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Electrically driven octahedral rotations in SrTiO3 and PbTiO3
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We investigate the oxygen octahedral rotations that occur in two perovskites, SrTiO3 and PbTiO3,
as a function of applied three-dimensional electric displacement field, allowing us to map out the
phase diagram of rotations in both the paraelectric and ferroelectric regions of the polar response.
First-principles calculations at fixed electric displacement field are used to extract parameters of
a Landau-Devonshire model that is analyzed to identify the phase boundaries between different
rotational states. The calculations reveal a rich phase diagram of rotations versus applied field in
both SrTiO3 and PbTiO3, although the details are quite different in the two cases.

PACS numbers: 77.84.-s,77.90.+k,71.15.-m

I. INTRODUCTION

Oxygen octahedral rotations can have a significant
impact on the behavior of ABO3 perovskites, affecting
electronic, dielectric, ferroelectric and magnetic prop-
erties. For example, the octahedral rotations cou-
ple strongly with the magnetic structure in transition-
metal perovskites by modifying the metal-oxygen-metal
bond angles that are critical to determine the magnetic
interactions.1,2 In some materials, such as SrTiO3, the
oxygen rotations give rise to a non-polar antiferrodis-
tortive (AFD) ground state contribute to the suppres-
sion of ferroelectric (FE) order.3–5. However, the recent
discovery of rotation-driven improper ferroelectricity in a
superlattice6 has inspired a search for this type of ferro-
electricity in other types of materials.1,7–9 Because they
can also couple with magnetic properties, octahedra ro-
tations offer a promising approach to the discovery or
design of new multiferroic perovskites.1,10–13

In the cubic structure, SrTiO3 and PbTiO3 both show
an AFD instability at the zone corner (R point) of the
Brillouin zone.14,15 Following this instability leads to the
experimentally observed tetragonal ground state with ro-
tations along the [001] axis for SrTiO3, while PbTiO3

prefers rotations along the [111] axis. For PbTiO3, how-
ever, this is not the equilibrium structure; instead, a
strong FE instability at Γ out-competes the AFD insta-
bility, giving rise to a tetragonal FE ground state with-
out rotations. Nevertheless, the AFD modes provide a
potential source of instability in PbTiO3, as has been
predicted for example for surface16,17 and interface6 ge-
ometries. (In SrTiO3, a weak FE instability at Γ is found
in some calculations, depending sensitively on lattice con-
stant and other details. However, experimentally the ma-
terial just barely avoids this instability, remaining para-
electric down to zero temperature.)
While oxygen octahedral rotations clearly play an im-

portant role in these and other perovskites, and while
they are known to be strongly affected by stress12,18,19

and temperature,20 we are not aware of any previous
study of the effects of electric fields on the AFD rota-
tions. In this paper, we study the phase transition be-
havior of the AFD modes in SrTiO3 and PbTiO3 under

three-dimensional constant electric displacement field.
Of course, SrTiO3 and PbTiO3 are qualitatively dif-

ferent in that the latter is ferroelectric while the former
remains paraelectric down to zero temperature. However,
the choice of fixed electric displacement field D for the
boundary conditions in this study allows us to treat both
materials on an equal footing. The situation would have
been much more complicated if we had chosen to work
at fixed electric field E, because the energy landscape is
multivalued and the paraelectric configuration is unsta-
ble at small E in a ferroelectric material like PbTiO3. At
fixed D, however, the energy landscape remains single-
valued, thus allowing access to the entire electric equation
of state for PbTiO3 as well as SrTiO3.

