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Effective-Hamiltonian modeling of external pressures in ferroelectric perovskites
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The phase-transition sequence of a ferroelectric perovskite such as BaTiO3 can be simulated
by computing the statistical mechanics of a first-principles derived effective Hamiltonian [Zhong,
Vanderbilt and Rabe, Phys. Rev. Lett. 73, 1861 (1994)]. Within this method, the effect of an
external pressure (in general, of any external field) can be studied by considering the appropriate
“enthalpy” instead of the effective Hamiltonian itself. The legitimacy of this approach relies on two
critical assumptions that, to the best of our knowledge, have not been adequately discussed in the
literature to date: (i) that the zero-pressure relevant degrees of freedom are still the only relevant
degrees of freedom at finite pressures, and (ii) that the truncation of the Taylor expansion of the
energy considered in the effective Hamiltonian remains a good approximation at finite pressures.
Here we address these issues in detail and present illustrative first-principles results for BaTiO3.
We also discuss how to construct effective Hamiltonians in cases in which these assumptions do not
hold.

I. INTRODUCTION

A few years ago it was shown that it is possible to re-
produce the phase transition sequence of a ferroelectric
such as BaTiO3 by simulating the statistical mechanical
properties of an effective Hamiltonian built on the ba-
sis of first-principles calculations [1]. Since then, this
approach has been used to study the phase diagrams
and electromechanical responses of other perovskite crys-
tals (SrTiO3 [2], PbTiO3 [3], and KNbO3 [4]), and even
of disordered perovskite solid solutions (Pb(Zr1−xTix)O3

(PZT) [5] and Pb(Sc0.5Nb0.5)O3 [6]). These calculations
have typically resulted in a very good qualitative agree-
ment with experiment and clear physical pictures of the
phenomena studied. Presently, even though the method
usually gives poor results for the actual values of the tran-
sition temperatures and other quantities, it is regarded as
having the predictive power necessary to tackle materials-
design problems [7, 8].

An effective Hamiltonian can be viewed as a Taylor
expansion of the energy of the system, in terms of a set
of relevant degrees of freedom, around a high-symmetry
reference structure. For ferroelectric perovskites, the rel-
evant variables are typically the strains and, most im-
portantly, the local polar distortions that sum up to pro-
duce the spontaneous polarization. The high-symmetry
reference structure is chosen to be the non-polar, cubic
perovskite phase, whose equilibrium volume is computed
ab initio.

Very conveniently, within this approach it is straight-
forward to consider the effect of external fields on the sys-
tem. One just has to add a term to the Hamiltonian that
transforms the energy into the appropriate enthalpy. For
instance, an external hydrostatic pressure p would enter
the model in a term pV , where V is the volume of the
simulated system. Examples of such applications are the
calculation of the T -p phase diagram of BaTiO3 [9] and,
very recently, the study of electric-field driven transition
paths in PZT [10].

This approach to modeling external fields stems di-
rectly from statistical mechanics, and it is exact provided
the considered Hamiltonian is the complete Hamiltonian
of the system. Using effective incomplete Hamiltonians
actually involves a number of implicit approximations
in the description of the effect of an external field. To
the best of our knowledge, these implicit approximations
have neither been adequately discussed, nor has their im-
portance been carefully tested, in the literature to date.

In this paper we address these questions in detail. For
concreteness, we consider the case of an external pressure,
but our formal argument applies to any external field. We
illustrate the discussion with calculations of the effect of
pressure on BaTiO3, which should be representative of
ferroelectric perovskites and is specially interesting be-
cause of the discrepancy between the theoretical [9] and
experimental [11] results for its T -p phase diagram.

The paper is organized as follows. In Section II we dis-
cuss the pressure dependence of the relevant degrees of
freedom that define the effective Hamiltonian. In Sec-
tion III we show how the truncation in the effective-
Hamiltonian energy expansion actually implies an ap-
proximation in what we call the “pressure dependence”
of the parameters of the model. In Section IV we tackle
the issue of the anharmonic couplings between the cho-
sen relevant degrees of freedom and the rest of variables
in the system. Finally, we summarize and present our
conclusions in Section V.

II. RELEVANT DEGREES OF FREEDOM AS A
FUNCTION OF PRESSURE

The fundamental variables entering effective Hamilto-
nians for ferroelectric perovskites are the localized, polar
displacement patterns associated with the spontaneous
polarization. In order to define these local polar modes
ab initio, one examines the calculated phonon [12] dis-
persion curves of the high-symmetry cubic phase; the soft
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phonons (i.e., those with very small or negative force con-
stant) are obviously those to be included in the model.
(Note that the spontaneous polarization will correspond
to an unstable zone-center phonon.) The local modes,
or lattice Wannier functions, are then obtained from the
corresponding eigenvectors [13].

