the NN spin-independent hopping
amplitude,λso is the strength of the next-NN non-spin-flip
SOC,λR is the NN Rashba-like SOC amplitude, andǫ is the
magnitude of on-site energy, with signs±1 for A and B sub-
lattices respectively. Also,νij =±1 with the sign depending
on the chirality of the next-NN bond from sitei to j, andd̂ij is
the unit vector pointing from sitei to its NN j. In this model,
λso competes withλR and ǫ, in the sense thatλso tends to
drive the system to the QSH phase whileλR and ǫ tend to
retain the trivial band topology.

For simplicity, we first drop the Rashba coupling, so that
spin is a good quantum number. The system is in the QSH
phase when3

√
3λso > ǫ, and in the normal phase other-

wise. Without the Rashba term, the Kane-Mele model can
be considered as a superposition of two copies of the Haldane
model with opposite Chern numbers.15 If one calculates the
2D Chern numbers for spin-up and spin-down electrons sepa-
rately, one would find that the two Chern numbers are±1 in
the QSH phase. While the Haldane-model system goes from
a normal insulator to a CI via a band inversion at either the
K or K′ point, the Kane-Mele model transitions to the QSH
state via simultaneous band inversions at both K and K′, but
for opposite spins at these two points.

The SOC-induced spillage without the Rashba term is
shown in Fig. 1(a). In this case the spins act independently,
so the spin-up and spin-down spillagesγσ(k) = nocc/2 −∑nocc/2

m,n=1 |Mnσ,mσ(k)|2 (whereσ = {↑, ↓}) are shown sep-
arately. Clearly the spin-up band inversion at K is respon-
sible for γ↑ = 1, and conversely at K′. The total spillage
γ(k) = γ↑(k) + γ↓(k) is shown by the solid line in Fig. 1(b).
The symmetry between the behavior at K and K′ has been re-
stored by summing over spins. Note that the peak values are
γ =1 exactly; the fact that they do not exceed one is an artifact
of the simplicity of the model.
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FIG. 1. Spin-orbit spillage of the Kane-Mele model in the QSH
phase, witht=1, λso=0.1t, andǫ=0.1t. (a) Spin-resolved spillage
without Rashba coupling; solid (green) and dashed (red) lines de-
note spin-up and spin-down spillage. Inset showsΓ-M-K-M-K ′-Γ
path used here (blue) and K-Γ-M-K path used in Fig. 2 (magenta).
(b) Total spillage without (solid line) and with (dashed line) Rashba
coupling.

When the Rashba coupling is included, as shown by the
dashed line in Fig. 1(b), spin is no longer a good quantum
number, so that a spin decomposition is not well-defined.
As expected, adding the Rashba term does not significantly
change the results;26 one still finds that the spillage reaches
unity at K and K′ as before, providing an indication of the
spin-Hall phase.

B. Application to Chern insulators

We now consider the case of broken TR symmetry, so that
theZ2 index is no longer well-defined, but the possibility of
CI phases appears. As discussed in Sec. I, SOC is important
here as well. Here we study a buckled honeycomb Bi bilayer
with a Zeeman field applied normal to the plane, which can be
regarded as having been cut from a 3D Bi crystal on a(111)
plane. The Bi(111) bilayer has been proposed as a candidate
for QSH insulator.27 If a Zeeman field is further applied, it
is possible to obtain CI phases with Chern numbersC = 1
or C = −2.16,28 To describe this system we use a TB model
based on Bi 6s and 6p orbitals, where the first-neighborss, sp,
ppσ, andppπ hoppings, as well as the second-neighborppσ
hoppings, are included. The hopping parameters are taken
from a TB model for 3D bulk Bi.29 In order to obtain non-
zero Chern numbers, an on-sitep-shell SOC (λSOC) and a
Zeeman field (Hz) are further applied. It turns out that ifHz

is fixed at 0.8 eV, then the phases withC = −2 and+1 are
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FIG. 2. (a) Spin-orbit spillage of the Bi bilayer forC = 1 (dashed
blue) andC = −2 (solid red) phases, plotted along the K-Γ-M-K
path (magenta path in inset of Fig. 1(a)). (b) Spillage forC = 1
phase plotted in the 2D BZ (kx andky in units ofÅ−1). (c) Same for
C=−2 phase.

realized atλSOC=2.4eV and 0.6 eV respectively. If the SOC
is completely turned off,C=0.