21,22 Indeed, both
materials have a large static dielectric constant, so that
mapping at fixed D is qualitatively similar to mapping at
fixed P. Thus, in our study, the main qualitative differ-
ence between SrTiO3 and PbTiO3 will be related to the
fact that the rotational instability that prefers to develop
along a [001] axis in SrTiO3 instead prefers a [111] axis
in PbTiO3.
The paper is organized as follows. In Sec. II we intro-

duce the Landau-Devonshire model, provide the details
of our first-principles calculations, and specify the termi-
nology for symmetries that will be used later. In Sec. III
we present the results of the first-principles calculations
in one-dimensional D-field space and discuss the fitting
of the model, which is then used to compute the phase di-
agram of rotational phases in three-dimensional D space.
Finally, Sec. IV contains a summary.

II. PRELIMINARIES

A. Landau-Devonshire model

In order to explore the octahedral-rotation phase dia-
gram in the space of D fields, the internal energy U has
to be calculated and minimized on a three-dimensional
mesh of D values. Near the phase boundaries between
different rotational phases, this process would be quite
tedious; the first-principles calculations would need to
be very carefully converged, and the procedure would
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become quite time-consuming. We therefore introduce a
Landau-Devonshire model to study the phase transitions
in this system, with the coefficients in the model being
obtained from fitting to our first-principles results on a
smaller database of D values. This model can then be
used to locate the phase boundaries efficiently.
As mentioned above, the dominant AFD rotational in-

stabilities for paraelectric SrTiO3 and PbTiO3 are both
at the R point in the Brillouin zone (corresponding, in
the most general case, to the a−b−c− Glazer notation).
We therefore focus on these modes here, and define a

vector octahedral rotation θ = (θx, θy, θz) describing a
rotation by angle θx around the x-axis, etc. (or, more

generally, by angle θ = |θ| about axis θ̂).
Within our Landau-Devonshire model, then, the inter-

nal energy Utot(D, θ) is expanded as a function of dis-
placement field D = (Dx, Dy, Dz) and octahedral rota-
tions θ = (θx, θy, θz) as

Utot = UD + Uθ + Uint (1)

where

UD(D) = α(D2
x +D2

y +D2
z) + β(D4

x +D4
y +D4

z) + γ(D2
xD

2
y +D2

xD
2
z +D2

yD
2
z), (2)

Uθ(θ) = µ(θ2x + θ2y + θ2z) + ω(θ4x + θ4y + θ4z) + σ(θ2xθ
2
y + θ2xθ

2
z + θ2yθ

2
z), (3)

Uint(D, θ) = τ(θ2xD
2
x + θ2yD

2
y + θ2zD

2
z) + λ(θ2xD

2
y + θ2xD

2
z + θ2yD

2
x + θ2yD

2
z + θ2zD

2
x + θ2zD

2
y)

+κ(θxθyDxDy + θxθzDxDz + θyθzDyDz). (4)

Here we have made the approximation of truncating the
expansion systematically at overall fourth order, and
α, β, γ, µ, ω, σ, τ, λ and κ are coefficients that need to be
fitted from the first-principles calculations. The terms in
Uint describe the coupling of D and octahedral rotations.
There is no strain in this expansion since each term is
defined assuming that the strain is fully relaxed for each
(D, θ) value.
In the present work we are really only interested in the

internal energy difference Utot(D, θ)−Utot(D, 0) between
the states with and without octahedral rotations. We
denote this quantity simply as U and note that

U(D, θ) = Uθ(θ) + Uint(D, θ). (5)

In order to fit the coefficients from first-principles cal-
culations, we first apply D along just one Cartesian di-
rection, which we choose as Dz, to find the coefficients
µ, ω, σ, τ and λ. For this case we set Dx = Dy = 0 and
find

U = µθ2 + τD2
zθ

2
z + λD2

z(θ
2
x + θ2y)

+ωθ4 + (σ − 2ω)(θ2xθ
2
y + θ2xθ

2
z + θ2yθ

2
z). (6)

We then do a series of calculations in which we choose dif-
ferent initial structures with equillibrium rotations along

