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The Chern-Simons axion coupling of a bulk insulator is only defined modulo a quantum of e2/h.
The quantized part of the coupling is uniquely defined for a bounded insulating sample, but it
depends on the specific surface termination. Working in a slab geometry and representing the
valence bands in terms of hybrid Wannier functions, we show how to determine that quantized part
from the excess Chern number of the hybrid Wannier sheets located near the surface of the slab.
The procedure is illustrated for a tight-binding model consisting of coupled quantum anomalous
Hall layers. By slowly modulating the model parameters, it is possible to transfer one unit of
Chern number from the bottom to the top surface over the course of a cyclic evolution of the bulk
Hamiltonian. When the evolution of the surface Hamiltonian is also cyclic, the Chern pumping is
obstructed by chiral touchings between valence and conduction surface bands.

I. INTRODUCTION

The axion field was originally introduced as a strat-
egy for resolving the non-violation of time reversal (T )
and spatial inversion (P) symmetry in quantum chro-
modynamics (QCD).1 Specifically, the gauge symmetry
of QCD allows a term in the Lagrangian that is a non-
Abelian version of

Lθ =
e2

h

θ

2π
E ·B, (1)

where θ is a fixed dimensionless parameter, and E and B
are the electric and magnetic fields. Since B and E are
odd under T and P respectively, these symmetries are in-
dividually broken by Lθ. The most striking consequence
of such a term is the prediction of a finite electric dipole
moment for the neutron, but recent experimental bounds
on this quantity2 restrict |θ| to be less than about 10−9.
Such fine tuning is regarded as unnatural, and in order
to circumvent it Peccei and Quinn showed that promot-
ing θ to a dynamical field leads to a vanishing vacuum

expectation value for the field (θ = 〈θ̂〉 = 0), elegantly
restoring T and P symmetry in QCD.1 Excitations of the
field naturally give rise to a new massive particle known
as the axion.3,4 The axion has never been observed, but
is presently regarded as an important candidate for dark
matter.5

The classical field theories resulting from the inclusion
of the Lθ term have several interesting properties and
have been investigated in a number of different contexts.6

A most remarkable property is that the theory is invari-
ant under θ → θ+2π, so that θ is best viewed as a phase.
This is related to the fact that E · B = εabcdF

abF cd/8
is proportional to the second Chern class of the gauge
field. Hence, the integral of Lθ/θ over a closed mani-

fold yields an integer that represents the winding num-
ber of the field configuration.7 In addition, the evalua-
tion of any correlation function involves a path integral
of exp[i

∫
dx4Lθ(x)], which becomes einθ = ein(θ+2π) for

any field configuration that vanishes at infinity.
Another interesting interpretation of θ relates to the

nontrivial vacuum structure allowed by non-Abelian
gauge theories. Different vacua are then classified by the
winding number n of classical field configurations, and
the vacuum state is taken as |θ〉 =

∑
n e

iθn|n〉.8 In this
context θ is referred to as the vacuum angle, and can
be regarded as the “Bloch momentum” associated with
a particular state on the “lattice” of topological distinct
field configurations.

In a condensed-matter setting, the analogue of a vac-
uum state is the electronic ground state of an insulator.
In that case θ is a material property determined by the
electronic structure. If we allow the presence of Lθ in
the Lagrangian, Maxwell’s equations acquire additional
θ-dependent terms. Since Lθ with constant θ can be
rewritten as a total derivative, only regions of changing
θ can give rise to physically observable effects, as long as
the gauge fields are treated classically. If one now con-
siders an insulating boundary separating two materials
characterized by different θ values, it is straightforward
to show that the interface will support an in-plane cur-
rent given by9,10

ji = j̃i +
e2

h

∆θ

2π
εijE

j . (2)

The first term is the usual current appearing in Maxwell’s
equations, and the second is an additional “axial” current
that arises due to the change ∆θ across the boundary.
We now see that changing ∆θ → ∆θ + 2π amounts to
adding a quantum of anomalous Hall conductivity (AHC)



2

to the interface. Conversely, if the AHC at an insulating
interface is known, it becomes possible to assign a definite
value to ∆θ.

The transformation properties of E and B in Eq. (1)
indicate that θ is odd under T and P. Due to the 2π
ambiguity, those symmetries allow for θ = π as well as
θ = 0, leading to a Z2 topological classification. It is
well known that when T symmetry is present the value
θ = π describes strong topological insulators, while topo-
logically trivial insulators have θ = 0.10 In the case that
P is conserved but not T , the term “axion insulator”
has sometimes been used11,12 to describe the topological
phase with θ = π. More generally, any magnetic point
group that contains a proper rotation composed with T ,
or an improper rotation not composed with T , supports
a Z2 classification with θ constrained to be 0 or π.13

The existence or nature of topologically-protected
boundary states depends on the symmetry protecting
θ = π. For example, when T remains unbroken at the
surface of a strong topological insulator, that surface is
guaranteed to harbor an odd number of metallic Dirac
cones, with a half-quantized surface AHC that exactly
cancels the axial current.14 In contrast, the surface of an
axion insulator automatically breaks P, so that surface
states are not protected. In the case of mirror symmetry,
metallic states are only protected on mirror-preserving
surfaces, while surfaces that break mirror symmetry can
be insulating and display a half-quantized AHC.

The term Lθ given by Eq. (1) is not present a pri-
ori in the action of condensed-matter systems, where it
should be regarded as an effective term that sometimes
provides a useful description. Indeed, such a term ap-
pears when the electrons are integrated out of a generic
solid state partition function in four dimensions, followed
by dimensional reduction.10 That procedure leads to the
expression

θCS = − 1

4π

∫
dk εijlTr

[
Aik∂kjA

l
k − i

2

3
AikA

j
kA

l
k

]
(3)

for the axion coupling strength. Here

Aiknm = i〈ukn|∂kiukm〉 (4)

is the Berry connection matrix in Cartesian direction i,
where |ukn〉 is the cell-periodic part of the Bloch function
|ψkn〉 of the nth occupied band, 〈. . .〉 denotes an integra-
tion over one crystal cell, and the trace is over occupied
bands. The integral in dk is over the Brillouin zone (BZ),
and the integrand is known as the Chern-Simons (CS) 3-
form.

The form of Eq. (1) suggests a close relation between θ
and the linear magnetoelectic response tensor defined as
αij = (∂Pi/∂Bj)E = (∂Mj/∂Ei)B, where P and M are
the macroscopic polarization and magnetization respec-
tively. With α̃ the traceless part of α, the relation reads

αij = α̃ij + αδij (5a)

α =
e2

h

θ

2π
. (5b)

This defines θ in terms of the trace piece α, also known
as the “axion magnetoelectric coupling.”

