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We study adatom-covered single layers of CrSiTes and CrGeTes using first-principles calculations based on
hybrid functionals. We find that the insulating ground state of a monolayer of La (Lu) deposited on single-
layer CrSiTes (CrGeTes) carries spontaneously generated current loops around the Cr sites, These “flux states”
induce antiferromagnetically ordered orbital moments on the Cr sites and are also associated with nontrivial
topological properties. The calculated Chern numbers for these systems are predicted to be 1 even in the
absence of spin-orbit coupling, with sizable gaps on the order of 100meV. The flux states and the associated
topological phases result from spontaneous time-reversal symmetry breaking due to the presence of nonlocal

Coulomb interactions.

PACS numbers: 73.22.Gk, 75.25.Dk, 03.65.Vf

Spin-orbit coupling (SOC) has played an essential role in
both time-reversal (TR) invariant topological insulators and
TR-breaking quantum anomalous Hall (QAH) insulators [[1-
4]. In the former, the nontrivial band topology typically results
from band inversions driven by SOC [SH9]]. In the latter SOC
is also crucial, as it transmits the breaking of TR symmetry
from the spin sector to the orbital sector, and the breaking of
orbital TR symmetry is indispensable to obtain nonvanishing
anomalous Hall currents in insulating systems.

Recently it has been theoretically argued that topological
phases may arise even in the absence of SOC, driven only by
Coulomb interactions. For example, by studying tight-binding
models for the LaNiO3/LaAlQO3 heterostructures with Slater-
Kanamori type local interactions, Yang et al. and Riiegg and
Fiete independently showed that the mean-field ground states
are in the QAH phase for certain parameters of the model
even in the absence of SOC [10} [11]. Moreover, Raghu et
al. demonstrated that the Hartree-Fock ground state of a tight-
binding model with nonlocal Coulomb interactions on a 2D
honeycomb lattice may be a QAH insulator, where TR sym-
metry is spontaneously broken due the nonlocal interactions
[12].

These works suggest that the exchange part of the Coulomb
interaction is the key ingredient in both of the aforementioned
studies. The exchange part of the multi-orbital on-site interac-
tion involves the off-diagonal elements of the on-site density
matrix, which are in general complex, leading to a complex
combination of real atomic orbitals with spontaneously gen-
erated orbital magnetic moments [10]. On the other hand, the
exchange part of the nonlocal interaction may give rise to a
complex bond order parameter. This acts as a complex hop-
ping term and generates inter-site currents [[12] like those that
arise in the Haldane model [3].

In this work, we report a theoretical proposal for realizing
a QAH phase driven by nonlocal Coulomb interactions in the
absence of SOC in systems based on CrSiTes and CrGeTes
single layers. Unlike previous studies based on simplified lat-
tice models [[10-12]], we have carried out first-principles cal-
culations using a hybrid-functional [13]] extension of density-

functional theory (DFT) [14} [15]. In the hybrid-functional
approach, the exchange part of the screened Coulomb inter-
action is treated as a weighted average in which a fraction is
treated using nonlocal Hartree-Fock exchange and the remain-
der is calculated from a conventional semilocal-density func-
tional. Within the hybrid-functional approach, we find that
the ground state of a single-monolayer film of La deposited
on single-layer CrSiTes, or Lu on single-layer CrGeTes, is a
QAH insulator with an energy gap on the order of 100 meV
even in the absence of SOC.

Our calculations show that the emergence of the topologi-
cally nontrivial phase is accompanied by spontaneously gen-
erated currents that flow between the Te atoms surrounding
the Cr atoms. Such a state with spontaneously generated cur-
rent loops is usually denoted as a “flux state” or “flux phase,”
and has been proposed as the ground state for various inter-
acting models [[16H19]. Its essential feature is that the sponta-
neous TR symmetry breaking occurs in the orbital, as opposed
to the spin, sector. To the best of our knowledge, our work is
the first proposal for the appearance of a flux state and asso-
ciated topological phase in a realistic material system based
on first-principles computational methods. Since the hybrid-
functional method has been quite successful in predicting the
physical properties of a variety of material systems, we spec-
ulate that the topologically nontrivial flux state may in fact be
the true ground state of these systems if they can be realized
in the laboratory.