Taking the calculated equilibrium, high-symmetry
phase as a reference implies that the relevant variables we
determine are actually the relevant variables at zero pres-
sure. Including the effect of pressure by simply adding
an extra pV term to the Hamiltonian thus relies on the
fundamental assumption that the relevant variables at
zero pressure will remain the relevant variables at finite
pressure. There are two situations in which this assump-
tion could fail, namely the applied pressure could give
raise to additional soft modes and/or the zero-pressure
relevant configuration space could change significantly.
In the former case, the obvious solution is to include the
new soft modes in the model. In the latter, one would
have to redetermine the relevant polar degrees of free-
dom, now under applied pressure, and recalculate the
effective Hamiltonian accordingly.

We have performed first-principles calculations to
study these issues in BaTiO3 [14]. In this material, the
modes that most likely may become soft under compres-
sion are those at the M and R zone-boundary points that
involve rotations of the oxygen octahedra. We have cal-
culated the evolution of the eigenvalues of such modes
as a function of the lattice parameter, ranging from a =
7.46 a.u. (the calculated equilibrium lattice parameter of
the cubic phase) to a = 7.36 a.u. (which is well beyond
the value at which the ferroelectric instability disappears;
see next section). We find no softening with increas-
ing pressure; on the contrary, the modes become slightly
harder. (For instance, the eigenvalues of the modes at
R, which are softer than those at M, are 0.0200a.u. and
0.0220a.u. for a = 7.46 a.u. and a = 7.36a.u. respec-
tively.) On the other hand, the evolution with pressure
of the relevant variables related to the ferroelectric insta-
bility can be monitored by observing the change of the
zone-center soft mode. We find that the overlap between
the unstable eigenmode at a = 7.46 a.u. and the corre-
sponding, nearly-unstable eigenmode at a = 7.36 a.u. is
above 98%. In summary, for BaTiO3 the relevant vari-
ables defined at the zero-pressure equilibrium lattice con-
stant remain a very good approximation all through the
interesting pressure range.

III. “PRESSURE DEPENDENCE” OF THE
HAMILTONIAN PARAMETERS

Let us assume that the zero-pressure relevant degrees
of freedom continue to be the relevant ones in the pres-
sure range of interest. In the following we argue that,
even in this case, the effect of pressure is not fully cap-

tured by the addition of the pV term.
For simplicity, we consider a one dimensional ferroelec-

tric, and describe it in terms of the macroscopic variables
P (polarization) and η (strain). For small P and η, the
energy of the system can be written as a low-order Taylor
expansion around the high-symmetry paraelectric phase
(P = η = 0),

E(P, η) = E0 − C2,0P
2 + C4,0P

4 + C0,2η
2 − C2,1P

2η,
(1)

where all the expansion coefficients (in obvious notation)
are chosen to be positive. (The maximum orders included
in the expansion of Eq. (1) are those normally adopted in
the effective Hamiltonians proposed to date in the litera-
ture [1, 4, 5, 6].) Let us include the effect of an external
pressure p by adding the term pV0(1 + η), with V0 the
equilibrium volume of the paraelectric phase. It is now
convenient to consider the change of variables

η→ η̃ − V0

2C0,2
p ≡ η̃ + ηp (2)

where V0(1 + ηp) is the equilibrium volume of the para-
electric phase under applied pressure. The enthalpy then
becomes

E(P, η; p) = E0(p)−
[
C2,0−

V0C2,1

2C0,2
p

]
P 2

+C4,0P
4 + C0,2η̃

2 − C2,1P
2η̃, (3)

where E0(p) is the pressure-dependent energy of the non-
polar phase. If we now denote the bracketed prefactor
of the P 2 term as C̃2,0, and also introduce Ẽ0, we can
rewrite the enthalpy as

Ẽ(P, η̃) = Ẽ0 − C̃2,0P
2 + C4,0P

4 + C0,2η̃
2 − C2,1P

2η̃,
(4)

which is formally identical to Eq. (1). Thus, we have
proven that, within our model, the system under ap-
plied pressure is in all respects equivalent to the origi-
nal, pressure-free system described by Eq. (1), but with
some modified parameters (indicated by tildes) that can
be regarded as being “pressure dependent”. (In the fol-
lowing, references to the “pressure dependence” of the
parameters of the Hamiltonian should be understood in
this sense.)