The magnetoelectric response of a solid can be decom-
posed into spin and orbital contributions on one hand,
and frozen-ion and lattice-mediated contributions on the
other. The frozen-ion orbital part of the response was
calculated for generic band insulators in Refs. 15 and
16. It was found that the trace piece takes the form
αorb = (e2/2πh) (θCS + θcg) where, in addition to θCS

given by Eq. (3), there is a cross-gap term θcg that cou-
ples occupied and empty bands. Among all of the above
terms, θCS is the only term with a 2π ambiguity. It is
thus sufficient, for the purpose of establishing the surface
theorem, to focus on the Chern-Simons axion (CSA) cou-
pling

αCS =
e2

h

θCS

2π
. (6)

Typical ground state properties of a band insulator
(e.g., the charge density and total energy) are invariant
under any unitary “gauge transformation”

|ukn〉 →
∑
m

|ukm〉Ukmn (7)

among the occupied Bloch orbitals. The 2π ambiguity
in θCS comes about because Eq. (3) changes by integer
multiples of 2π under certain gauge transformations. The
CSA coupling will then change by an integer multiple of
the quantum of conductance. This is another manifesta-
tion of Eq. (2): changing θCS by a multiple of 2π amounts
to adding quantum anomalous Hall layers at the surface,
without modifying the bulk.17

Another property of band insulators that behaves in
this way is the bulk polarization P , whose electronic part
can be expressed as a Berry phase.18 The Berry phase
may also change by an integer multiple of 2π under uni-
tary transformations, and the quantum of ambiguity in
the bulk definition of P ·n̂ can be resolved by taking into
account quantized contributions of e/Acell to the surface
charge density associated with an insulating surface with
orientation n̂.19

In fact, αCS and P are related in more than one re-
spect. First of all, αCS is in a sense the natural three-
dimensional generalization of the polarization in one-
dimensional systems, and is sometimes referred to as the
“magnetoelectric polarization.”10 For any closed mani-
fold of odd dimension d, there exists a Chern-Simons
d-form, which is a functional of the U(N) connection
Aikmn. The 1-form is simply the trace of the connection,
and its BZ integral (the Berry phase) is proportional to
the polarization. Similarly, the BZ integral of the Chern-
Simons 3-form yields θCS, which is proportional to the
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CSA coupling. Second, the e2/h ambiguity in αCS fol-
lows from the e/Acell ambiguity in P · n̂.16 This is per-
haps surprising, since changes in polarization are well
defined whenever different states of polarization can be
connected by an adiabatic path. However, as pointed out
in Ref. 16, if one tries to define the CSA coupling as a
response of Pi to a smoothly increasing Bi, a problem
arises in that the smallest value of ∆Bi compatible with
the lattice periodicity corresponds to a quantum of mag-
netic flux through the unit cell. The best one can do is
to define αCS = ∆Pi/∆Bi for a single flux quantum, i.e.,
∆Bi = h/eAcell. Then the gauge ambiguity of e/Acell in
Pi implies a gauge ambiguity of e2/h in αCS.

The surface theorem for polarization was derived in
Ref. 19. It states that the macroscopic charge per surface
unit cell at an insulating surface of a crystalline insulator
has, in units of e, a noninteger part that only depends on
the bulk polarization, and an integer part that is fixed
by the surface termination.

In this work, we demonstrate a similar surface theorem
for the CSA coupling of Eq. (6). We take a bulk insulator
with a given θCS (mod 2π), consider a specific insulating
surface termination in a slab geometry, and show how
to use the knowledge about the surface Hamiltonian to
determine the CSA coupling exactly, not just up to a
quantum of e2/h.

An important step towards that result was taken in
Ref. 20, where Eq. (3) was recast in terms of hybrid
Wannier functions (HWFs), and then used to study a
“quantum CSA pump:” a cyclic evolution of a bulk crys-
tal in which θCS evolves continuously from some initial
value θiCS to reach θiCS + 2π at the end of the cycle. In
the HWF representation, the pumping process is trans-
parent: the “Wannier sheets” carry quantized amounts of
Berry-curvature flux, and a 2π quantum gets transferred
across each unit cell via a sequence of sheet-touching
events. These ideas play a central role in the present
work, where the HWF representation will be used exten-
sively.

The manuscript is organized as follows. In Sec. II A
we establish the basic definitions and conventions used
in this work, and in Sec. II B we review the expression
of Ref. 20 for θCS in terms of the bulk HWFs. The goal
of the ensuing subsections is to evaluate the CSA cou-
pling of a thick slab in the HWF basis. The end result
is the surface theorem of Eq. (39), whereby the nonin-
teger part of θslab/2π is given by the bulk expression in
terms of the HWFs in a unit cell deep inside the slab,
and the integer part by the net Chern number of the
excess Wannier sheets near the surface. In order to es-
tablish this result, we start in Sec. II C from an expres-
sion for the CSA coupling of a finite crystallite; then in
Sec. II D we derive from it the corresponding expression
for a slab; finally in Sec. II E we consider its limiting
form for a thick slab. At every step all surface contribu-
tions are carefully accounted for, leading to Eq. (39) for
insulating slabs with vanishing Chern number. To val-
idate the derivation and illustrate the surface theorem,

in Sec. III we study numerically a layered tight-binding
model that realizes a quantum CSA pump. We find that
in a semi-infinite geometry, when the surface also under-
goes a cyclic evolution, the pumping is obstructed by the
appearence of “surface Weyl points” that transfer quanta
of Berry-curvature flux between the valence and conduc-
tion bands. Some additional features of the model are
discussed in two Appendices. Appendix A deals with
the quantization of the CSA coupling by mirror symme-
try at isolated points along the pumping cycle, and in
Appendix B we map the second Chern number over an
augmented parameter space.

II. CSA COUPLING IN THE HYBRID
WANNIER REPRESENTATION

A. Definitions and conventions

The CSA coupling strength θCS of an infinite 3D crys-
tal was defined in Eq. (3). In the remainder of the paper
we will change notation and denote it as θ3 instead. The
reason is that in order to establish the precise relation
between the bulk CSA coupling and the observable mag-
netoelectric response of a bounded macroscopic sample,
we also want to consider systems of reduced dimension-
ality d, namely slabs (d=2) and crystallites (d=0), and
define for them corresponding quantities θ2 and θ0. In
each case θd is defined as the extensive CSA coupling
with units of volume, divided by the cell “volume” along
the periodic directions, so that θd has units of [L]3−d: θ0

grows with the volume of the crystallite, θ2 with the slab
thickness, and θ3 ≡ θCS is an intensive bulk quantity.

We assume that the crystal lattice has monoclinic or
higher symmetry. The lattice vectors form a prism whose
base of area Acell spanned by a1 and a2 lies in the (x, y)
plane, and a3 = cẑ is the unique axis. The Bloch func-
tions are normalized to one unit cell,

∫
Vcell

dr|ψkn(r)|2 =

1 with Vcell = cAcell. In the HWF representation, the
ẑ direction is treated differently from the (x, y) plane.
Defining κ = (kx, ky) and writing as 〈f |g〉 the integral
over all z and over one cell on the basal plane, the or-
thonormality relation for the Bloch states reads

〈ψ(κ,kz)n|ψ(κ′,k′z)m〉 = Nzδκκ′δkzk′zδnm, (8)

where Nz is the number of cells along z, and Nzδkzk′z be-
comes (2π/c)δ(kz − k′z) when Nz →∞. Choosing as the
BZ a prism of height 2π/c and base lying on the (kx, ky)
plane, the bulk HWFs |hκln〉 and their cell-periodic parts
|hκln〉 are defined as

|hκln〉 =
c

2π

∫ 2π/c

0

dkz e
−ikzlc |ψ(κ,kz)n〉 (9a)

|hκln〉 = e−iκ·r |hκln〉, (9b)

where l labels the cells in the z direction. The HWFs are
localized (Wannier-like) along z, but remain extended
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(Bloch-like) in the other two directions. Using Eq. (8)
we obtain 〈hκln|hκ′l′m〉 = δκκ′δll′δnm.