Bulk CrSiTes and CrGeTes are ferromagnetic insulators
with Curie temperatures of 32K and 61K respectively [20,
21]]. As shown in Fig.[Ifa), the systems crystallize in a rhom-
bohedral lattice, forming a layered structure stacked along
the (111) direction with a fairly large inter-layer spacing of
~3.3 A. Each layer consists of a 2D honeycomb array of Cr
atoms in edge-sharing Te octahedra with the Si or Ge dimers
inserted into the resulting octahedral vacancy sites. The Cr
moments point normal to the layer, i.e., along the thombohe-
dral axis. The weak van der Waals (vdW) inter-layer coupling
makes it easy to exfoliate thin films from bulk crystals [22]].

Recently, Garrity and Vanderbilt proposed a general strat-
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FIG. 1. (a) The lattice structures of bulk CrSiTes and CrGeTes. (b)-
(c): The structure of single-layer CrSiTes (CrGeTes) with deposited
adatoms, (b) a 3D view, and (c) a top view. t; and t2 denote the 2D
lattice vectors of the hexagonal primitive cell.

egy for realizing the QAH state based on depositing a layer
of heavy atoms (carrying strong SOC) on the surface of an
ordinary magnetic insulator (providing TR symmetry break-
ing) [23]. Motivated by this proposal, we use first-principles
calculations to study adatom layers on CrSiTes and CrGeTeg
(111) single layers. As shown in Fig. Ekb) and (c), we take
single-layer (SL) CrSiTes or CrGeTes as the substrate, and
deposit one monolayer (ML) of adatoms on top of one of the
two Cr sublattices so that they form a triangular lattice [24]]

We search over a series of adatoms including Bi, Pb, TI,
Hg, Au, Ag, In, Sb, Sn, Sc, Y, La and Lu. The in-plane lattice
constants of all the systems are fixed at experimental values
(a=6.773 A for CrSiTes; and ¢ =6.820 A for CrGeTes), but
the internal atomic positions are fully relaxed.

In a first round of calculations, we adopt the “optB86b”
vdW functional [25] to treat the weak coupling between the
adatoms and the surface Te atoms; the local Coulomb inter-
actions between Cr 3d electrons are taken into account by
the rotationally invariant implementation of the “DFT+U”
method [26]. In the second round we then repeat the struc-
tural relaxations and electronic calculations using the Heyd-
Scuseria-Ernzerhof (HSE) hybrid functional [13], which has
been shown to be more successful than traditional DFT in pre-
dicting various physical properties such as energy gaps, lattice
parameters and magnetic moments [27, 28]]. Although the
vdW corrections are no longer included, we still expect that
the hybrid results are more reliable. Both the structural re-
laxations and electronic-structure calculations are carried out
using the VASP package [29,130]. A 6 x 6 x 1 k mesh and a
380 eV energy cutoff are adopted, and a slab geometry is used
for all the systems.

We begin by including SOC in all the calculations. Accord-
ing to the results computed using the vdW DFT+U functional,
several of the considered systems, such as 1 ML In with —3%
epitaxial strain and 1 ML Bi, possess nonzero Chern num-
bers. However, when we repeat the calculations for these ap-
parently promising systems using the HSE functional, we find
them restored to a trivial topological state. On the other hand,

the hybrid-functional calculations identify two new topolog-
ical systems, namely for 1 ML La deposited on SL CrSiTeg
and 1 ML Lu deposited on SL CrGeTes. Hereafter we will
denote these two adatom systems as “Si-La” and “Ge-Lu” for
simplicity.

In the process of investigating the mechanism responsi-
ble for the band inversion and topological character in these
two candidate systems, we were astonished to find that their
topological character survives even in the absence of SOC in
the hybrid-functional framework. This implies that the topo-
logical phase is unconventional in that the TR symmetry is
spontaneously broken directly in the spatial sector, not by the
usual SOC-mediated transmission of the TR symmetry break-
ing from the spin sector to the spatial sector. Moreover, the
ground states are characterized by spontaneously generated
current flows between the bottom Te atoms surrounding the
two Cr sites in each primitive cell, leading to antiferromag-
netically ordered orbital magnetic moments on the Cr sites.

To see how this comes about, consider the hybrid-
functional bandstructures of Ge-Lu and Si-La computed with-
out SOC as shown in Figs. |Z| (a) and (b). Focusing on the
minority-spin (red) curves, we see that the spatial wavefunc-
tions obey TR symmetry, as expected when SOC is absent;
this is visible in the “mirror symmetry” of the curves in panels
K-M-K or K-T'-K, which follows from the k — —k sym-
metry that relates the two sides. For the majority-spin (blue)
bands, on the other hand, this symmetry is obviously absent.
This implies that the TR symmetry is spontaneously broken
(in the orbital sector) only in the spin-majority channel. We
will discuss the interesting properties of such ground states in
the remainder of this paper.