θ̂=[100], [110], [001] or [111] at Dz=0.0 a.u., and for each
choice (and for each Dz) we relax all the coordinates to

obtain the internal energy U(Dz, θ̂). (We increase Dz in
increments of 0.04 a.u. up to 0.12 a.u. for SrTiO3, and in-
crements of 0.02 a.u. up to 0.08 a.u. for PbTiO3.) Fitting
the model parameters to this first-principles database of
information, we obtain all the coefficients in Eqs. (3-4)
except for κ. We then do one more series of calcula-
tions with both D and θ along the [111] direction, i.e.,

D = (D0, D0, D0) and θ = (θ0, θ0, θ0), for which the
model predicts

U = 3µθ20 + 3(ω + σ)θ40 + 3(τ + κ+ 2λ)D2
0θ

2
0. (7)

(Here Dz is increased in steps of 0.02 a.u. up to 0.08 a.u.
for both materials.) Fitting in a similar way to these re-
sults, we obtain the parameter κ as well. Once all the
parameters are in hand, we can go back to Eq. (5) and
study the full behavior of octahedral rotations as a func-
tion of three-dimensional D space using this model.

B. First-principles methodology

Our calculations were performed within density-
functional theory in the local-density approximation25

using norm-conserving pseudopotentials26 and a plane-
wave cutoff of 60 Ha. A 6×6×6 Monkhorst-Pack grid27

was used to sample the Brillouin zone. The unit cell for
simulating the R-point rotation is doubled to obtain a
10-atom fcc cell. The atomic coordinates and lattice vec-
tors of this cell were relaxed until all atomic force com-
ponents were smaller than 10−5Ha/Bohr and all stress
components were below 10−7Ha/Bohr3. We used the
open-source ABINIT code package28 with the implemen-
tation of the constant-displacement-field method in 3-
dimensions22 to calculate the internal energy at a each
specified D field.

C. Terminology for symmetries

Here we introduce the notations that we will use for
describing rotational phases, following a similar scheme
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FIG. 1: Internal energy U of Eq. (5) for D applied along the ẑ direction, for phases with the octahedral rotations constrained
to be about different axes as indicated in the legend. (a) SrTiO3; (b) PbTiO3. Symbols are from first-principles calculations;
curves are from the Landau-Devonshire model.

as the one often uses for polarization.23 When the octahe-
dral rotation axis is constrained to a symmetry axis lying
along 〈001〉, 〈111〉, or 〈011〉, the resulting phase becomes
tetragonal (T ), rhombohedral (R), or orthorhombic (O),
respectively.24 Similarly, the M phases arise when rota-
tion axis is confined to a mirror plane. There are three
cases: MC, in which the axis is along [0, u, v]; and MA

or MB, in which the axis is along [uuv] with u < v or
u > v, respectively. The triclinic phase (Tri) occurs if the
axis is along [uvw] with u 6= v 6= w 6= 0. We also intro-
duce the Cartesian subscript α = {x, y, z} to specify the
unique Cartesian direction when needed. For example,
Tα denotes the tetragonal phase with rotation axis along
direction α, while Oα and MCα denote the orthorhom-
bic phase and MC phases with rotation axis lying in the
plane perpendicular to the α direction. Similarly, MAα

and MBα are the MA and MB phases with the non-
equal component v in [uuv] along the α direction.

III. RESULTS

A. First-principles calculations

We first carry out a series of calculations, starting from
D = 0 and increasing Dz in steps of 0.04 a.u. for SrTiO3

and 0.02 a.u. for PbTiO3, to explore the resulting be-
havior for the case that the octahedral rotation is con-
strained to lie along the [100], [110], or [001] axis. At
each Dz, the structure is fully relaxed with respect to
both ionic positions and lattice parameters. In all three
cases in both materials, the rotations, which are fully