We are interested in constructing HWFs that span the
group of M valence bands. The U(M) gauge freedom
of Eq. (7) in defining the Bloch states can be employed
to make the HWFs maximally-localized along z, in the
sense of Ref. 21. The charge centers of these maximally
localized HWFs

zκln = 〈hκln|z|hκln〉 = zκ0n + lc (10)

form 2D sheets over the projected BZ.22 Dropping sub-
scripts κ for brevity, Berry connection and Berry curva-
ture matrices can be defined over these sheets as

Ailn,l′m = i〈hln|∂kihl′m〉 = Ai0n,(l′−l)m (11a)

Ωijln,l′m = ∂kiA
j
ln,l′m − ∂kjAiln,l′m = Ωij0n,(l′−l)m (11b)

where i, j = x, y.
Assuming that the Wannier sheets do not touch (i.e.,

there are no degeneracies in the zln anywhere in the 2D
BZ), each sheet is a closed 2D manifold, so that the in-
tegral of its Berry curvature (the Berry flux through the
2D BZ) is quantized to 2π times an integer by the Chern
theorem. These Chern numbers

Cln =
1

2π

∫
dκΩxyln,ln (12)

are clearly independent of the layer index, Cln = C0n.
We shall encounter situations in Sec. III where pairs of

Wannier sheets touch at isolated points in the 2D BZ as
a parameter φ in the Hamiltonian is varied. When that
happens, the Chern numbers of the two sheets change by
equal and opposite amounts ±χ, where χ is the chiral
charge of the degeneracy point (“Weyl point”) in the 3D
parameter space (kx, ky, φ).

B. CSA coupling θ3 of a bulk crystal

We begin by summarizing the results of Ref. 20,
where the bulk CSA coupling was expressed in terms of
maximally-localized HWFs as23

θ3 = θzΩ + θ∆xy (13a)

θzΩ = −1

c

∫
dκ
∑
n

z0nΩxy0n,0n (13b)

θ∆xy = − i
c

∫
dκ
∑
lnm

(zlm − z0n)Ax0n,lmA
y
lm,0n. (13c)

(Henceforth summations over indices l, m, and n run over
all occupied orbitals, unless stated otherwise.)

The maximally-localized HWF gauge is unique, except
for (i) a U(1) gauge freedom with respect to κ on each
sheet, and (ii) the residual freedom to choose which Wan-
nier sheets belong to the home cell l = 0. Regarding (i),
it is straightforward to verify that both terms in Eq. (13)

are gauge-invariant in this sense (for θ∆xy this follows be-
cause only the diagonal elements of Ai0n,lm are affected).

Regarding (ii), if a different choice is made such that en-
tire sheets zln get shifted by c for some n, θzΩ changes by
−2πC0n, while θ∆xy is unaffected. Thus, the θzΩ term is
the only one that has a potential 2π ambiguity.

In Ref. 20, Eq. (13) was derived starting from Eq. (3).
One problem with this approach is that Eq. (3) is written
in terms of a smooth and periodic gauge, a requirement
that, applied to the maximally-localized HWF gauge, is
incompatible with the existence of Wannier sheets having
nonzero Chern numbers. Thus, strictly speaking Eq. (13)
has only been proven to be valid for crystals in which all
the C0n vanish. On the other hand, it was shown in the
same work that nonzero C0n values must occur along any
cycle that pumps a quantum of CSA coupling.

In the following, we shall take a different route to ar-
rive at Eq. (13), proving the surface theorem along the
way. Instead of working from the outset with a bulk crys-
tal and using Eq. (3), we start from the CSA coupling
of a finite crystallite, which is given by Eq. (15) below
without any 2π ambiguity. By carefully taking the ther-
modynamic limit, first in two directions (slab geometry)
and finally in the third, we will demonstrate that Eq. (13)
remains valid even when some of the Wannier sheets have
nonzero Chern numbers, provided that the unit-cell sum
of those numbers vanishes:∑

n

C0n = 0. (14)

This condition, needed to ensure that the nonquantized
part of θ3 is independent of the choice of origin for the
z axis, is equivalent to the statement that the Chern
index along z of the valence-band manifold vanishes.20

In fact, in the present work we limit ourselves to crys-
tals in which all three Chern indices vanish, in order to
avoid potential subtleties associated with bulk quantum
anomalous Hall behavior.

C. CSA coupling θ0 of a finite crystallite

The extensive CSA coupling of a bounded electron sys-
tem such as a crystallite is given by

θ0 = −8π2ImTr[PxPyPz], (15)

where P , the projection operator onto the occupied sub-
space in the ground state, is expressed in the energy
eigenstate representation as P =

∑
n |ψn〉〈ψn|.

Equation (15) was obtained in Ref. 15 starting from
the basic definition

m(E) = −e
2

Tr [P (E)r × v] (16)

of the orbital magnetic moment of a bounded sample in
a finite electric field, with P (E) the projection opera-
tor onto the field-polarized occupied states. After some
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manipulations, Eq. (16) was decomposed as15

m(E) = m̃LC(E) + m̃IC(E) +mCS(E). (17)

At E = 0, only the first two terms survive (they
are known as the “local circulation” and the “itinerant
circulation”24). At E 6= 0 those terms depend on E
only through P (E), and their contribution to the linear
change in m induced by E is in general not parallel to
E. In contrast, the third term is purely isotropic and has
an explicit linear dependence on E. It takes the form

mCS(E) =
e2

h

θ0(E)

2π
E, (18)

with θ0(E) given in terms of P (E) by Eq. (15). At lin-
ear order in the field, the quantity θ0(E) in Eq. (18) can
be replaced with θ0(E = 0), i.e., the ground-state quan-
tity θ0 as originally defined by Eq. (15).

According to the analytical derivations and numerical
tests carried out in Ref. 15, in the thermodynamic limit
the quantity θ0/V reduces to the bulk CSA coupling θ3

defined by Eq. (3). However, the fact that θ3 suffers
from a 2π indeterminacy while θ0/V does not was not
examined further in that work. Because Eq. (15) does
not carry a quantum of uncertainty, and is free from the
subtleties associated with the use of periodic boundary
conditions, we take it as the more fundamental definition
of the CSA coupling, from which we will derive expres-
sions for θ2 and θ3 in the HWF representation. The cor-
rectness of those expressions will be checked numerically
against results obtained directly from Eq. (15).

We begin by constructing for the crystallite a set of
occupied orbitals that are maximally-localized along z.
This can be done by diagonalizing the operator PzP ,21

PzP |ϕn〉 = zn|ϕn〉. (19)

In this representation, Eq. (15) reads

θ0 = −8π2
∑
n

znIm〈ϕn|xPy|ϕn〉 (20)

or equivalently

θ0 = 8π2
∑
n

znIm〈ϕn|xQy|ϕn〉, (21)

where Q = 1 − P and we used Im〈ϕn|xy|ϕn〉 = 0. We
shall prefer Eq. (21) for reasons that will become clear in
the next subsection.

Before switching to a slab geometry, we note that any
well-defined intrinsic property must remain invariant un-
der a rigid translation of the sample, such as

z → z + ∆z. (22)

Under this transformation, Eq. (21) changes by

∆θ0 = 8π2∆zImTr{PxQy}. (23)

It is straightforward to verify that ∆θ0 = 0 since
ImTr{PxPy} = Tr{[Px, Py]}/2i, and the trace of a com-
mutator over a finite-dimensional Hilbert space vanishes.

D. CSA coupling θ2 of a slab

Consider an insulating slab of thickness Lz = Nzc.
We will eventually take the limit Nz → ∞, but at this
stage Nz can be any positive integer. We wish to find
an expression for θ2, the CSA coupling per unit area,
starting from Eq. (21). Imagine cutting from the slab a
crystallite containing N × N two-dimensional primitive
cells with a net CSA coupling θ0. By the definition of θ2,
we expect that

θ0

N2Acell
→ θ2 for N →∞. (24)

As we will see, this expectation is fulfilled by our expres-
sion for θ2, with the proviso that the net Chern number
of the slab vanishes; otherwise θ2 is ill-defined, with its
value depending on the choice of origin for the z axis.
Such pathological behavior has to do with extensive con-
tributions to θ0 from the sample edges. We shall return
to this subtle point at the end of the section, starting
with Eq. (33).