Having reformulated the problem in this way, an obvi-
ous question arises. If E0 and C2,0 are modified by pres-
sure, why is it that the remaining parameters in Eq. (1)
are not? The answer is that pressure should indeed affect
the rest of the parameters in Eq. (1), but this effect is not
captured by our model because we are using a truncated
Taylor expansion of the energy. Imagine, for instance,
that Eq. (1) contained the higher-order term C4,1P

4η.
The variable change in Eq. (2) would then generate new
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FIG. 1: Calculated eigenvalue of the ferroelectric soft mode of
BaTiO3 as a function of pressure (dots), as compared with the
behavior predicted (see text) from the zero-pressure effective
Hamiltonian (solid line). (See [14] for the technical details
of the ab initio calculations.) From the explicit calculation
we obtain a ferroelectric transition point at pc = 7.0 GPa
(Vc/V0 = 0.966), while the effective-Hamiltonian approach
places the transition at pc = 6.7 GPa (Vc/V0 = 0.964, as given
by the equation of state built into the effective Hamiltonian
itself). In both cases, the calculated equilibrium volume of
the cubic phase is V0 = 414 a.u.

terms C4,1P
4η̃ + C4,1ηpP

4, thus modifying C4,0 to be-

come C̃4,0 = C4,0 + C4,1ηp.

The previous argument can readily be applied to the
microscopic effective Hamiltonians of interest [17]. We
have thus shown that a truncation of the energy expan-
sion, which may be perfectly well justified for the cal-
culation of zero-pressure properties, actually implies an
approximation in the pressure dependence of the param-
eters of the model. Obviously, we can improve on this
approximation by including higher-order terms in the ef-
fective Hamiltonian. However, our experience tells us
that it is usually difficult to calculate high-order terms
accurately, and the very issue of where to truncate the ex-
pansion may become a problem. There is, fortunately, an
alternative approach suggested by the derivation above.
One can instead take the equilibrium, high-symmetry
phase at pressure p as the reference structure from which
one calculates the Taylor expansion of the energy. Such
an expansion, which could likely be kept low-order, would
be analogous to Eq. (4) but with all the parameters con-
taining their full pressure dependence by construction.

In order to make these ideas explicit, we have calcu-
lated the pressure dependence of the parameters in the
effective Hamiltonian of BaTiO3 [14]. The soft-mode

eigenvalue, which is exactly the equivalent of −2C̃2,0 in
Eq. (4), is computed as a function of the unit-cell vol-
ume, and the corresponding pressure is determined from
the equation of state of the cubic phase. The results are

shown in Fig. 1. We find that the linear law resulting
from the pV term (see the bracketed term in Eq. (3))
turns out to agree surprisingly well with the values ex-
plicitly calculated at different pressures. We also com-
puted the pressure dependence of the parameters that are
analogous to C4,0, C0,2 and C2,1 in Eq. (1). In all cases
the values calculated as a function of pressure lay within
approximately 10% of the zero-pressure value. Very im-
portantly, this applies to the parameter that determines
the relative stability of the different ferroelectric phases
of BaTiO3 (γ′ in Ref. [16]). Therefore, we find that the
ground state of the system is rhombohedral throughout
the pressure range in which the ferroelectric instability
exists, in agreement with the first-principles effective-
Hamiltonian results of Zhong et al. [9].

IV. THE COUPLING BETWEEN RELEVANT
AND IRRELEVANT VARIABLES

The experimental work of Ref. [11] suggests that, along
isotherms at very low temperature, BaTiO3 undergoes
a transition sequence with increasing pressure that pro-
gresses from the zero-pressure ferroelectric rhombohedral
phase to ferroelectric orthorhombic, then ferroelectric
tetragonal, and finally paraelectric cubic phases. As we
have seen in the previous sections, we have found no in-
dication of such a behavior in our first-principles results.
This disagreement is not necessarily a serious one, since
the authors of Ref. [11] attributed their observed transi-
tion sequence to quantum fluctuations (zero-point atomic
motion), an effect that is not taken into account in our
calculations. In any case, it led us to explore yet an-
other possible effect of pressure that could, in principle,
account for such a discrepancy.

The effective-Hamiltonian approach relies on the as-
sumption that the coupling between the chosen relevant
variables and the rest of the degrees of freedom in the
system is not important. Since the relevant modes are de-
fined in terms of phonons that diagonalize the harmonic
part of the total Hamiltonian of the system, such a cou-
pling is anharmonic, which partly justifies our neglecting
it. However, we know that in BaTiO3, as we approach
the critical pressure at which the ferroelectric instabil-
ity disappears, the energy differences among the various
low-symmetry phases go to zero. Small anharmonic ef-
fects could then be essential to the determination of the
ground state of the system. Note that, if this were the
case, the usual effective-Hamiltonian approach, in which
the relevant variables are identified by looking at the har-
monic phonon dispersion curves, should be modified.