The spillage for the Bi bilayer is shown along a high-
symmetryk-path in Fig. 2(a), and as a distribution in the 2D
BZ in Figs. 2(b-c), for the two parameter sets giving theC=1
andC =−2 phases. In both cases the spillage distribution is
concentrated atΓ, indicating a band inversion there, although
it is much more sharply peaked in theC = 1 case. Clearly
the spillages provide a signature of the presence of a Chern-
insulator phase, including the location of the band inversion
and the magnitude (but not the sign) of the Chern number.
Here again the peak values of the spillage are exactly equal to
the magnitude of the Chern number. For more realistic sys-
tems with more bands included, the spillage can be expected
to exceed these values slightly, but a clear correlation between
the peak values of spillage and the Chern number is still ex-
pected.

C. Application to 3D topological insulators

In this subsection we apply our formalism to realistic first-
principles calculations of Bi2Se3, In2Se3 and Sb2Se3. Bi2Se3
is a well-known strong TI,13 where the SOC-induced band in-
version takes place atΓ. We also consider In2Se3 and Sb2Se3
in the same crystal structure (known asβ phase for In2Se3
and not realized experimentally for Sb2Se3), which are theo-
retically predicted (and experimentally confirmed for In2Se3)
to be trivial insulators.13,30–32Here it is interesting to note that
even though Sb and In have very similar atomic SOC strength,
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FIG. 3. (a) Lattice structure of Bi2Se3. (b) The BZ of Bi2Se3; the
spillage and bandstructures shown in Fig. 4(a) and Fig. 5 areplotted
along the black path.

the substitution of In atoms tends to drive Bi2Se3into a trivial-
insulator phase much faster than does Sb substitution, due to
the existence of In5s orbitals.32

As shown in Fig. 3, the considered structure is rhombohe-
dral, with two cations and three Se atoms in the primitive unit
cell. The five 2D monolayers are stacked in anA-B-C-A-...
sequence along the (111) direction to form quintuple layers
(QLs). Experimentally the in-plane hexagonal parameters are
a = 4.138 and 4.05Å, and the QL size isc = 9.547 and
9.803Å, for Bi2Se3 and In2Se3 respectively. In our calcu-
lations, we take the experimental lattice parameters of Bi2Se3
and In2Se3, but relax their internal atomic coordinates. As for
Sb2Se3, because its rhombohedral structure is not adopted in
nature, both the lattice parameters and atomic positions are re-
laxed. The ground state of rhombohedral Sb2Se3 is predicted
to be a trivial insulator witha=4.11 Å andc=10.43 Å.

We use the QUANTUM ESPRESSO package33 to carry
out first-principles calculations on these systems both with
and without SOC. The PBE generalized-gradient approx-
imation (GGA) is taken to treat the exchange-correlation
functional,34,35 and norm-conserving pseudopotentials are
generated from OPIUM package.36,37 The energy cutoff is
taken as 65 Ry for In2Se3 and 55 Ry for Bi2Se3 and Sb2Se3,
with an 8×8×8 Monkhorst-Packk mesh.38 The wavefunc-
tions defined in the plane-wave basis are extracted from these
calculations and Eq. ( 6) is applied to evaluate the spillage.

As mentioned in Sec. I, the spillage can also be calculated
in the Wannier basis. Starting from the first-principles calcula-
tions, we use the WANNIER90 package39 to construct Wannier
functions (WFs) and a corresponding realistic TB model40 for
each of the three materials. The basis WFs are constructed
by projecting 30 atomicp trial orbitals onto the Bloch sub-
space ofp-like bands to generate a 30-band spinor model for
Bi2Se3 and Sb2Se3, whereas four additional In5s projectors
and bands are included in the model for In2Se3. In order that
they will retain their atomic-like identity as much as possible,
the projected WFs are not optimized to minimize the spread
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FIG. 4. (a) Spin-orbit spillage of rhombohedral Bi2Se3, Sb2Se3 and
In2Se3 as indicated by blue, green and red lines respectively. Solid
(dashed) lines show the spillage computed from direct plane-wave
(Wannier-based) calculations. (b) Spillage of Bi2Se3 in the(kx, ky)
plane atkz=0 (units ofÅ−1).

functional.23 We find that the WFs generated by this projec-
tion method are almost the same for the systems with and
without SOC, so that the matrix elementsMmn(k) defined
in Sec. II A can be evaluated with good accuracy.