To proceed we assume a slab with unreconstructed sur-
faces, so that the energy eigenstates are Bloch-like along
the in-plane directions; denoting them by |ψκn〉 and in-
troducing the ground-state projector

P =
∑
κ

Pκ, Pκ =
∑
n

|ψκn〉〈ψκn|, (25)

we can construct a new set of occupied orbitals by diag-
onalizing PκzPκ for each κ:

PκzPκ |hκn〉 = zκn |hκn〉. (26)

These are the maximally-localized HWFs of the slab. For
now we assume isolated Wannier sheets zκn with well-
defined Chern numbers Cn = (1/2π)

∫
dκΩxyκnn; the role

of degeneracies will be considered later.
Comparison with Eq. (19) shows that for N →∞ the

orbitals |hκn〉 and |ϕn〉 only differ in the choice of in-
plane boundary conditions (periodic versus open). Thus,
if edge contributions to θ0 are unimportant we can re-
place |ϕn〉 with |hκn〉 in Eq. (21), and using the defini-
tion (24) of θ2 we arrive at

θ2 =

∫
dκ
∑
n

zκn 2Im〈hκn|xQy|hκn〉. (27)

The presence of the nonperiodic coordinate operators x
and y is not problematic, because they appear in the
lattice-periodic combinations PxQ and QyP .

Equation (27) is valid in the maximally-localized HWF
gauge where Zκnm = 〈hκn|z|hκm〉 is a diagonal matrix:
Zκnm = zκnδnm. In a generic gauge, Eq. (27) must be
written in matrix form as

θ2 = −
∫
dκ
∑
mn

ZκmnΩ̃xyκnm, (28a)

Ω̃xyκnm = −2Im〈hκn|xQy|hκm〉. (28b)
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This expression is clearly gauge-invariant, because it is
the trace of the product of two gauge-covariant matrices
(matrices that change as Mκ → U†κMκUκ under a gauge
transformation |hκn〉 →

∑
m |hκm〉Uκmn).

To proceed we switch momentarily to the Hamiltonian
gauge, where the orbitals |hκn〉 coincide with the energy

eigenstates |ψκn〉. Writing Q =
∑
κ′
∑empty
l |ψκ′l〉〈ψκ′l|

in Eq. (28b), we see that it only involves off-diagonal ma-
trix elements of the coordinate operators along the peri-
odic directions. Defining the cell-periodic part |uκn〉 =
e−iκ·r|ψκn〉 of an eigenstate and using the relation25

〈ψκn|x|ψκ′m〉 = i〈uκn|∂kxuκm〉δκκ′ (29)

valid for n 6= m in the Hamiltonian gauge, we find

Ω̃xyκnm = −2Im〈∂kxuκn|Qκ|∂kyuκm〉
= Ωxyκnm − i[Axκ, Ayκ]nm, (30)

where Qκ =
∑empty
l |uκl〉〈uκl|. In the second line the

completeness relation was used to obtain an expression
containing the Berry connection and Berry curvature ma-
trices Axκnm and Ωxyκnm for the occupied states, defined
in terms of the slab orbitals by equations like Eq. (11)
but with the replacements ln → n and l′m → m. The
matrix in Eq. (30) is known as the non-Abelian Berry
curvature,26 and it follows from its gauge covariance that
Eq. (28a) can be written in any HWF gauge as

θ2 = −
∫
dκTr

(
ZκΩ̃xyκ

)
, (31)

where Eq. (28b) for Ω̃xyκ has been replaced with Eq. (30).
Returning to the maximally-localized HWF gauge,

θ2 = −
∫
dκ
∑
n

zκnΩ̃xyκnn. (32)

In Sec. II E 2 we will recast this expression in a form
similar to Eq. (13) for θ3, but for the moment (and also
for numerics, see Sec. III A) Eq. (32) is more convenient.

Equations (31) and (32) constitute the central result of
this section. We emphasize that nowhere in their deriva-
tions was it assumed that the Chern numbers Cn of the
individual Wannier sheets must vanish.

Let us conclude with a discussion of the conditions
needed in order for θ2 to be a well-defined quantity. Un-
der the transformation (22), Eq. (32) changes by

∆θ2 = −2πCslab∆z, (33)

where Cslab =
∑
n Cn is the Chern number of the entire

slab, and we used the fact that the trace of the commuta-
tor in Eq. (30) vanishes. Contrary to ∆θ0 which is guar-
anteed to vanish for any crystallite, ∆θ2 is nonzero for
quantum anomalous Hall slabs where Cslab is a nonzero
integer. Clearly, θ2 is ill-defined in such systems.

How can one reconcile ∆θ2 6= 0 for a quantum anoma-
lous Hall slab with ∆θ0 = 0 for a crystallite cut from

the same slab? To understand this result, we invoke the
definition

C(r) = −4πIm〈r|PxQy|r〉 (34)

of the “local Chern marker”27 to rewrite Eq. (23) as

∆θ0 = −2π

[∫
drC(r)

]
∆z, (35)

which can be directly compared with Eq. (33) for ∆θ2.
Whenever Cslab 6= 0,

∫
drC(r) vanishes in a non-

trivial manner, with extensive contributions from the
edges of the crystallite exactly cancelling those from
the interior.27 When we switched from open to periodic
boundary conditions along x and y to obtain Eq. (27),
the edges were supressed. Clearly, that step relied on the
absense of extensive edge contributions to

∫
drC(r), or

equivalently,

Cslab = 0. (36)

E. Surface theorem for the CSA coupling

1. Statement of the theorem

Armed with Eq. (32) for the CSA coupling of an in-
sulating slab, let us relate it to the bulk coupling θ3 by
considering the thermodynamic limit. Defining the di-
mensionless slab CSA coupling

θslab ≡
θ2

Nzc
(37)

and reasoning by analogy with Eq. (24), one might expect
that

θslab
?→ θ3 for Nz →∞. (38)

This cannot be quite correct, because θ3 is only defined
modulo 2π whereas θslab is uniquely defined. Turning
this observation around, it should be possible to resolve
the quantum of ambiguity in θ3 by isolating quantized
surfacelike contributions to θslab.

It is useful to divide the slab conceptually into three
regions (Fig. 1): a bottom surface region I, an interior re-
gion II containing precisely NII bulk unit cells, and a top
surface region III. The boundaries are chosen to respect
the HWF sheets, so that each sheet belongs uniquely to
one region. We assume that the surface regions occupy
nonextensive fractions of the volume of the slab, but are
nonetheless sufficiently thick to ensure that the cuts z0

and z0 +NIIc fall in bulklike regions.
We will prove the following assertion, valid when the

Fermi level lies in a gap common to both the bulk and
surface bands:

θslab → θ3 − 2πCIII for Nz →∞, (39)
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FIG. 1. Sketch of the slab configuration discussed in the
text (adapted from Ref. 19). The HWFs are localized in the
surface-normal direction n̂ = ẑ.

with θ3 expressed in terms of the bulklike HWFs in re-
gion II by Eq. (13), and CIII =

∑
n∈III Cn the total in-

teger Chern number of the HWFs ascribed to the top
surface region. The Chern indices of the valence-band
manifold are assumed to vanish in all three lattice direc-
tions, which implies [see Eq. (14)]

CII =
∑
n∈II

Cn = NII

∑
n

C0n = 0. (40)

From Eq. (36) we also require CI +CII +CIII = 0, so that

CI + CIII = 0. (41)

Once the assignment of the slab HWF sheets to the
three regions has been decided, the two terms on the
right-hand-side of Eq. (39) become uniquely defined.
That is, Eq. (13) must be evaluated using the choice of
unit cell consistent with the NII bulk cells in region II,
and the leftover sheets then contribute to CI and CIII.
If a different assignment is made, an integer multiple of
2π may get transferred between the two contributions to
Eq. (39). We will assume that a specific assignment has
been made that satisfies two rules:

1. Sheets belonging to a given region have sequential
indices n, with zκn ≤ zκ,n+1.

2. The last sheet belonging to region I does not touch
the first sheet belonging to region II.

Because region II comprises an integer number of bulk
cells, the second rule also implies that the topmost sheet
in region II does not touch the first sheet in region III,
guaranteeing that the Chern numbers of the two sur-
face regions are well defined. This should be possible
to arrange in most cases – even at critical parameter
values where two Wannier sheets touch at a high sym-
metry point – by a judicious choice of the first sheet in
region II. (One exception is a Z2-odd topological insula-
tor protected by T symmetry, where there are no gaps

between bulk Wannier sheets: see, for example, the third
panel in Fig. 1 of Ref. 20. Before applying the current
analysis to such a system, one would have to break T
symmetry slightly to gap the spectrum.)