developed at Dz = 0, are gradually suppressed with in-
creasing Dz until they disappear completely at a critical
value of Dz. We also attempt this procedure for the case
that the octahedral rotations started along the [111] di-
rection at D = 0. However, for SrTiO3 a rotation along
[111] is a saddle point, rather than a local minimum, of
the D = 0 energy landscape, and the breaking of the
three-fold symmetry about [111] by the applied Dz im-
mediately causes the rotation axis to switch to either the
[110] or [001] direction. For PbTiO3, by contrast, the
D = 0 system has its minimum-energy AFD axis along
[111], and we can also follow the evolution of this fourth
case as Dz is applied. In this case we find that θz grad-
ually increases, and θx = θy gradually decrease, with
increasing Dz, until a critical value is reached at which
θx and θy vanish and the solution merges with the one
with the rotation axis constrained to [001]. The results
of these calculations are shown as the symbols in Figs. 1
and 2, where the internal energy difference U of Eq. (5)
and the equilibrium rotation angles are plotted versus
Dz.

We also carry out calculations for both materials with
D and the rotation axis both constrained to lie along
[111]. As mentioned in Sec. II A, the purpose of this is
just to obtain the additional coefficient κ that was not
determined from the calculations with D along [001], so
it was not necessary to study other rotation axes for
this case. The results (not shown) again indicate that
the rotations gradually decrease with increase of D0 for
D = (D0, D0, D0), although in the case of SrTiO3 the
rotations never vanish over the range of D0 up to 0.10
a.u. studied here.
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FIG. 2: Octahedral rotation angles (θx, θy , θz) for different
phases for D applied along ẑ. (a) SrTiO3; (b) PbTiO3. For
[110] cases (θx=θy), θx is plotted. For the PbTiO3 [111]-
derived case (θx=θy 6=θz), θx and θz are plotted. Symbols are
from first-principles calculations; curves are from model.

B. Fitting of the model parameters

We now use the results of the above first-principles
calculations to determine the parameters in Eqs. (3-4)
following the procedure detailed at the end of Sec. II A.
The resulting parameter values are reported in Table I.
The predictions of the fit (solid curves) are compared
with the direct first-principles results (symbols) in Figs. 1
and 2. It is clear that the model agrees quite well with
the first-principles calculations.

TABLE I: Fitted coefficients of the Landau-Devonshire model
of Eqs. (3-5), defined with energies in meV, rotation angles in
degrees, and displacement fields in a.u.

µ ω σ τ λ κ

SrTiO3 –0.863 0.015 0.036 64.45 41.19 –139.36
PbTiO3 –0.661 0.019 0.033 78.80 96.27 –147.91

C. Details for D along [001]

From Fig. 1, we can see that SrTiO3 and PbTiO3 have
different octahedral rotation patterns. At D = 0, SrTiO3

has the lowest energy in the T phase, which is its true
ground state experimentally below 105K, and the highest
energy in the R phase (not shown in the figure because it
is destabilized by any finiteDz.) In PbTiO3, on the other
hand, the energy ordering is just the opposite, with the
R phase lowest and the T phase highest in energy. In the
context of Eq. 6, the energy ordering of the phases atD =
0 is determined by the combination of parameters (σ −
2ω), with the R or T phase lowest in energy when this
combination is negative or positive, respectively. This is
confirmed by the coefficients in Table I.
As Dz increases, Fig. 1 shows that the internal energy

U of SrTiO3 and PbTiO3 increases and finally reaches
zero. Recalling that U is measured relative to the struc-
ture with no rotations, we conclude that the octahedral
rotations disappear at a sufficiently high Dz field. How-
ever, the behavior is different for these two materials.
Fig. 1(a) shows that for SrTiO3 the T phase24 with rota-
tion axis along [100] or [010] has the lowest energy as Dz

increases, while the T phase with rotation along [001] in-
creases sharply in energy and becomes the least favorable
state whenDz > 0.05 a.u. This suggests that the T phase
with its rotation axis perpendicular toD is favored, while
the one with rotation axis parallel to D is suppressed.
However, PbTiO3 has a quite different behavior, as can
be seen in Fig. 1(b). The state of lowest internal energy
at D = 0 is the R phase. As Dz increases, the rotational
axis is perturbed to be along [uuv] for v > u, putting the
system in the MA phase. Eventually, the internal energy
of this state merges into the curve for the T phase (axis
along [001]), indicating a phase transition from MA to T
at some critical value of Dz. The T phase, with its rota-
tion axis parallel to D, is then favored at higher Dz, until
there is a second phase transition at which the rotations
disappear.