In the CrSiTes and CrGeTes single-layer systems, the high-
est valence band and the lowest conduction band are mostly
contributed by Te p orbitals and Cr e, (d,. and d,) orbitals
respectively, all in the majority spin channel. If one ML of
La or Lu is deposited on top of the layer, the adatom tends to
donate two of its three valence electrons to the unoccupied Cr
eg4 orbitals, half-filling the four majority-spin e, bands, while
the remaining electron occupies either the 5d or 6s orbital of
the adatom, also in the majority spin channel. Henceforth we
ignore the minority spin states.

The above analysis assumes an ionic picture in which the
hybridization between the Te p and Cr d orbitals is negligi-
ble. In reality, such hybridization is quite strong in transition-
metal tellurides, as the electronegativity of Te is much weaker
than that of O, and even close to that of Cr. Therefore, it is
more appropriate to consider CrSiTes and CrGeTes as having
a strongly covalent character. Most of the above arguments
can be carried over to the hybridized case, except that the or-
bital characters of the four otherwise e,-like states around the
Fermi level become much more complicated. They actually
consist of linear combinations of the Cr ¢4, Te p and Cr e’g
(dy2_,2 and d,) orbitals. In the absence of precise expres-
sions for such complicated hybridized orbitals, we just denote
them with some simple labels {o;,j = 1,2,3,4}. The extra
bands from the adatom s or d orbitals, which also hybridize
significantly with the Te p orbitals, lie somewhere between the
two occupied and two unoccupied {o; } bands.
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FIG. 2. The bandstructures in the absence of SOC for (a) Ge-Lu, and
(b) Si-La. The red and blue curves represent the spin majority and
spin minority bands respectively. The inset in (a) shows the Brillouin
zone of a hexagonal lattice, and the bandstructures are plotted along
the high-symmetry path marked by magenta lines.

Such systems with partially filled bands are expected to be
metallic if Coulomb interactions are neglected. The Fermi
surface of the half-filled {o;} bands, however, may be unsta-
ble against Coulomb interactions. On the other hand, as a re-
sult of the p-d hybridizations, the inter-site matrix elements of
the Coulomb interactions are expected to be substantial. Thus,
on-site interactions between Cr d electrons would be insuffi-
cient to describe the effects of the Coulomb interaction in a
comprehensive manner. Therefore, it is necessary to adopt an
ab initio approach that takes the effects of nonlocal Coulomb
interactions into account, as is the case for hybrid functionals.

The hybrid-functional ground states of the two systems
are found to become insulating, leading to the bandstruc-
tures shown in Fig. 2] There are a few unconventional fea-
tures of the gapped bandstructures. First, as mentioned above,
we note that the eigenenergies at k and —k are different for
the majority spin, while they are identical for the minority
spin. This indicates that TR symmetry in the orbital sector
is spontaneously broken only for the majority spin channel.
Such TR-breaking ground states may carry spontaneous cur-
rent loops, forming flux states. Second, there are signatures
of avoided crossings around K in Fig.[2(a) and I in Fig. 2|b),
suggesting that the systems may also be topologically nontriv-
ial. Figs.[3[@) and (b) show the spin-majority bandstructures
for the Ge-Lu and Si-La systems projected onto Lu s and La d
orbitals respectively, clearly indicating a band-inversion char-
acter at I for Si-La and at K for Ge-Lu.

To better understand the properties of these TR-breaking
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FIG. 3. Majority-spin bandstructures of (a) Ge-Lu projected onto Lu
s orbitals, and (b) Si-La projected onto La d orbitals.

ground states, we have calculated the intersite currents be-
tween atoms based on realistic tight-binding models generated
from the Wannier90 package [31, 132] (see the Supplemen-
tary Material for details). The calculated currents between
first-neighbor Te atoms for the Ge-Lu system, still neglect-
ing SOC, are shown in Fig. [d] where the currents are repre-
sented by black arrows whose thicknesses are proportional to
the magnitudes of the currents. As is clear from the figure,
most currents flow within the bottom Te atomic layer, form-
ing triangular loops surrounding the Cr atoms. The two cur-
rent loops centered around the two inequivalent Cr sites cir-
culate in opposite directions, inducing antiferromagnetically
ordered orbital magnetic moments on the two Cr sites as de-
noted by magenta arrows in Fig.[d] Without SOC, the orbital
moments of the two Cr atoms are {—0.126 ug, 0.113 ug} for
the Ge-Lu system, and {—0.066 up, 0.082 up} for the Si-La
system, with the first moment referring to that of the adatom-
covered Cr site. Moreover, since the highest occupied band
in the Si-La system is mostly contributed by La 5d orbitals,
there is also a relatively large orbital moment of —0.18up on
the La site. For the sake of clarity, Fig.[donly depicts some of
the current flows; for example, there are considerable currents
between the Si dimers and the Te atoms, which are required
to conserve the total current on each Te site.

