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Dynamics of Berry-phase polarization in time-dependent electric fields
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We consider the flow of polarization current J = dP/dt produced by a homogeneous electric field
E(t) or by rapidly varying some other parameter in the Hamiltonian of a solid. For an initially
insulating system and a collisionless time evolution, the dynamic polarization P(t) is given by
a nonadiabatic version of the King-Smith–Vanderbilt geometric-phase formula. This leads to a
computationally convenient form for the Schrödinger equation where the electric field is described
by a linear scalar potential handled on a discrete mesh in reciprocal space. Stationary solutions in
sufficiently weak static fields are local minima of the energy functional of Nunes and Gonze. Such
solutions only exist below a critical field that depends inversely on the density of k points. For
higher fields they become long-lived resonances, which can be accessed dynamically by gradually
increasing E . As an illustration the dielectric function in the presence of a dc bias field is computed
for a tight-binding model from the polarization response to a step-function discontinuity in E(t),
displaying the Franz-Keldysh effect.

PACS numbers: 71.15.Qe, 78.20.Bh

I. INTRODUCTION

A very successful theoretical and computational frame-
work was developed by King-Smith and Vanderbilt1 for
dealing within periodic boundary conditions with the
macroscopic dielectric polarization of an insulator. The
central result of the theory of bulk polarization (TBP)
is an expression for the electronic contribution P which
takes the form of a Berry’s phase2 of the valence-band
Bloch wave functions transported across the Brillouin
zone (BZ). Alternatively, it can be recast in real space
as the vector sum of the centers of charge of the valence-
band Wannier functions. Practical prescriptions were de-
vised for computing both the Berry’s phase1 and the
Wannier functions,3 which have become standard fea-
tures of first-principles electronic structure codes.

The measurable quantity accessed by the TBP is
the change ∆P in macroscopic polarization induced by
changing some parameter λ in the electronic Hamilto-
nian Ĥ(t) = Ĥ [λ(t)]. The following assumptions were
explicitly made in the original derivation1. (i) Adiabatic-
ity: the change in λ(t) is slow enough that the electrons

remain in the instantaneous ground state of Ĥ(t), apart
from small deviations proportional to dλ/dt described by
first-order adiabatic perturbation theory; (ii) the ground

state of Ĥ(t) remains insulating at all times, separated

from excited states by finite energy gaps; (iii) Ĥ(t) is
lattice-periodic. The first two assumptions are related in
that the size of the energy gap sets the scale for devia-
tions from adiabaticity.

A spatially homogeneous electric field necessarily vi-
olates either (i) or (iii): if the field is introduced via

a vector-potential A(t) = −c
∫ t

E(t′)dt′, Ĥ(t) remains
lattice-periodic but changes nonadiabatically, even for a
static field; if instead a scalar potential term eE(t) · r̂ is

used, Ĥ(t) is no longer lattice-periodic. Nevertheless, the
TBP has been successfully applied to situations where

electric fields are present,4,5,6,7,8,9,10 but a rigorous justi-
fication for doing so is still lacking.

In this paper we reexamine the TBP and find that it
can be generalized as follows. Assumption (i) can be
dropped altogether. Assumption (ii) is only invoked at
t = 0; the ensuing nonadiabatic dynamics may admix
considerable amounts of excited states into the occupied
subspace. Finally assumption (iii) can be relaxed to allow
for a linear scalar potential to be present in addition to
the periodic crystal potential.

These generalizations extend the scope of the TBP
to nonadiabatic polarization currents induced by time-
dependent electric fields, or by other rapid changes in
Ĥ(t) (e.g., the initial nonthermal ionic motion that ac-
companies photoexcitation of the electrons by an in-
tense laser pulse.11) The dynamical equations for the
electrons that come out of this generalized TBP are
derived and applied in the context of a tight-binding
model. These equations are semiclassical (the electrons
are treated quantum-mechanically, whereas the electric
field is treated classically) and nonperturbative (electric
fields of finite magnitude are allowed).

We begin by considering in Section II some general
properties of the coherent dynamics of Bloch electrons
that are initially in an insulating state. They are used
in Section III to discuss the macroscopic current J(t),
which is expressed as the rate of change of a dynamic
polarization P(t) given by nonadiabatic versions of the
King-Smith–Vanderbilt expressions. In Section IV we
derive from this generalized TBP a numerically conve-
nient form for the time-dependent Schrödinger equation
(TDSE) in the scalar-potential gauge, discretized on a
mesh of k points. Stable stationary solutions in static
fields are discussed in Section V. They exist only below
a critical field Ec which decreases with increasing k-point
density, and are local minima of the energy functional of
Nunes and Gonze.7,8,9 A prescription is given for com-
puting them using an iterative diagonalization scheme.
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In Section VI we show numerically on a tight-binding
model how the regime above the critical field can be ac-
cessed dynamically, by gradually increasing the electric
field beyond the critical value. We also compute the di-
electric function of the same model in the presence of a
static bias field, displaying the Franz-Keldysh effect.