The details of the rotational behavior in PbTiO3 can
be seen more clearly in Fig. 2(b), which shows the vari-
ation of the various rotation angles with Dz field. The
rotation angles decrease as Dz increases for all phases ex-
cept for the initial R phase. This phase is immediately
perturbed to become MA as soon as a non-zero Dz is
present. With increasing Dz, the rotation angles θx and
θy decrease, but θz increases. That is, the rotation axis
starts from [111] (R) and then rotates in the (11̄0) plane
(MA) towards [001] (T ). We can now see that the crit-
ical Dz at which T phase is reached (i.e., at which θx
and θy vanish) is at Dz=0.058a.u. This also corresponds
to the merger of MA and T phases in the internal en-
ergy curves of Fig. 1(b). For larger Dz, θz then decreases
monotonically and reaches zero at Dz=0.092 a.u.

For SrTiO3, on the other hand, the picture is sim-
pler. As Dz increases in Fig. 2(a), the rotation axis re-
mains along [100] while the amplitude of θx monotoni-
cally decreases and disappears entirely at a critical value
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FIG. 3: Phase diagram for rotational phases of SrTiO3 under applied D field. Each panel is a cut plotted in the Dx-Dy plane
(note the change of scale between top and bottom panels) at fixed Dz. (a) Dz=0.00 a.u.; (b) 0.015 a.u.; (c) 0.08 a.u.; (d) 0.16
a.u.; (e) 0.172 a.u.; (f) 0.24 a.u. Solid lines are second-order boundaries; decorated solid lines are first-order boundaries; and
dashed, dash-dotted, and dotted lines are special cases of higher symmetry induced by high-symmetry D-vectors (see text for
details). Gray area in (b) is detailed in Fig. 4.

of Dz=0.144a.u.

D. Three-dimensional D field

We now turn to a detailed discussion of the behavior of
SrTiO3 and PbTiO3 as a function of three-dimensional
D field, based on the model of Eqs. (3-5) using the co-
efficients fitted from first principles as reported in Table
I.
First, note that because the coefficient µ is negative

in both SrTiO3 and PbTiO3, we are guaranteed to get a
phase with non-zero rotations at small D. Also, because
of the non-zero value of κ, we generically obtain a tri-
clinic rotational axis (θx 6= θy 6= θz) at a general point
Dx 6= Dy 6= Dz 6= 0 in D space. High-symmetry phases
will only exist under special conditions, i.e., when one
or more D components vanish, or when two or more D

components are equal.

1. Phase diagram for SrTiO3

Figure 3 shows several two-dimensional (Dx, Dy) slices
of the three-dimensional phase diagram of STO taken at

different values of Dz. In these panels, the outer solid
(blue) boundaries (and also the inner ones in Fig. 3(d-
e)) indicate a second-order phase transition from a phase
with octahedral rotations to a phase without rotations.
Other solid lines represent first-order phase boundaries
as will be explained below. Dashed and dotted lines
are not true phase boundaries, but instead denote high-
symmetry structures that occur as special cases along
special lines or planes in D space; we use dashed lines
(red) for MA or MB phases, dotted lines (black) for T
phases, dashed-dotted lines (green) for MC phases, and
short-dashed-dotted lines (brown) forO phases, using the
notation developed in Sec. II C.

