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In recent years, methods have been developed that allow first-principles electronic-structure cal-
culations to be carried out under conditions of fixed electric field. For some purposes, however, it
is more convenient to work at fixed electric displacement field. Initial implementations of the fixed-
displacement-field approach have been limited to constraining the field along one spatial dimension
only. Here, we generalize this approach to treat the full three-dimensional displacement field as
a constraint, and compute the internal-energy landscape as a function of this multidimensional
displacement-field vector. Using PbTiO3 as a prototypical system, we identify stable or metastable
tetragonal, orthorhombic and rhombohedral structures as the displacement field evolves along [001],
[110] and [111] directions, respectively. The energy minimum along [001] is found to be deeper than
that along [110] or [111], as expected for a system having a tetragonal ground state. The barriers
connecting these minima are found to be quite small, consistent with the current understanding
that the large piezoelectric effects in PbTiO3 arise from the easy rotation of the polarization vector.

PACS numbers: 77.80.-e,71.15.-m

I. INTRODUCTION

Since their introduction almost a decade ago,1,2 meth-
ods for carrying out first-principles electronic-structure
calculations under conditions of fixed electric field E have
found wide application in the study of the dielectric,
piezoelectric, and ferroelectric behavior of materials.3–6

More recently, variants of this approach, in which the
electric polarization7 or the electric displacement field8

is taken as the fundamental variable instead, have been
introduced. Fixing the displacement field D has the
intuitive interpretation of imposing open-circuit elec-
trical boundary conditions, which is often especially
useful for studying layered geometries such as metal-
oxide interfaces9,10 and ferroelectric capacitors11 and
superlattices.12,13

There are several reasons why the fixed-D approach
is advantageous for such applications. In a superlattice
structure, the local polarization P and electric field E
can vary from one layer to another, so their overall spa-
tial average is not a fundamental quantity. In contrast,
D is constant throughout the system, since free charge is
assumed to be absent. (Here, E , P andD refer to the field
components in the stacking direction.) Therefore, choos-
ing D as the fundamental electrical variable is especially
practical because it makes it possible to decompose the
equation of state of a layered structure into the sum of
contributions from the individual building blocks,11 with
each of these contributions depending only on the local
environment. Moreover, long- and short-range electro-
static interactions are separated efficiently. Such an ap-
proach facilitates the design of superlattice structures of
desired functionality by appropriate choice of the stack-
ing sequence.12,13

Even for bulk crystals, it turns out that working at
fixed D is more convenient than working at fixed E when
considering materials that have ferroelectric instabilities.

(We now refer to three-dimensional field vectors.) The
reason is that, in the region of the energy landscape near
the unstable paraelectric configuration, the system is un-
stable to transformation into one of the ferroelectric do-
main states when working at fixed E. The unstable para-
electric region of the E(P) energy landscape is thus inac-
cessible using this approach. When working at fixed D,
on the other hand, the internal energy U(D) is typically
found to be a single-valued function of D,14 thus allow-
ing access to the entire electric equation of state.15 More-
over, the second derivative of U with respect to D is di-
rectly related to the inverse capacitance of the material.8

When this quantity goes negative, it is a signature of the
appearance of a ferroelectric instability, and indeed the
magnitude of its negative value has been shown to be
an insightful indicator of the strength of the ferroelec-
tric instability.8,15 For example, it can play an important
role in determining the critical thickness for ferroelec-
tricity in capacitor nanostructures,11 and its dependence
on material structure and composition can be helpful in
understanding the origin of the ferroelectric instability.

Up to now, applications of the fixed-displacement-
field approach have been carried out using the private
LAUTREC code package,16 in which the fixed-D con-
straint can be applied in only one Cartesian direction.
In the present work, we have implemented the multidi-
mensional fixed-D method in the context of the open-
source ABINIT code package17 and demonstrates that it
can be used to calculate the energy surface throughout
the region of instability associated with the ferroelectric
behavior, using PbTiO3 as our prototypical material. By
mapping the internal-energy landscape in the full three-
dimensional D space, we can easily compare the ener-
gies of the competing ferroelectric states, trace the paths
connecting these states, and compute the energy barri-
ers along these paths. This approach therefore gives us
a powerful tool for characterizing the ferroelectric be-
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havior of a given material in all of its three-dimensional
complexity in D (or E or P) space.