We can study this issue very easily in BaTiO3 by fully
relaxing the structure of the system in different con-
strained symmetries, while keeping the volume fixed [18].
The symmetries we consider are of course the tetragonal,
orthorhombic, and rhombohedral ones corresponding to
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FIG. 2: Energies of the different phases of BaTiO3 (cubic,
tetragonal, orthorhombic, and rhombohedral) as a function
of the volume of the unit cell. The energies are computed by
relaxing the atomic positions and cell shape under the con-
straints of preserving the corresponding symmetry and keep-
ing the cell volume fixed. (See [18] for the technical details.)
We have marked with a vertical line the ferroelectric transi-
tion point between the non-polar cubic and polar rhombohe-
dral phases, located at Vc/V0 = 0.974 (pc = 5.6 GPa) where
V0 = 417 a.u. is the calculated equilibrium volume of the cubic
phase. The discrepancy between these numbers and those in
the caption of Fig. 1 is not surprising if we take into account
that they have been computed using two different codes (and
two different kinds of pseudopotential schemes).

the ferroelectric phases of the material, and we explore
the interesting range of volumes. Figure 2 shows the en-
ergy of the relaxed structures as a function of volume.
For V/V0 < 0.980 the energies of the different phases dif-
fer by less than 0.01 mHa. Such small differences are be-
yond the accuracy of our computational technique and,
therefore, we are not able to study the critical region
in detail. Nevertheless, we can determine the critical
volume quite reliably as the point at which C2,0 passes
through zero; we obtain Vc/V0 = 0.974, indicated with
a vertical line in Fig. 2. On the other hand, we find
that, down to V/V0 ∼ 0.977, there is no common tan-
gent among the curves in Fig. 2 that would correspond
to a first-order phase transition between two ferroelectric
phases at p < pc. It thus seems reasonable to conclude
that the calculated ground state is rhombohedral up to
pc, the point at which it undergoes a second-order tran-
sition to the paraelectric cubic phase. This result is in
complete agreement with the predictions of the effective-
Hamiltonian approach.

The importance of the above-mentioned anharmonic
couplings in determining the ground state of the sys-
tem can be quantified, for a given volume, by expand-
ing the displacement vector corresponding to the relaxed

atomic positions as a linear combination of the zone-
center modes calculated at that same volume. We find
that, throughout the interesting range, the ferroelectric
soft mode accounts for approximately 99% of the total
atomic relaxation. This result further justifies neglecting
the anharmonic couplings among relevant and irrelevant
variables in the case of BaTiO3.

V. SUMMARY AND CONCLUSIONS

In the usual approach to simulating external pressures
within the effective-Hamiltonian scheme, one starts from
the calculated zero-pressure effective Hamiltonian and
adds to it a pV term to obtain the appropriate enthalpy.
Such a procedure implies a number of approximations
that we have discussed in detail in this paper. Our dis-
cussion is actually general, and applies to any external
field.

On the one hand, we have seen that there are approx-
imations related with the determination of the relevant
degrees of freedom to be included in the model. In princi-
ple, one should determine the relevant variables as a func-
tion of pressure. One should also check that the relevant
variables do not have significant anharmonic couplings
with the rest of the degrees of freedom of the system
throughout the interesting pressure range.

On the other hand, we have discussed a rather subtle
implicit approximation that has to do with the trunca-
tion of the energy expansion in the effective Hamiltonian.
We have shown that such a truncation, which may be jus-
tified for the purpose of zero-pressure calculations, actu-
ally implies an approximation in what we have called the
“pressure dependence” of the parameters of the model.
As a solution to this problem we propose the calculation
of effective Hamiltonians “under pressure,” meaning that
for a given pressure we would take as our reference struc-
ture the calculated, equilibrium high-symmetry phase at
that pressure.

We have studied in detail all these issues for BaTiO3.
We have shown that all the previous approximations are
actually highly accurate for this material, which we be-
lieve should be representative of ferroelectric perovskites.
The usual approach to simulating external pressures thus
seems to be fairly reliable.

Regarding the T -p phase diagram of BaTiO3, our re-
sults indicate that at a classical level (i.e., without consid-
ering the zero-point motion of the ions) the only possible
polar phase at 0 K is the rhombohedral one. On the other
hand, as Fig. 2 shows, the differences in energy among
the ferroelectric phases become very small as the volume
decreases towards Vc. It thus seems possible that, at low
temperatures, the quantum fluctuations of the ions may
be able to change the relative stability of the ferroelectric
phases and lead to a phase diagram similar to the one re-
ported by Ishidate et al. (see Fig. 1 in Ref. [11]). This
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very interesting question will be addressed elsewhere [21].
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