II. GENERAL PROPERTIES OF THE

DYNAMICS

A. Lattice-periodicity

Here we expound in more detail an argument, sketched
in Ref. 8, that makes use of the one-particle density ma-
trix to handle the presence of electric fields in a well-
controlled fashion.12 We say that the one-particle density
matrix n(r, r′) = 〈r|n̂|r′〉 is lattice-periodic if

n(r, r′) = n(r + R, r′ + R), (1)

where R is a lattice vector. In particular, this implies
periodicity of the charge density. Suppose that (1) is
true at t = 0 (e.g., the electrons are in the ground state

of the crystal Hamiltonian Ĥ0(t = 0)). At that time a
homogeneous electric field is turned on, which may sub-
sequently have an arbitrarily strong and rapid variation;
Ĥ0(t) may also undergo arbitrarily rapid variations (but
must remain periodic). The full Hamiltonian in the scalar
potential gauge is

Ĥ(t) = Ĥ0(t) + ĤE(t), (2)

where ĤE(t) = eE(t) · r̂ describes the electric field in the
dipole approximation, and −e is the electron charge.

Let us show that in the absence of scattering the
lattice-periodicity of n(r, r′) is preserved at all later
times. It suffices to establish that ṅ(r, r′) = ṅ(r +
R, r′ + R). The density matrix evolves according to

ih̄ dn̂/dt = [Ĥ, n̂], or, in the position representation,

ih̄ ṅ(r, r′) =

∫
[H(r,x)n(x, r′)−n(r,x)H(x, r′)]dx. (3)

(When left unspecified, the domain of integration over
spatial coordinates is understood to be the entire space.)

For clarity we consider the effect of Ĥ0 and ĤE sepa-
rately. The Ĥ0 term yields

ih̄ ṅ(r + R, r′ + R) =

∫
[H0(r + R,x)n(x, r′ + R)

− n(r + R,x)H0(x, r′ + R)]dx.(4)

Making the change of variables x
′ = x−R and invoking

the lattice-periodicity of Ĥ0 and n̂, we find ṅ(r+R, r′ +
R) = ṅ(r, r′). Using r(r, r′) = 〈r|r̂|r′〉 = r δ(r − r

′) the

contribution from ĤE is seen to have the same property:

ih̄ ṅ(r + R, r′ + R) = eE · (r + R)n(r + R, r′ + R)

− eE · (r′ + R)n(r + R, r′ + R)

= eE · (r − r
′)n(r, r′) = ih̄ ṅ(r, r′).

(5)

Hence n(r, r′) remains lattice-periodic under the action
of the full Hamiltonian (2). This was to be expected,
since in the vector potential gauge the Hamiltonian is
periodic.13 The purpose of this exercise was to show
explicitly how this result comes about in the scalar-
potential gauge, where the nonperiodicity of Ĥ has been
a source of some confusion regarding this issue.

B. Wannier-representability

The previous result on the conservation of lattice-
periodicity is valid for both metals and insulators. In
what follows we shall specialize to the case where the
system is initially in an insulating state, in which case a
stronger statement can be made regarding the nature of
the states at t > 0.

We will assume the absence of spin degeneracy
throughout, so that states are singly-occupied. In terms
of the valence Bloch eigenstates of Ĥ0(t = 0), the initial
density matrix is

n(r, r′; t = 0) = Ω−1
B

M∑

n=1

∫
dkψkn(r)ψ∗

kn(r′), (6)

where the integral is over the BZ of volume ΩB =
(2π)3/v, and M is the number of filled bands. (Clearly,
such a density matrix is lattice-periodic. Its idempotency
can be checked using Eq. (A1).) We shall prove that, as
the density matrix evolves in time according to

ih̄ ṅ(r, r′; t) = 〈r|[Ĥ0 + ĤE , n̂]|r′〉, (7)

it can still be expressed in the same form,

n(r, r′; t) = Ω−1
B

M∑

n=1

∫
dkφkn(r, t)φ∗

kn(r′, t). (8)

Although at t > 0 the occupied states φkn(r, t) may

depart significantly from the valence states of Ĥ0(t),
they remain orthonormal and Bloch-like: φkn(r, t) =
eik·rvkn(r, t), with vkn(r + R, t) = vkn(r, t).