Note that for each system, the configuration of orbital mo-
ments and currents reported above is just one of two energet-
ically equivalent ones, since in the absence of SOC the appli-
cation of spatial-only TR (i.e., complex conjugation) will re-
verse all orbital moments and currents. We henceforth refer to
the above-reported configurations as the “primary ones,” and
the reversed ones as “secondary,” even though there is nothing



FIG. 4. Current loops flowing between the Te atoms in the major-
ity spin channel of the SOC-free Ge-Lu system. The currents are
denoted by black arrows whose thicknesses are proportional to the
magnitudes of the currents. The magenta arrows denote orbital mag-
netic moments on the Cr sites. The currents are in units of pA.

at this stage to prefer one over the other.

As discussed above, the band-inversion characters shown in
Fig. [3] suggest possible nontrivial band topologies in the two
systems. To confirm this conjecture, we calculate the Chern
numbers C' using the method proposed in Ref. 33| finding
C = +1 for the primary Ge-Lu system and C' = —1 for
the primary Si-La system. The calculated indirect gap based
on the Wannier-interpolated bandstructures (see the Supple-
mentary Material) is ~70meV for the Ge-Lu system, and is
as large as ~130meV for the Si-La system. Including SOC
does not change the topological properties. The indirect gap
with SOC included is slightly decreased for the Ge-Lu sys-
tem (~60 meV), while it increases to ~160 meV for the Si-La
system (see the Supplementary Material).

The primary and secondary phases, which are energetically
degenerate in the absence of SOC, are preferred by ~100 meV
over the spatial-TR-preserving state. With SOC included, we
find that the primary configuration is still preferred for the Ge-
Lu system, while Si-La prefers the secondary one. Thus, both
systems end up in a C'=+1 phase. The reversal in the Si-La
system implies that the Cr and La orbital moments all flip their
signs in order to maximize the energy gain from SOC, chang-
ing from {—0.066 ug, 0.082 up} to {0.071 pp, —0.080 up}
for the two Cr sites, and from —0.18 pup to 0.29 g for the La
adatom. Given that the SOC strength of La is much larger
than that of Cr, the system evidently selects the state with an-
tiparallel spin and orbital moments on the La site (the spin
moment on the La site is —0.644 up) to maximize the energy
gain from SOC. Details of the changes when SOC is turned
on are provided in the Supplementary Material.

It should be emphasized that a flux state is not necessar-
ily topologically nontrivial. That is, there might not be any
band inversion leading to a nontrivial topology, even though
TR symmetry is spontaneously broken. We actually find this
to be the case for 1 ML Lu deposited on SL CrSiTe; and 1
ML La deposited on SL CrGeTes in the absence of SOC, for
which the bandstructures are presented in the Supplementary
Material.

As an additional check on the computed topological char-
acter, we have calculated the anomalous Hall conductivities
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FIG. 5. Left: Edge-state spectrum in the majority spin channel
for (a) Si-La and (c) Ge-Lu. Right: Dependence of majority-spin
anomalous Hall conductivities as a function of Fermi-level position
for (b) Si-La and (d) Ge-Lu. (All without SOC.)

oy, and the edge states in the majority spin subspace for the
primary systems without SOC. As shown in Figs.[5[a) and (c),
there is a single chiral edge state traversing through the bulk
energy gap for each system. The chiralities are opposite, since
the two systems have opposite Chern numbers in the absence
of SOC. Figs. Ekb) and (d) show the anomalous Hall conduc-
tances of the two systems in the majority-spin channel as the
Fermi energy is varied. (The bulk Fermi-level positions as
determined by the tetrahedron method are set as the zero of
energy in these plots.) There are clear signatures of plateaus
quantized at +-e?/h, providing direct confirmation of the non-
trivial band topology.