In Fig. 3(a), for Dz = 0, the squarish solid curve
marked by crosses (green) is a first-order boundary sepa-
rating the Tz phase (inside) from phases with θz=0 (out-
side). For generic (Dx, Dy) outside, this corresponds to
the MCz phase (recall, from Sec. II C, that this means
that the rotation axis lies in the θx − θy plane). Along
the horizontal axis (Dy = 0) outside, shown by the dotted
(black) line, the Tz and Ty phases are degenerate. How-
ever, any small finite Dy favors the Ty phase and adds a
small θx component (via the κ term) so that the MCz

phase results. That is, crossing this dotted line from
negative to positive Dy just causes θx to cross smoothly
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FIG. 4: Enlargement of the central portion of Fig. 3 (Dx, Dy ∈
[−0.08, 0.08] a.u.) for small Dz values. (a) Dz=0.00 a.u.; (b)
0.01 a.u.; (c) 0.015 a.u.; (d) 0.025 a.u.; (e) 0.04 a.u.; (f) 0.05
a.u. Color coding is such that pure red, green and blue cor-
respond to the Tx, Ty and Tz phases respectively, with color
values weighted according to |θx|, |θy | and |θz| for intermedi-
ate phases.

through zero, so that this is not a true phase boundary.
Along the [110] direction in D space, the behavior is

rather complex. We let Dx = Dy = D0. Recall that in-
side the square region (small D0) one finds the Tz phase.
Next comes a segment of first-order phase boundary, in-
dicated again by a solid line with crosses (green), along
which there are two degenerate MCz phases with rota-
tion angles (θa,θb,0) and (θb,θa,0) (with θa 6= θb). Any
small step away from this line (while remaining in the
Dz=0 plane) favors one or the other of these phases, and
also slightly perturbs its angles θx and θy. Thus, when
crossing this line, both θx and θy jump discontinuously.
When D0 increases further, as shown by the dash-dotted
(brown) line, one finds the Oz phase exactly on this line,
but it is just a special case of the MCz phase as |θx| and
|θy| cross smoothly through each other. Like the dotted
(black) line, therefore, this is not a true phase boundary.
As Dz increases from zero, the behavior of the phase

diagram is initially very complex, especially in the vicin-
ity of the squarish central region of Fig. 3(b). The phase
behavior in the outer region at Dz = 0.015 a.u. is shown
in Fig. 3(b). The MCz phase at Dz=0 is perturbed to
become triclinic as θz becomes non-zero linearly in Dz.
The Tx and Ty lines at Dz=0 are perturbed to MC struc-
tures as shown by the dash-dotted (green) lines, and the
Oz lines are converted to MA and MB structures as
shown by the dashed (red) lines. There are no true phase
transitions when crossing these non-solid lines.
The phase behavior in the inner (grayed-out region)

of Fig. 3(b) is sufficiently complicated that we chosen to
provide a separate Fig. 4 to describe the behavior there.
The six panels of Fig. 4 show a blow-up of the phase
diagram in the rangeDz ∈ [0, 0.05] a.u., with color coding
as explained in the caption. We shall not describe all the
details here, as these delicate transitions occur in quite
a small region around the origin in D space and are not
very relevant to the broader discussion.
In Figs. 3(a-d), the solid outer boundary (second or-

der transition to the rotationless phase) expands to larger
Dx and Dy with increasing Dz (note the change of scale
from the first three to the last three panels). In Fig. 3(c),
which is for Dz=0.08 a.u., the first-order boundaries,
shown by solid lines marked by squares (magenta), are
the remnant of the first-order boundaries of Figs. 4(e-f);
these diminish and disappear as Dz is increased further.
Then, by the time Dz=0.16 a.u. is reached in Fig. 3(d), a
new pocket of rotationless phase appears near the origin
in the Dx-Dy plane. This pocket grows until, at a critical
value of Dz=0.172a.u. shown in Fig. 3(e), the inner and
outer regions connect and split the region of rotational
phases into four ellipses, as shown forDz=0.24 a.u. shown
in Fig. 3(f). We expected these ellipses to shrink and
disappear with a further increase of Dz, but in fact this
happens only very slowly; along the line Dx = Dy = Dz,
the rotations survive to quite large values of D, as is con-
firmed by the first-principles calculations upon which the
model is based. We comment on this further is Sec. III E.