The paper is organized as follows. In Sec. II, we briefly
review the formalism for the fixed-D calculations and de-
scribe our implementation. In Sec. III, we first test the
implementation and compare with a previous calculation
on PbTiO3. We also explore the internal energy land-
scape of PbTiO3 in multimensionalD space, and map out
the relationships between the various field variables and
their corresponding energy functionals. Finally, Sec. IV
contains a summary and conclusions.

II. FORMALISM AND METHODOLOGY

We begin by briefly reviewing the fixed-E and fixed-D
formalisms. For the former,1,2 the natural energy func-
tional is the electric enthalpy

F(E , v) = EKS(v)− ΩE ·P(v), (1)

while the fixed-D method8 is naturally formulated in
terms of the internal energy

U(D, v) = EKS(v) +
Ω

8π
[D− 4πP(v)]2 . (2)

In these equations Ω is the cell volume, v denotes the
internal (ionic and electronic) coordinates, and EKS is
the ordinary zero-field Kohn-Sham energy functional.

To implement the fixed-D method based on the above
formalism, we have modified the open-source ABINIT
code package, in which the fixed-E calculation is already
available.1,18 The key step is to update the electric field
E after each SCF iteration according to

En+1 = λ(D − 4πPn) + (1− λ)En, (3)

where Pn and En are polarization and electric field af-
ter the n’th SCF iteration and λ is a damping parame-
ter used to control the convergence speed. The iteration
continues until the normal SCF convergence criterion is
reached, and in addition, |D− 4πPn − En| becomes less
than a given tolerance.

Our calculations were performed within density-
functional theory in the local-density approximation19

using norm-conserving pseudopotentials20 and a plane-
wave cutoff of 60 Ha. The pseudopotentials were the
same as those of Ref 8. A 6 × 6 × 6 Monkhorst-Pack
grid21 was used to sample the Brillouin zone. The
atomic coordinates of the five-atom unit cell were re-
laxed until all atomic force components were smaller than
10−5Ha/Bohr, and the cell size and shape was varied un-
til all stress components were below 10−7Ha/Bohr3.
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FIG. 1: (Color online) (a) Reduced electric field ε̄, and (b)
internal energy U , as a function of reduced electric displace-
ment field d along the [001] direction. The LAUTREC results
are reproduced from Ref. 8. The solid curve in (a) is a cubic-
spline fit to the ABINIT results; the solid curve in (b) is the
numerical integral of the curve in (a).

III. RESULTS

A. Testing consistency

In order to test our implementation and compare the
results with the previous calculation of Ref. 8, we have
computed the internal energy U and the electric field E
as a function of D for the case that D lies along the
[001] axis. We started the calculation from the relaxed
cubic structure (lattice constant of 3.88 Å) at D = 0, and
increased D in steps of 0.02 a.u. At each D, the structure
was fully relaxed with respect to both ionic positions and
lattice parameters.
The results are plotted in Fig. 1(a), except that “re-

duced” field variables are used. That is, for each data
point we computed the reduced electric field ε̄ = cE and
the reduced displacement field d = a2D/4π, where a and
c are the x-y and z lattice parameters respectively at
the given value of D along [001]. In Fig. 1(b), we plot
the internal energy U vs. reduced displacement field d.
The previous results of Ref. 8, which were presented in
terms of the same reduced variables, are also included
in the plots. It is evident that the agreement between
our Abinit calculation and the previous Lautrec one is
excellent.
An advantage of using reduced variables in Fig. 1 is

that d, ε̄, and U are related by the exact relation

∂U

∂d
= ε̄ (4)