Equation (39) can be understood as follows. The as-
signment of the HWFs to the three regions decides which
ones belong to a given unit cell in the interior region. This
removes the only gauge freedom that is capable of affect-
ing the branch choice for the phase angle θ3 in Eq. (13).
The extra term −2πCIII gathers the contributions to the
slab CSA coupling from any leftover sheets after tiling
the bulk cell towards the top surface. This is analogous
to the electric polarization of a slab,19 where the relevant
quantized quantity carried by the Wannier sheets is the
charge rather than the Chern number. (One difference is
that Wannier sheets can have different Chern numbers,
while every sheet carries the same charge −e.)

2. Proof of the theorem

In order to establish Eq. (39), we start from the left-
hand-side. Using Eqs. (32) and (30) and exchanging in-
dices n and m in one term we find, approximating the
slab width Nzc by the width NIIc of the interior region,

θslab = −1

c

∫
dκϑslab (42a)

ϑslab =
1

NII

∑
n

[
znΩxynn + i

∑
m

(zm − zn)AxnmA
y
mn

]
,

(42b)

where the label κ has been dropped from the integrand.
(Here and for the rest of this section, it is understood
that certain equalities only hold exactly for NII → ∞.)
The similarity to Eq. (13) for θ3 is apparent.

Next we decompose θslab and ϑslab into contributions
from each region,

θslab = θI + θII + θIII, (43)

by restricting the summation over n in Eq. (42b) to the
sheets assigned to that region (the index m is still allowed
to run over all Wannier sheets in the slab).

Let us start with the top surface region. The contribu-
tion to ϑIII from the second term in Eq. (42b) vanishes
for a thick slab, because (i) that term involves the relative
coordinate zm − zn, (ii) AxnmA

y
mn drops exponentially to

zero when |zm−zn|2 is much larger than the HWF spread
〈zn〉2 − 〈zn〉2, and (iii) region A is nonextensive. We are
left with the first term in Eq. (42b), which involves the
absolute coordinate zn. In the limit NII →∞ we can set
zn → z0 +NIIc for n ∈ III (see Fig. 1) to obtain

θIII = −2π

(
1 +

z0

NIIc

)
CIII. (44)

Similarly, θI = −2π(z0/NIIc)CI. Adding the two together
and using Eq. (41) yields the net surface contribution

θsurf = θI + θIII = −2πCIII, (45)
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which is origin independent and quantized in units of 2π.
Now we turn to the contribution from the interior re-

gion. The quantity ϑII can be approximated as

ϑII =
1

NII

[∑
n∈II

znΩxynn + i
∑
nm∈II

(zm − zn)AxnmA
y
mn

]
.

(46)
By also restricting the summation over m to region II, we
have dropped nonextensive contributions. Since that re-
gion is bulklike, we can switch to the notation of Sec. II B.
Replacing n → ln and m → l′m and invoking Eqs. (10)
and (11), the first term in Eq. (46) becomes

ϑzΩ =
∑
n

z0nΩxy0n,0n (47)

[we have dropped a term (1/NII)
∑
l(lc)

∑
n Ωxy0n,0n that

vanishes upon integration over κ by virtue of Eq. (14)].
As for the second term, it becomes

ϑ∆xy = i
∑
lnm

(zlm − z0n)Ax0n,lmA
y
lm,0n. (48)

Adding the two and integrating over κ we find, compar-
ing with Eq. (13),

θII = θzΩ + θ∆xy = θ3. (49)

Combining Eqs. (43), (45), and (49) we arrive at Eq. (39),
completing the proof of the surface theorem. Note that
condition (14) insures that the two terms on the right-
hand-side of Eq. (39) are separately origin independent.

III. LAYERED HALDANE MODEL

In this section we illustrate the preceeding discussion
with a concrete example: a 3D tight-binding model of an
insulator that pumps a quantum of CSA coupling during
a cyclic adiabatic evolution.

The model consists of a stack of half-filled Haldane-
model28 (“haldanium”) layers placed exactly on top of
each other, that are allowed to interact via interlayer
hoppings. The on-site energies are equipped with a de-
pendence on a cyclic tuning parameter φ, such that if
the layers were decoupled, their Chern numbers would
either be all zero or alternate between +1 and −1 from
one layer to the next, depending on the value of φ. (An
isolated layer with nonzero Chern number C in the va-
lence band is a quantum anomalous Hall insulator with
AHC σyx = Ce2/h.)

For decoupled layers, the system would pass through
metallic points at critical φ values where the Chern num-
bers change. By introducing φ-dependent interlayer cou-
plings, it is possible to keep the bulk insulating through-
out the cycle. The band touchings at the critical φ values
are then replaced with touchings between Wannier sheets
residing mostly on individual layers, accompanied by a
transfer of Chern number (the total Chern number of

(a) (b)

FIG. 2. (a) Four unit cells of an isolated haldanium layer.
Sites on the A (B) sublattices are marked with open (filled)
circles, and the arrows indicate the directions of the sec-
ond nearest neighbor hoppings in Eq. (50) with amplitudes
i(−1)lt2. (b) First Brillouin zone, with high-symmetry points
marked. (Reproduced from Ref. 30.) When viewing (b) as the
projected BZ of a layered 3D model in Sec. III B, the labels

of the high symmetry points become Γ, M, K, and K
′
.

the valence bands vanishes in all three directions). Each
Wannier sheet participates in two touching events per cy-
cle, one with the sheet below and another with the sheet
above, resulting in the net transfer across a unit cell of a
Chern number of −1.

The numerical results presented below were obtained
using the PythTB code package.29

A. Cyclic evolution of a bilayer model

We begin by considering a model consisting of only
two coupled haldanium layers. Although there is no CSA
pumping in this model, it serves to illustrates the elemen-
tary sheet-touching events during a cyclic evolution, and
provides the building blocks for the full 3D model.

The Hamiltonian of a single layer p is

H(0)
p = (−1)p∆

∑
i

τic
†
picpi + t1

∑
〈ij〉

c†picpj

+ (−1)pt2
∑
〈〈ij〉〉

(
ic†picpj + h.c.

)
, (50)

where indices i and j label sites on the A and B sublat-
tices marked in Fig. 2(a), and τi = +1 (−1) for i ∈ A
(B). The first and second terms contain the on-site en-
ergies and the nearest-neighbor hoppings, respectively,
and the third describes a pattern of staggered magnetic
fluxes generated by complex second-neighbor hoppings;
〈〈ij〉〉 denotes pairs of sites for which the hopping from j
to i has amplitude i(−1)pt2, and “h.c.” stands for “Her-
mitean conjugate.” In the following we choose t2 > 0,
and use it to set the energy scale for the model.

The Hamiltonian of the coupled bilayer system is

Hbilayer =
∑
p=1,2

H(0)
p + t3

∑
i

τi

(
c†1ic2i + h.c.