The spillage from the direct plane-wave calculations are
shown as the solid lines in Fig. 4(a). For Bi2Se3, the spillage
γ(k) has a peak value of 2.12 atΓ, which is slightly larger
than 2, indicating that two Kramers degenerate bands atΓ
have been inverted by SOC. On the other hand, the effect of
SOC in In2Se3 and Sb2Se3 seems to be negligible everywhere
in the BZ, which is consistent with the fact that they are both
trivial insulators.

The calculations carried out in the Wannier basis are shown
by the dashed lines in Fig. 4(a). The spillage is typically
slightly larger for the direct plane-wave calculations, since the
fact that the WFs have a slightly different plane-wave rep-
resentation with and without SOC is not taken into account
in the Wannier-based calculations. Still, the qualitativefea-
tures are the same, showing that the Wannier-based approach
can successfully provide the same kind of information about
the nature and location of the topological band inversion. In
Fig. 4(b) we also show the spillage of Bi2Se3 in the (kx, ky)
plane atkz = 0, as calculated in the Wannier basis, which
again indicates a highly localized band inversion nearΓ and
is fully consistent with the expected picture of the band inver-
sion in Bi2Se3.
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FIG. 5. (a) Wannier-interpolated bandstructure of Sb2Se3. (b) Same
for Bi2Se3. Color coding indicates weight of Sb5p or Bi 6p orbitals.

To see the band inversion from another perspective, we plot
in Fig. 5 the bulk bandstructures of Sb2Se3 and Bi2Se3 pro-
jected onto Sb5p and Bi 6p orbitals respectively. It is clear
that for Sb2Se3, the Sb5p orbitals are almost all concentrated
in the conduction bands, whereas in Bi2Se3 there is a local-
ized region aroundΓ where the corresponding Bi6p orbitals
contribute mostly to the top valence band. This is precisely
the region of the band inversion corresponding to the peak at
Γ in Fig. 4.

IV. SUMMARY

To summarize, we have introduced the SOC-induced
spillageγ(k) as a useful quantitative tool for evaluating the
degree of band inversion driven by SOC and mapping it as a
function ofk in the BZ. We have applied this method to the
2D Kane-Mele model and a tight-binding model of a Bi bi-
layer with applied Zeeman field, as well as to realistic materi-
als including both trivial and topological insulators. A clear
correspondence between non-trivial topological indices and

non-trivial spillage distributions is evident. In the Kane-Mele
model, one gets two peaks of spillage at K and K′ with the
peak value of 1, which indicates that a single band is inverted
at these two points corresponding to an odd 2DZ2 index. In
the Bi bilayer with applied Zeeman field, a peak of spillage
shows up atΓ, with the peak value corresponding to the ab-
solute value of the Chern number. In Bi2Se3, the spillage is
slightly greater than 2 at one of the TRIM, namelyΓ, imply-
ing that two bands are inverted by SOC there and signaling
the presence of a nontrivial strongZ2 index.

As mentioned above, other methods exist for the direct
computation of topological Chern andZ2 indices, with or
without inversion symmetry,14,41,42 and we still recommend
these if a direct and definitive determination of the topolog-
ical indices is needed. However, the present spillage-based
approach has the advantage of providing a BZ map of the
strength, position, and degree of localization of the band in-
version responsible for the topological character, thus giving
valuable physical intuition about the origin of the topologi-
cal properties of the material in question. In addition, com-
pared with direct methods for topological index calculation,
the spillage calculation only requires the evaluation of over-
laps between two wavefunctions at the samek point, which
is easy to implement and numerically very efficient. There-
fore, it is our hope that the calculation of SOC spillage will
prove to be a widely useful tool that can be applied both for
high-throughput screening for topological materials and for
obtaining a deeper understanding of the critical features of the
bandstructures in known topological materials.
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