We now ask whether the topological phases and the flux
states can survive if the Coulomb interactions are restricted
to be local. As mentioned above, the Coulomb interaction in
the HSE hybrid functional is nonlocal, but is screened so as
to have a finite range of the form V' (r) = (1 — erf(r/\))/r,
where “erf” denotes the error function and ) is an effective
screening length [[13]]. We have explored the behavior of the
orbital moments and Chern numbers as )\ is decreased from
5A to 1A, As shown in Fig. [6] the difference AM,y, be-
tween the orbital moments on the two Cr sublattices, which
can be regarded as an order parameter for orbital antiferro-
magnetism, diminishes monotonically as the screening length
is decreased. When A =1A, the orbital moments almost
vanish, implying that inter-site currents for such short-range
Coulomb interactions are negligibly small. Both systems re-
main topologically nontrivial down to A ~1.3 A, and eventu-
ally become trivial when A\ <1 A. Interestingly, the hybrid-
functional bandstructures for A=1 A are very similar to the
DFT+U bandstructures. We have also checked that one cannot
obtain topologically nontrivial phases from DFT+U even if U
is tuned away from the accepted value of 3.5 eV. These obser-
vations all support the conclusion that the nonlocality of the
Coulomb interactions is indispensable to obtain the observed
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FIG. 6. The difference A M, between the orbital magnetic moments
on the two Cr sites vs. the screening length X (in A). Blue and red
lines are for Ge-Lu and Si-La systems, and filled and hollow circles
represent topologically nontrivial and trivial phases, respectively.

flux states and topological phases.

The feasibility of an experimental realization of this system
deserves some comment. First, we have checked whether our
results remain robust for thicker CrSiTes or CrGeTes layers,
but unfortunately our preliminary HSE results indicate that the
flux states and associated nontrivial topological phases do not
survive even for double-layer substrates. This suggests that
single layers of CrSiTes or CrGeTes would need to be pre-
pared via exfoliation or other means, presumably on an inert
substrate such as silica or boron nitride, before the adatom de-
position. Even with thicker layers of CrSiTes or CrGeTes, it
may be possible to tune the system using strain [34]] or chem-
ical subsitution in such a way as to restore the flux state. Sec-
ond, our calculations suggest that two ML of adatoms may be
energetically more stable than the single-ML configuration,
suggesting a tendency toward segregation and island forma-
tion. Thus, low-temperature deposition of the La or Lu mono-
layer may be required. Alternatively, it may be possible to
stabilize the adatoms in monolayer form by linking them to
coordination complexes such as metallocenes [33]].

Before concluding, we make some remarks about the im-
plications of our work for future theoretical and experimental
searches for such exchange-driven topological phases. First,
the presence of extended and/or hybridized orbitals that can

be acted upon by nonlocal Coulomb interactions is a com-
mon feature in a wide class of insulating materials systems.
In principle there is no need to restrict the search to mate-
rials having ferromagnetic spin order, or for that matter, to
systems with strong SOC. In fact, since the scale of the gap
is no longer set by the SOC strength, it may be possible to
find QAH insulators with substantially larger gaps compared
with those arising from conventional mechanisms [4} 23} 36].
Second, as the results reported in this paper are obtained from
a Hartree-Fock-like approximation, it is important to inquire
whether such novel ground states would survive the applica-
tion of many-body techniques beyond the mean-field level. In
view of the importance of nonlocality, we expect that it will
be necessary to go beyond approaches that focus on intrasite
correlations, such as single-site dynamical mean-field theory.
If this is not straightforward, some progress might be made in
the context of model Hamiltonians.

To summarize, we have shown that hybrid-functional cal-
culations predict the spontaneous breaking of orbital TR sym-
metry and the emergence of flux states and associated topo-
logical phases for a monolayer of La deposited on a single
layer of CrSiTes, or similarly for Lu on CrGeTe;. We at-
tribute the appearance of these novel phases to the exchange
component of the nonlocal Coulomb interaction acting in the
presence of strong p-d hybridization in these transition-metal
tellurides. The flux states are characterized by counterpropa-
gating current loops between the Te atoms, which induce an-
tiferromagnetically ordered orbital magnetic moments on the
Cr sites. The associated topological phases are characterized
by an anomalous Hall conductivity quantized at 4-e?/h and
chiral gapless edge states even in the absence of SOC. To the
best of our knowledge, our work is the first proposal for a flux
state arising from spontaneous breaking of orbital TR symme-
try in a condensed-matter system that is directly supported by
first-principles calculations. Our work is a step forward for
the understanding of topological phases in condensed matter
physics, and may provide useful guidelines for future experi-
mental and theoretical works on the effects of Coulomb inter-
actions in transition-metal tellurides.
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