even when the relaxation of the lattice vectors with D is
included.8 (By contrast, the corresponding relation be-
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tween D, E , and U would require correction terms arising
from derivatives of lattice vectors and cell volume.) To
test whether our data is consistent with Eq. (4), we car-
ried out a cubic spline fit of the ε̄ vs. d results to produce
the solid curve shown in Fig. 1(a), and then integrated it
numerically to obtain the solid curve shown in Fig. 1b.
It can be seen that the internal energies coming directly
from the Abinit calculations coincide quite precisely with
those predicted by the application of Eq. (4).
These tests, which were repeated along other directions

such as [110] with equally good results, confirm the cor-
rectness and internal consistency of our computational
implementation.

B. Internal energy in multimensional D space

We now explore the internal energy landscape of
PbTiO3 in three-dimensional D space. While our calcu-
lations can be done for arbitrary D, we restrict ourselves
for presentation purposes to two-dimensional planes in D

space. We begin with the case ofD lying in the x-y plane.
Recall that we already obtained relaxed solutions for a se-
ries of D[100] values increasing in increments of 0.02 a.u.,
up to 0.2 a.u., as described in the previous section. For
each of these values of D[100], we use this solution as a
starting structure as we apply D[010] in steps of 0.02 a.u.,
up to 0.2 a.u., while keeping D[100] constant. In other
words, each equilibrium state is used as starting guess
for its neighbour along y. In this way U(D) is obtained
on the specified grid in the quadrant with D[100] > 0 and
D[010] > 0, and then symmetry is used to obtain the full
internal-energy landscape.
The result is plotted in Fig. 2. Stationary points in

such a diagram correspond to states with E = 0. The four
minima in the ±[001] and ±[010] directions correspond to
four of the six tetragonal (T) ground states, at which P
takes on its spontaneous value Ps and D = 4πPs. There
are also four saddle points along the [110] and related
directions, corresponding to states of orthorhombic (O)
symmetry. The fact that these are higher in energy than
the tetragonal minima just reflects the well-known fact
that PbTiO3 has a tetragonal ground state at T = 0.
The figure also shows that the energy differences are

quite small along the valley connecting states T → O
→ T, relative to the large barrier that would have to be
overcome if one were to pass through the origin of the
figure. This is consistent with the work of Cohen and
collaborators22–24 who pointed out how the easy rotation
of the orientation of the polarization could lead to large
piezoelectric responses, even if the energy landscape is
relatively stiff with respect to changes in the magnitude
of the polarization. Regarding the piezoelectric response
of PbTiO3 starting from its tetragonal ground state, the
relative flatness of the energy landscape near state T in
Fig. 2 along that path that would lead from T → O → T
is heuristically consistent with a relatively large observed
value of the e15 piezoelectric constant in this material.23
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FIG. 2: (Color online) Internal energy surface U(D) of
PbTiO3 plotted for D lying in the plane spanned by the [100]
and [010] directions. (a) Perspective plot. (b) Contour plot,
with 3.0meV separating contour levels. The minimum at
T and saddle point at O represent spontaneously polarized
tetragonal and orthorhombic states respectively.

Fig. 3 shows corresponding plots for the plane span-
ning the [110] and [001] directions in three-dimensional
D space. The minima at the top and bottom of panel (b)
are tetragonal states equivalent to those in Fig. 2. The
apparent local minima at left and right in panel (b) are
actually saddle points in three-dimensional D space, and
correspond to the orthorhombic states already discussed
in connection with Fig. 2. We now also see four equiva-
lent saddle points corresponding to a rhombohedral (R)
state with the polarization along [111] or related direc-
tions; these are points of double instability, in the sense
that the Hessian of U(D) has two negative eigenvalues.
Once again, it is evident that there is a polarization ro-
tation path via T → R → O that is relatively low in
energy compared to a direct polarization reversal pass-
ing through the paraelectric maximum at the origin.