)
, (51)

where p = 1 and p = 2 denote the layers at z = 0 and
z = c/2 respectively, and sites on different layers with the
same index i are aligned vertically. Thus, the first term
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FIG. 3. (Color online.) Numerical results for the bilayer
model as a function of the adiabatic loop parameter φ. Top:
minimum energy gap between the second (highest occupied)
and third bands – the minimum gap is always at point K in
the 2D BZ. Middle: Wannier charge centers at K, in units of
the layer separation c/2. A dashed line indicates a Wannier
sheet with Chern number C = 0, a heavy (red) solid line de-
notes C = +1, and a light (green) solid line denotes C = −1.
The lower (upper) sheet has index n = 1 (n = 2). Bottom:
dimensionless CSA coupling θ2/c. Open circles, extrapola-
tion of θ2(N)/c from finite-size samples. Solid line, direct
calculation using the k-space formula (32).

describes two copies of the Haldane model with opposite
signs for both the on-site energies and the complex hop-
pings, and the second couples them via vertical hoppings
that alternate in sign between the two sublattices.

We parameterize the model as

t1 = −4t2, (52a)

t3 = t2 (52b)

∆ =
(

3
√

3 + 2 cosφ
)
t2. (52c)

Referring to the phase diagram of the Haldane model,28

the layer Chern numbers in the decoupled limit t3 → 0
are

Cp =

{
(−1)p−1 for φ ∈ [π/2, 3π/2] mod 2π

0 otherwise
. (53)

When φ = π/2 mod π, the energy gap closes at K on
both layers. The addition of interlayer hoppings reopens
the gap, ensuring that at half filling the system remains
insulating for all values of φ, with zero Chern number for
the group of two valence bands.

Although Chern numbers can no longer be defined for
the individual layers when t3 6= 0, they are “inherited”
by the Wannier sheets. The energy gap, Wannier centers
at K, and Wannier-sheet Chern numbers are shown in the
top and middle panels of Fig. 3 over one cycle, φ ∈ [0, 2π].
Initially, the Chern numbers vanish for both sheets. The

sheets themselves are very flat, and sit close to one of
the layers at z = 0 or z = c/2. With increasing φ they
approach one another, at φ = π/2 they touch at K (but
not at K′) changing their Chern numbers to ±1, and
then separate again. There is no closure of the energy
gap during this process. In the second half of the cycle
the system retraces the same parameter-space path in the
opposite direction.

The CSA coupling has been calculated in two differ-
ent ways: for the periodic 2D crystal using Eq. (32)
for θ2 (discretizing the covariant Berry curvature on a
120× 120 k-point mesh, following Ref. 24), and for finite
flakes using Eq. (15) for θ0. The results are compared
via Eq. (24), further dividing both sides by c (twice the
interlayer separation) in order to obtain a dimensionless
coupling. In practice we evaluate θ2(N) = θ0/N

2Acell,
where θ0 is for a flake containing N ×N primitive cells,
and then extrapolate to N →∞ the results obtained for
N = 10, 15, 20, 25, 30, by fitting to the expression24

θ2(N) = θ2(∞) + a/N + b/N2. (54)

The evolution of θ2/c with φ is shown in the bottom
panel of Fig. 3. It starts very small but nonzero, and
reaches a maximum of close to π halfway through the
cycle. The precise agreement between the two curves
confirms the correctness of the k-space formula (32). Im-
portantly, the agreement persists in the range π/2 < φ <
3π/2 where the Wannier sheets have Chern numbers ±1.

B. Cyclic evolution of the bulk model

The bulk model with two layers per cell and vertical
lattice constant c is constructed by repeating the bilayer
model along z:

Hbulk =
∑
p

[
H(0)
p + t3,p

∑
i

τi

(
c†picp+1,i + h.c.

)]
(55)

where the layer index p now runs over all integers. The
intralayer hoppings and on-site energies are still given by
Eqs. (52a) and (52c). If we were to use Eq. (52b) for
the interlayer hoppings, at half filling the valence and
conduction bands would touch at point H in the 3D BZ
for φ = π/2 mod π. In order to keep the gap open at
all φ, we modulate the interlayer hoppings out of phase
with the on-site energies,

t3,p =
[
1 + (−1)p−1γ sinφ

]
t2 (56)

with γ = 0.4. Each layer is more strongly coupled to
the layer below during half of the cycle, and to the layer
above during the other half. The insulating loop forms
an ellipse on the (∆, t3,p) plane, with a metallic point at
the center.

To demonstrate the pumping behavior of this model we
have calculated θ3(φ) from Eq. (13). The HWFs and the
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FIG. 4. (Color online.) Numerical results for the bulk model
as a function of the adiabatic loop parameter φ. Top: min-
imum energy gap between the second and third bands – the
minimum gap is always at point H, which projects onto K in
the surface BZ. Middle: periodically-repeated Wannier charge
centers at K, in units of the lattice constant c; the dashed
line and colored heavy/light lines have the same meaning as
in Fig. 3. The lower Wannier sheet has indices l = −1 and
n = 2, the middle one l = 0 and n = 1, and the upper one
l = 0 and n = 2. Bottom: total CSA coupling θ3 = θzΩ+θ∆xy,
and the term θzΩ responsible for pumping.

charge centers were obtained from a parallel-transport
construction applied to strings of k points along kz.

21

The results obtained with a mesh of 120 × 120 × 6
points in the BZ are shown in Fig. 4. The energy gap
remains open throughout the cycle. In the first half, the
evolution of the two Wannier centers in the home cell
l = 0 resembles that in Fig. 3 for the bilayer system. At
point K in the projected BZ they start off at 0 and c/2
respectively, begin approaching until at φ = π/2 they
touch at z = c/4 exchanging one unit of Chern number,
and then drift apart, recovering the initial separation at
φ = π. By then θ3 has increased continuously from 0 to
π, with the term θ∆xy going through zero at φ = 0, π/2,
and π.

Thanks to the modulation in the interlayer hoppings,
the second half of the cycle is very different from that of
the bilayer. Instead of reconnecting with their original
partners, the Wannier centers continue to drift in the
same direction until at φ = 3π/2 they touch the periodic
images of their original partners in the adjacent cells. As
a result θ3 continues to increase, reaching 2π by the end
of the cycle.

At φ = 0 mod π the model acquires extra symmetry:31

each layer becomes a mirror plane, forcing θ3 to be an
integer multiple of π.13,32 According to Fig. 4, θ3 = 0
at φ = 0 and θ3 = π at φ = π. In the CSA pump
model of Ref. 20, the same values occured at the begin-
ning and in the middle of the pumping cycle, where they
were protected by T rather than mirror symmetry. In
Appendix A we analyze further the quantization of θ3

due to mirror symmetry in our model, and show that at
φ = π it becomes a topological crystalline insulator with
a single surface Dirac cone on any surface normal to the
mirror plane.

The fact that the CSA coupling is pumped by 2π over
an adiabatic cycle signals that the occupied band mani-
fold of the 4D Bloch Hamiltonian Hbulk(kx, ky, kz, φ) has
a nonvanishing second Chern number.10 In Appendix B
we map the second Chern number of the model over an
augmented parameter space.

C. Cyclic evolution of the slab interior, keeping the
surfaces gapped

Let us now study the cyclic evolution in a slab geom-
etry. If the entire slab – including the surfaces – returns
to the initial state at the end of the cycle, it must pass
through a state with metallic surfaces.20 This scenario
will be investigated in the next section, but first we ex-
amine here what happens when a surface modification is
introduced to avoid the gap closure at the surfaces. To
this end we adjust the on-site energies on the top and
bottom layers of the slab according to

∆ =
(

3
√

3− 2
)
t2 for π < φ ≤ 2π, (57)

so that in the second half of the cycle the on-site ener-
gies on the two surface layers remain frozen at the values
reached at φ = π, while on all other layers they continue
to evolve according to Eq. (52c). Thus, at φ = 2π the
surfaces are in a different insulating state than at φ = 0.
According to the surface theorem the CSA couplings of
the two configurations may differ by a multiple of 2π,
and this is indeed what happens for our model.