2. Phase diagram for PbTiO3

The situation is simpler for the rotational phase dia-
gram of PbTiO3. The phase diagrams for several snap-
shots at increasing Dz are shown in Fig. 5 for PbTiO3

using the same conventions as in Fig. 3 wherever possible.
When Dz=0 as in Fig. 5(a), the center point (D=0) is in
the R phase. The surrounding area enclosed by the solid
lines (green) is triclinic except along the [100] and [110]
symmetry lines, which are MAx (lines with circles, red)
and MBz (dashed lines, red) respectively. The transition
is continuous across the latter, but first-order across the
former. Essentially, at small three-dimensional D, the
system prefers to be in a slightly perturbed version of
one of four R phases, depending on the octant in which
D resides. Using the notation S++− denotes the octant
with Dx > 0, Dy > 0, Dz < 0, etc., we find that the R-
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FIG. 5: Phase diagram for rotational phases of PbTiO3 under applied D field. Dx-Dy are cuts plotted at (a) Dz=0.00 a.u.;
(b) 0.02 a.u.; (c) 0.08 a.u. Conventions are similar to those of Fig. 3 (see text for details).

like phase with θ̂ ≃ [111] is preferred in S+++ and S−−−;

θ̂ ≃ [1̄11] is preferred in S−++ and S+−−; θ̂ ≃ [11̄1] is

preferred in S+−+ and S−+−; and θ̂ ≃ [111̄] is preferred
in S++− and S−−+. The planesDx=0, Dy=0, andDz=0
thus form first-order boundaries in this small-D region,
appearing as solid lines (labeled with circles, red) in the
2D plots. It follows that the octahedral rotation can
be “switched” between these R-like (actually, triclinic)
phases by a small change of external electric displace-
ment field.
The area between the inner (green) and outer (blue)

solid lines in Fig. 5(a) is the MCz phase, which be-
comes Oz along [110] directions (short-dashed-dotted
lines, brown) and Tx along [100] direction (dotted lines,
black). The inner solid (green) lines thus represent
second-order phase boundaries at which θz → 0 as one
passes to the outside.
As was the case for SrTiO3, the high-symmetry phases

for PTO in Fig. 5(a) become lower-symmetry phases as
Dz increases, Figs. 5(b-c). In fact, as soon as Dz > 0, the
entire region inside the solid (blue) boundary is generi-
cally triclinic. Special cases occur along the dashed lines
(red), where the symmetry is MA or MB, and along
the dashed-dotted lines (green), which is MC. When
Dz is small enough, as in Fig. 5(b), the first-order phase
boundaries mentioned above are still visible as the solid
lines with squares (magenta) near the origin, correspond-
ing to the Oz phase, but with increasing Dz these shrink
and then vanish, as shown in Fig. 5(c). The solid (blue)
boundary, outside which the rotational phases disappear,
can also be seen to shrink with increasing Dz, at first
slowly and then more rapidly, and to disappear by the
time Dz reaches 0.10 a.u.

E. Discussion

There are quite significant differences between the ro-
tational phase diagrams for SrTiO3 and PbTiO3, as
shown in Figs. 3 and 5. At smallD, the major differences

arise from the fact that the D=0 ground states are differ-
ent, namely T and R respectively. Thus, small applied D

fields essentially switch the system between T -like phases
in SrTiO3, or between R-like phases in PbTiO3.