The properties of PbTiO3 at the tetragonal, or-
thorhombic and rhombohedral phases are summarized in
Table I. The tetragonal phase has the lowest internal en-
ergy, followed by the orthorhombic and then the rhombo-
hedral phase, consistent with previous studies and with
the well-known fact that the ground state of PbTiO3 is
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FIG. 3: (Color online) Internal energy surface U(D) of
PbTiO3 plotted for D lying in the plane spanned by the [110]
and [001] directions. (a) Perspective plot. (b) Contour plot,
with 3.0meV separating contour levels. The minima at T
and O and the saddle point at R represent spontaneously po-
larized tetragonal, orthorhombic, and rhombohedral states,
respectively.

tetragonal. It can also be seen that the displacement field
Dmin minimizing U and the corresponding spontaneous
polarization Ps = Dmin/4π decrease when going from T
to O to R, as might have been guessed from the fact that
T is the deepest minimum while R is the shallowest.

C. Relations between field variables

The electric equation of state of a given crystalline in-
sulator is given by specifying the relation between any
two of the three field variables P, D, and E, as for exam-
ple by the functions E(D), D(P), or P(E). It is straight-
forward to convert between these using D = E+4πP. In
our approach we obtain E(D) directly, and then generate
D(P) or P(E) by numerical manipulation. In general the
electric equation of state is a vector function of a vector,
so to simplify our presentation we have calculated and
plotted the electric equations of state only for cases in
which all the field variables are constrained to lie along
either the [001], [110], or [111] axis.

TABLE I: Properties of PbTiO3 in tetragonal (T), orthorhom-
bic (O), and rhombohedral (R) phases. The cubic phase is
chosen to define the zero of the internal energy U . Dmin is
the displacement field at which U is a minimum, and Ps is the
corresponding spontaneous polarization. The lattice vectors
are also given.

U Dmin Ps a, b, c
(meV/cell) (a.u.) (C/m2) (Å)

T −47.78 0.17 0.78 a =3.85, c =4.03
O −39.80 0.15 0.68 a = b =3.92, c =3.86
R −37.23 0.14 0.65 a=3.90, α=89.63◦

The results are presented in Fig. 4, with the electric
equations of state of the form E(D), D(P ), and P (E)
plotted in panels (a-c) respectively. The different curves
correspond to plots along the [001], [110], or [111] axis.
We have also marked several special states on the dia-
grams for the case of the fields being along the [001] axis.
Proceeding from 1 → 2 → 3 (or equivalently by symme-
try from 1 → 4 → 5), we pass from the cubic paraelectric
State 1 to the spontaneously polarized tetragonal ferro-
electric State 3. As the displacement field D increases
in panel (b), the polarization P increases nearly linearly,
while the electric field E in panel (a) at first decreases
to its minimum value (which defines State 2) and then
increases and passes through zero at State 3. The plot
of P (E) in panel (c) takes the form of a hysteresis curve,
but the portions of this curve in the region 4 → 1 →
2 are unstable and therefore inaccessible under fixed-E
boundary conditions. This is a region in which the di-
electric permittivity χ = ∂P/∂E is negative. The ability
of the fixed-D method to explore this region of instabil-
ity, which cannot be done using the fixed-E method, is
one of the important advantages of working at fixed D.8

Similar behaviours appear for D along the [110] or
[111] directions. For these directions, States 1-5 are not
marked, but are defined in the same way. The region
of instability from State 1 to 2 is almost the same along
all three directions, as can be seen in panels (a) and (c).
In all cases, D is very nearly linear in P in panel (b).
The main difference comes in the D and P values at the
spontaneously-polarized State 3, which, as already dis-
cussed in connection with Table I, increase as we go from
the [111] (R) to the [110] (O) to the [001] (T) directions.
Also, E increases much faster along [110] and [111] than
along [001] after crossing the unstable State 2 in panel
(a).