We consider a slab containing Nz repetitions in the z
direction of the model defined by Eq. (55), and use
Eq. (32) to calculate θslab(φ) [Eq. (37)] at half filling.
Figure 5 shows the results obtained with a ten-layer slab,
i.e., Nz = 5. Thanks to the surface modification, the en-
ergy gap shown in the top panel remains open throughout
the cycle. As seen in the middle panel, all ten Wannier
sheets start out with zero Chern number. The eight sub-
surface Wannier sheets show a bulklike behavior, switch-
ing partners between φ = π/2 and φ = 3π/2 as in Fig. 4.
This leaves the top and bottom sheets unpaired and with
Chern numbers −1 and +1 respectively until the end of
the cycle. The slab CSA coupling (heavy line in the lower
panel) goes from zero at φ = 0 to somewhat less than
2π at φ = 2π. It is only when Nz → ∞ (open circles)
that θslab(2π)→ 2π; this is similar to an adiabatic charge
pump, where the exact quantization of particle transport
only occurs in the thermodynamic limit.33

The result θslab(2π) − θslab(0) = 2π in the limit of a
thick slab can be readily understood from the surface
theorem. Since Hbulk(φ) is periodic, the sheet structure
in the interior of the slab is identical at φ = 0 and at
φ = 2π, so that θ3(0) = θ3(2π) for any choice of bulk cell
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FIG. 5. (Color online.) Numerical results for a ten-layer slab
(Nz = 5) as a function of the adiabatic loop parameter φ. The
surface Hamiltonian has been modified according to Eq. (57),
to keep the surface insulating throughout the cycle. Top: min-
imum energy gap (always at point K in the 2D BZ) at half
filling. Middle: Wannier charge centers at K in units of the
lattice constant c, with indices ranging from n = 1 (bottom)
to n = 10 (top); the dashed line and colored heavy/light lines
have the same meaning as in Fig. 3. Two possible choices
of bulk cells are indicated by the grey and black lines. Bot-
tom: dimensionless CSA coupling θslab = θ2/Nzc. Heavy
line, calculation done at Nz = 5. Open circles, extrapolation
to Nz →∞ of calculations done at Nz = 4, 7, 10. Light grey
line, bulk CSA coupling θ3 taken from Fig. 4.

(two possible choices are indicated in Fig. 5; since all the
bulk sheets have zero Chern number, the value of θ3 does
not depend on that choice20). What changes between
the two states of the slab is the excess Chern number
that remains after tiling the chosen cell towards the top
surface: inspection of Fig. 5 shows that CIII(0) = 0, while
CIII(2π) = −1. Referring to Eq. (39),

∆θslab|φ=2π
φ=0 = −2π ∆CA|φ=2π

φ=0 = 2π. (58)

Let us now use Eq. (39) to determine θslab in the range
π/2 < φ < 3π/2 where the Wannier sheets have alternat-
ing Cherns numbers ±1. When switching from the grey
to the black cells in Fig. 5, the sheet with C = +1 (heavy
red line) in the central cell stays the same, while the one
with C = −1 (light green line) gets replaced by its peri-
odic image below, changing θ3 by −2π. Tiling the former
cell towards the upper surface leaves no excess sheets, so
that CIII = 0 and θslab = θ3. With the latter choice there
is one leftover sheet with CIII = −1 that contributes +2π
to θslab, exactly cancelling the change in θ3. The calcu-
lated value of θslab is therefore the same with both cell
choices.
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FIG. 6. Same as the top and bottom panels of Fig. 5, except
that now the entire slab – including the surfaces – undergoes
a cyclic evolution.

D. Cyclic evolution of the entire slab

Next we consider a truly cyclic evolution of the slab,
where not only the interior but also the surfaces return
to their initial state. Because θslab(φ) is uniquely deter-
mined by Hslab(φ) and the band filling, it must return at
φ = 2π to the same value it had at φ = 0. The way this
happens for our model is shown in Fig. 6. From φ = 0 to
φc = 3π/2 the CSA coupling of a thick slab (open circles)
evolves exactly as in Fig. 5. Then at the critical param-
eter φc it drops abruptly by 2π, switching between two
branches of the bulk CSA coupling θ3 (light grey lines).

At φc, the energy gap closes at the two surfaces. In
order to avoid spurious interactions between the surfaces
that reopen the gap slightly and complicate the analy-
sis, let us switch to a semi-infinite geometry with a sin-
gle surface. Figure 7 shows the spectral function in the
vicinity of point K in the surface BZ, evaluated by trac-
ing over sites in the topmost two layers. The gap closing
at φc (top panel) consists of a linear crossing between
two surface bands. Moving sligthly away from φc (bot-
tom panel), the crossing becomes avoided. Just like the
touching events between Wannier sheets seen in Figs. 3–
5, this band touching constitutes a Weyl point in the
space of parameters (kx, ky, φ). Since the states that
cross are localized at the surface, we call it a “surface
Weyl point.”

The discontinuous 2π drop in θslab occurs because at
φc a −2π quantum of Berry flux is channeled from the va-
lence to the conduction bands through the surface Weyl
point. This removes the exact amount of Berry curvature
that gets pushed to the surface during one pumping cy-
cle, allowing the surface AHC to return to its initial value
by the end of the cycle. Referring to the middle panel of
Fig. 5 (but without the bottom surface, due to the semi-
infinite geometry), the effect of the surface Weyl point
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FIG. 7. (Color online.) Surface spectral function in a semi-
infinite geometry, calculated at the critical parameter value
φc = 3π/2 where the CSA coupling in Fig. 6 changes discon-
tinuously (top panel), and at φ = φc ± π/20 (bottom panel).
The spectral function is plotted along two lines that extend
(1/20)th of the distance from K to M and Γ.

would be to add at φc = 3π/2 a Chern amount of +1 to
the topmost Wannier sheet, changing its Chern number
from −1 to zero without it touching the sheet below.

The scenario sketched here, in which a single Weyl
point in (kx, ky, φ) space disposes of the excess Chern
number pumped to the surface during a cycle that also
returns the surface Hamiltonian to itself, is not the only
possibility. In general there could be a finite interval in φ
over which the surface becomes metallic. In such cases,
however, we would still expect that the “Fermi surface
in (kx, ky, φ) space” should always enclose such a Weyl
point,34 or more precisely, a set of Weyl points with a
net chirality equal to the second Chern number charac-
terizing the pumping cycle.

IV. SUMMARY

In summary, we have examined how the presence of
insulating surfaces fixes the quantized part of the CSA
coupling that is undefined for a purely bulk band insula-
tor. In the basis of HWFs maximally-localized along the
surface-normal direction, the CSA coupling of a thick
slab becomes a sum of two terms: (i) a nonquantized
contribution (previously found in Ref. 20) associated with
the bulklike HWFs far from the surfaces, and (ii) a quan-
tized contribution given by the excess Chern number of
the Wannier sheets near the surface. When some of the
bulk Wannier sheets have nonzero Chern numbers the in-
dividual terms in this decomposition become dependent
on the choice of bulk cell, but their sum remains unique
(for a given surface termination).