As D gets larger, the behavior becomes rather com-
plex, but we can identify an important difference that
can be traced back to the parameter values of the model.
Namely, we notice a much more isotropic behavior of
the outer boundary at which the rotations disappear in
PbTiO3 compared to SrTiO3. In PbTiO3, for example,
we find that the critical magnitude of D at which the ro-
tations disappear is ∼0.09 a.u. and ∼0.07 a.u. in the [100]
and [111] D-space directions respectively. For SrTiO3,
on the other hand, the corresponding values are ∼0.14
and ∼0.40 a.u. respectively. In addition to being larger
(reflecting the stronger tendency to rotational instability
in SrTiO3), the anisotropy between [100] and [111] di-
rections is very much greater, with rotations extending
much further in D space along the [111] direction. This
can be understood from the coefficients reported in Table
I. Restricting ourselves to the case of D = (D0, D0, D0)
and θ = (θ0, θ0, θ0), the critical displacement Dc can be
obtained from Eq. 5 as D2

c = −µ/(τ +2λ+κ). From this
we obtain Dc=0.34 and 0.07 a.u. for SrTiO3 and PbTiO3

respectively. The greatly enhanced anisotropy and large
value of Dc along this [111] direction can thus be traced
to the small value of the denominator (τ + 2λ + κ) for
SrTiO3.

It is useful to put the above results in perspective re-
garding the dielectric behavior. SrTiO3 is known exper-
imentally to remain paraelectric down to 0K, so that
the entire space of D-fields should be accessible by vary-
ing an applied E field, even if the dielectric constant
is very large. PbTiO3, on the other hand, is strongly
ferroelectric, so that the region of small D corresponds
physically to the saddle point of the multi-well energy
landscape. This internal-energy landscaped as a func-
tion of D (without octahedral rotations) was mapped
out in our previous work22, where the spontaneously po-
larized tetragonal ground state occurs at |D[001]| = 0.17
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a.u. Similarly, the spontaneously polarized states with
constrained orthorhombic and rhombohedral symmetry
occur at |D[110]|=0.15 a.u. and |D[111]|=0.14 a.u. respec-
tively. So, we can roughly think of this as a three-
dimensional “Mexican hat” potential with a radius of
∼0.15 a.u. In comparison, the results presented above
show that the octahedra rotations disappear for |Dz| >
0.09 a.u. and |D[110] > 0.11 a.u. Thus, the entire re-
gion of the interesting rotational phase diagram shown
in Fig. 5 lies inside the Mexican-hat radius, in the re-
gion where the crystal is unstable under fixed E (but not
under fixed D) electric boundary conditions.

IV. SUMMARY AND CONCLUSION

In summary, we have investigated the phase tran-
sitions associated with oxygen octahedral rotations in
SrTiO3 and PbTiO3 as a function of a three-dimensional
applied electric displacement field, first directly from
first-principles calculations and then also using a fitted
Landau-Devonshire model. For SrTiO3, the D=0 ground
state is tetragonal, with degenerate states corresponding
to the rotation angle lying along one of the three Carte-
sian axes, and for small D-vectors the ground state is a
weakly perturbed version of one of these states. Similarly,
for PbTiO3, theD=0 ground state is rhombohedral, with
four degenerate states having rotation axis in one of the
[111] or related directions, and again a small D selects
and weakly perturbs one of these states. However, as

the strength of D is increased, we find a quite compli-
cated phase diagram for each material, with both first-
and second-order phase boundaries appearing in different
parts of the diagram. The structure is especially rich for
the case of SrTiO3. For both materials, the general state
associated with generic Dx 6= Dy 6= Dz 6= 0 is triclinic,
but states with higher symmetry tend to arise when D

itself has higher symmetry. In both materials, the rota-
tions eventually disappear at sufficiently large values of
applied D.

Our work represents one of the first attempts to carry
out a systematic three-dimensional characterization of
the interplay between polar and octahedral-rotation de-
grees of freedom in perovskites of this class. While there
is no external field that couples directly to the rotational
degrees of freedom, so that is very difficult to find ways of
controlling the rotations directly, the present work sug-
gests that such control should be possible indirectly via
the application of appropriate electric fields. In any case,
the observed richness of behavior suggests that there may
be much more to learn in other materials of this class and
in more distantly related materials.
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