We emphasize that the hysteresis curves shown in
Fig. 4(c) should not be compared directly with experi-
ment. They correspond to the theoretical intrinsic hys-
teretic behavior that would occur if the entire crystal
would switch coherently (i.e., maintaining full crystal pe-
riodicity at all times) from +Ps to −Ps on a path cross-
ing through P = 0. This is a highly unrealistic picture
of real ferroelectric switching, which usually proceeds by
the motion of a domain wall between domains of differ-
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FIG. 4: (Color online) Electric equations of state of the form E(D) (a), D(P ) (b), and P (E) (c), plotted for fields constrained
to lie along the [001], [110] or [111] directions. All units are a.u. Numbered dots on the [001] curves indicate special states as
described in the text.

ent orientation of the polarization.25 Our intrinsic coer-
cive field of 2.5MV/cm for the [001] case, which can be
obtained from E at State 2 in panel (a) or (c), is sure
to be very much larger than the experimental one, which
is most likely determined by pinning of domain walls to
defects or by nucleation phenomena.

D. Relations between energy functionals

It is also instructive to see how the energy function-
als behave as one traverses the trajectories shown in
Fig. 4. Recall that the energy functionals that are nat-
urally associated with field variables D, P , and E are
U(D), EKS(P ), and F(E); these are plotted in panels
(a-c) of Fig. 5, respectively. Each plot again shows the
behavior for fields constrained along either [001], [110],
or [111], and the special States 1-5 are again marked for
the [001] case.
The U(D) and EKS(P ) plots in panels (a-b) look re-

markably similar after a rescaling of the horizontal axis
by a factor of 4π. This is not surprising, since States
1, 3, and 5 have E = 0, and are thus guaranteed to be
extrema and to appear in exactly the same place in both
panels (after 4π rescaling). The inflection points corre-
sponding to States 2 and 4 are not located in quite the
same place in both diagrams, but it is difficult to tell this
by eye. Both panels clearly show a qualitatively similar
double-well potential.
The F(E) curve in Fig. 5(c) looks complex, but its

consistency with Fig. 4(c) can be checked through the
relation P = −∂F/∂E , which follows from Eq. (1). Go-
ing through the unstable region from State 1 to State 2
in Fig. 5(c), E becomes negative while −∂F/∂E becomes
positive, consistent with the corresponding behaviors of E
and P in Fig. 4(c). Then in the metastable region from
State 2 to State 3, and into the stable region beyond
State 3, E returns to zero and then goes negative while
−∂F/∂E continues to grow more positive, again consis-
tent with Fig. 4(c). The fact that F diverges to −∞ as

|E| becomes large may look strange, but it is the normal
behavior of F(E). For example, for a simple linear di-
electric, U(D) and EKS(P ) are simple upright parabolas,
while F(E) is an inverted parabola,8 and the asymptotic
behaviors at large |E| are similar to those appearing in
Fig. 5.

IV. SUMMARY AND CONCLUSIONS

In summary, we have demonstrated the possibility of
carrying out first-principles density-functional calcula-
tions under boundary conditions in which all three com-
ponents of the electric displacement field D are fixed.
We have implemented the method in the open-source
ABINIT software package.

Using PbTiO3 as a prototypical system, we have ex-
plored the internal-energy landscape as a function of the
full three-dimensional displacement-field vector. We have
identified the mimimum-energy tetragonal, orthorhom-
bic and rhombohedral structures, and confirmed that the
computed properties agree with previous first-principles
studies. Our results allow for easy visualization of the
low-energy paths for polarization rotation, known to be
associated with large piezoelectric responses in this class
of compounds. We have also presented the electric equa-
tions of state relating E , D and P , as well as the corre-
sponding energy functionals, along symmetry lines in D

space.

We hope that this fixed-D approach may be useful for
exploring the internal energy landscape of more compli-
cated ferroelectric and dielectric materials, in bulk or
superlattice form, as well as for studying domain-wall
properties, piezoelectric and flexoelectric responses, field-
driven phase transitions, and other phenomena in this
important class of materials.
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