Inspired by the representation of the CSA pumping
process in the HWF basis, where 2π quanta of Berry cur-

vature are passed from sheet to sheet,20 we constructed a
3D tight-binding model for a quantum CSA pump by cou-
pling quantum anomalous Hall layers with tunable Chern
numbers. In order to illustrate the surface theorem of
Eq. (39), the CSA coupling strength of the model, as well
as the charge centers and Chern numbers of the individ-
ual Wannier sheets, were tracked during cyclic evolutions
carried out in different geometries (periodic bulk crystal,
finite slab, and semi-infinite crystal). These numerical
studies revealed how the Berry curvature pumped across
the bulk is extracted at the surfaces, when the surface
Hamiltonian also undergoes a cyclic evolution.

At two isolated points along the cycle, our model
acquires mirror symmetry. The two mirror-symmetric
states are topologically distinct: it is not possible to
go from one to the other along a path in parameter
space that preserves mirror symmetry without closing
and reopening the direct band gap. The trivial state has
θ3 = 0 mod 2π (corresponding to a quantized surface
AHC of ne2/h), while the nontrivial one has θ3 = π mod
2π and a half-quantized surface AHC, and these are the
only values consistent with mirror symmetry. This is
analogous to the quantization of the bulk polarization
and “surface” (edge) bound charge to integer and half-
integer multiples of e, respectively, at the two inversion-
symmetric points along a charge-pumping cycle in 1D.19

The HWF representation has become a powerful tool
for identifying topological phases in 2D and 3D.22,35–38

While in previous studies the objects of interest were the
bulk HWFs, the present work shows that, as in the 1D
polarization problem, in 3D additional topological infor-
mation can be extracted from the HWFs near the surface.
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Appendix A: Quantization of the CSA coupling in
the presence of mirror symmetry

In this Appendix we use the HWF picture to analyze
how the presence of mirror symmetry Mz in our bulk
model at φ = 0 and φ = π forces the CSA coupling to be
either 0 or π modulo 2π, as seen in Fig. 4. Henceforth
we use the symbol θM3 to denote the value of the CSA
coupling when mirror symmetry is present.

Mirror symmetry forces the term θ∆xy in Eq. (13c) to
vanish, because that term is odd under Mz and single
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valued. Therefore, θM3 is fully determined by Eq. (13b),

θM3 = −1

c

∫
dκ
∑
n

zκ0nΩxyκ,0n,0n. (A1)

According to Fig. 4, at φ = 0 and φ = π the two Wan-
nier centers at K in the home cell of our model coincide
with one of the two mirror planes, z = 0 or z = 1/2 (in
units of the lattice constant c). In fact, the two Wannier
sheets are pinned to the mirror planes for all values of κ.
Taking the Wannier centers out of the integrand in the
previous equation and using Eq. (12), we find

θM3 = −πC1/2, (A2)

where C1/2 is the Chern number of the Wannier sheet
pinned at z = 1/2. Consulting again the middle panel
of Fig. 4 we see that C1/2 = 0 at φ = 0 and C1/2 = −1

at φ = π, so that θM3 = 0 and θM3 = π respectively, in
agreement with the lower panel of the same figure.

Alternatively, the band topology protected by mirror
symmetry can be characterized by “mirror Chern num-
bers” CMkz defined on the mirror-invariant planes in the

BZ39 (for this model, they are kz = 0 and kz = π, in
units of 1/c). The two descriptions are related by32

θM3 = π
(∣∣CM0 ∣∣+

∣∣CMπ ∣∣) mod 2π. (A3)

Below we verify this relation explicitly for our model.
We make use of the fact that

∣∣CMkz ∣∣ counts the number
of Dirac cones along the projection line of the kz plane
onto the surface BZ of a mirror-symmetric surface.39

Figure 8 shows the surface spectral function calculated
at φ = 0, π using a semi-infinite geometry that respects
mirror symmetry (surface normal to the y direction, cor-
responding to zig zag edges for the individual layers).
The surface BZ is a rectangle on the (kx, kz) plane, with
Γ = (0, 0) at the center, R = (1/2, 1/2) at the corner, and
X = (1/2, 0) and Z = (0, 1/2) at the centers of the two
edges.

At φ = 0 (top panel of Fig. 8), the absence of surface
states traversing the bulk gap implies

∣∣CM0 ∣∣ =
∣∣CMπ ∣∣ = 0,

in agreement with the value θ3 = 0. At φ = π (bottom
panel) there are two such surface bands of opposite chi-
rality. They cross along the projection Z R of the kz = π
plane so that

∣∣CMπ ∣∣ = 1 and
∣∣CM0 ∣∣ = 0, consistent with

θ3 = π. In conclusion, the model at φ = 0 is a trivial
insulator while at φ = π it is a topological crystalline
insulator with a single Dirac cone on any surface normal
to the mirror plane.

Appendix B: Mapping the second Chern number in
an augmented parameter space

In the same way that a quantum charge pump is char-
acterized by a nonzero (first) Chern number defined over
a two-dimensional parameter space (k, λ),33 a quantum
CSA pump has a nonvanishing second Chern number
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FIG. 8. (Color online.) Surface spectral function of the lay-
ered model at φ = 0 and φ = π, for a semi-infinite geometry
with the surface orthogonal to the y direction. In both cases
the entire system (bulk plus surface) has mirror symmetry,
but while in the top panel the bulk CSA coupling vanishes,
in the bottom panel it equals π and protects a surface Dirac
cone.

in the four-dimensional space of k and the pumping
parameter,10 i.e., (kx, ky, kz, φ) for the model of Eq. (55).

In order to vary the behavior of the loop so that it can
also represent trivial cycles, we introduce an additional
parameter β in the interlayer hoppings of the model,

t3,p =
[
1 + (−1)p−1γ (sinφ+ 2 sinβ)

]
t2. (B1)

The case of β = 0 corresponds to Eq. (56). The 4D Bloch
Hamiltonian Hbulk(kx, ky, kz, φ) has four Dirac points at
which the top two valence bands and bottom two conduc-
tion bands all become degenerate at the H point in the
3D BZ for φ = 3π/2. These occur at β = ±π/6 and β =
±5π/6, delineating different regions of β with different
second Chern numbers. In particular, the second Chern
number is ±1 when β ∈ [−π/6, π/6] or β ∈ [5π/6, 7π/6]
respectively, and is zero otherwise. This is illustrated
in Fig. 9, where the three cases of β ∈ {0, π/6, π/2}
are shown. The change from a trivial to a nontrivial
pumping cycle at β = π/6 is depicted in the two bottom
panels. In the second half of the cycle the bulk HWFs
remain localized near the atomic layers, and at φ = 3π/2
they exchange Berry flux with the two conduction bands
(rather than with one another) through the Dirac point,
changing their Chern numbers from {+1,−1} to {0, 0}.
In this process, the net Berry flux through the nonchiral
Dirac point vanishes as expected.

Alternatively, one can view the same process in terms
of a 5D Hamiltonian Hbulk(kx, ky, kz, φ, β) where the sec-
ond Chern number is calculated on 4D hyperslices corre-
sponding to fixed values of β. When β passes through the
four Dirac points, the second Chern number of the slices
changes by one. The Dirac points in 5D are the analogs
of Weyl points in 3D; indeed, the integer obtained by
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FIG. 9. (Color online.) Top: band structures in the 3D BZ, calculated at φ = 3π/2 with three different values of β. The
bands are everywhere two-fold degenerate, and at β = π/6 they become four-fold degenerate at H, forming a Dirac point.
Bottom: interlayer couplings, hybrid Wannier charge centers at point K in the projected BZ, and bulk CSA coupling, plotted
as a function of φ for the same three values of β. In the panels depicting the Wannier centers, the dashed lines and colored
heavy/light lines have the same meaning as in Fig. 3.

integrating the second Chern class on a closed 4D hy-
persurface surrounding the degeneracy point is nothing

other than the change in the second Chern number of the
hyperslices.
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