The cell-periodic states vkn(r, t) are the central ob-
jects in our formalism. For discussion purposes only,
let us expand them in the set of eigenstates ukm(r, t) =

e−ik·rψkm(r, t) of the cell-periodic Hamiltonian Ĥ0
k
(t) =

e−ik·r̂Ĥ0(t)eik·r̂:

|vkn(t)〉 =

∞∑

m=1

ck,nm(t) |ukm(t)〉. (9)



3

Individual eigenstates will in general have fractional oc-

cupations 0 ≤ nkm =
∑M

n=1 |ck,nm|2 ≤ 1 at t > 0, but
the total population nk =

∑∞
m=1 nkm is the same for ev-

ery k and equals the number of filled bands at t = 0.
This is intuitively clear, since a spatially homogeneous
electric field causes vertical transitions in k-space which
amount to a redistribution of the electron population
among states with equal k; the same is true for the tran-
sitions induced by varying the lattice-periodic Ĥ0(t).

We will justify Eq. (8) by deriving a dynamics for the
|vkn〉 that insures that Eq. (8) provides a solution to (7).
Since there is a gauge freedom

|vkn〉 →

M∑

m=1

Uk,mn|vkm〉 (10)

(Uk is a k-dependent unitary M ×M matrix) in the def-
inition of the |vkn〉,

3 the evolution equation for them is
not unique. We require only that the |vkn〉 should yield
the correct dynamics for the gauge-invariant density ma-
trix, Eq. (7), and we will look for the simplest solution
that achieves this goal.

By hypothesis, at time t ṅ(r, r′) takes the form

ṅ(r, r′) = Ω−1
B

M∑

n=1

∫
dk eik·(r−r

′) ×

[v̇kn(r)v∗kn(r′) + vkn(r)v̇∗kn(r′)]. (11)

As in the previous subsection, we consider the contri-
butions from Ĥ0 and ĤE in Eq. (7) separately. The

former is captured by ih̄|v̇kn〉 = Ĥ0
k
|vkn〉. To deal with

ĤE we resort to manipulations familiar from the crystal-
momentum representation (CMR)14 (but with the crucial
difference that in the CMR those manipulations are ap-
plied to the |ukn〉, not to the |vkn〉). We first observe
that

〈r|[r̂, n̂]|r′〉 = (r − r
′)n(r, r′)

= Ω−1
B

M∑

n=1

∫
dk vkn(r)v∗

kn(r′)(−i∂k)eik·(r−r
′).(12)

Integrating by parts and noting that in a periodic gauge

(φk+G,n = φkn) the boundary term vanishes, we obtain

〈r|[ĤE , n̂]|r′〉 = Ω−1
B

M∑

n=1

∫
dk eik·(r−r

′)ieE ·

[(
∂kvkn(r)

)
v∗
kn(r′) + vkn(r)

(
∂kv

∗
kn(r′)

)]
.(13)

Comparing with Eqs. (7) and (11) we arrive at ih̄|v̇kn〉 =

ieE · ∂k|vkn〉. The effect of ĤE thus takes the form of a

k-derivative, and the combined effect of Ĥ0 and ĤE is

ih̄|v̇kn〉 = (Ĥ0
k + ieE · ∂k)|vkn〉. (14)

This is our version of the TDSE for Bloch electrons in the
scalar potential gauge, constructed in order that Eq. (8)

will satisfy Eq. (7). The time-independent version was
introduced as an ansatz in Ref. 7.15 The equivalence of
Eq. (14) to other forms in the literature is established in
Appendix A.

If at time t the M states |vkn〉 at every k are lattice-
periodic and orthonormal, the dynamics dictated by
Eq. (14) preserves those properties, i.e., v̇kn(r + R) =
v̇kn(r) and d〈vkn|vkm〉/dt = 0. This can be seen as fol-
lows. Starting from

ih̄ v̇kn(r+R) =

∫
H0

k(r+R,x)vkn(x) dx+ieE ·∂kvkn(r+R),

(15)
making the change of variables x

′ = x−R, and invoking
the assumed lattice-periodicity of both Ĥ0 and vkn(r),
the right-hand-side becomes ih̄v̇kn(r). As for orthonor-
mality, Eq. (14) yields16

d

dt
〈vkn|vkm〉 =

e

h̄
E · ∂k〈vkn|vkm〉. (16)

Since by hypothesis

〈vkn|vkm〉 ≡

∫

v

v∗kn(r)vkm(r) dr = δn,m, (17)

where the integral is over a unit cell, the right-hand-side
of Eq. (16) vanishes. This completes the proof of Eq. (8).

Two assumptions were made in the above derivation.
The first is that the states |vkn〉 vary smoothly with k,
so that k-derivatives exist; we will come back to this
point in Sec. III B. The second is that the dynamics
is scattering-free. Note that Eq. (16) is closely related to
the collisionless Boltzmann equation; incoherent scatter-
ing would destroy the constancy of the total population
nk by inducing transitions between different k points.

Having established that the occupied manifold is
spanned by M Bloch-like states at each k, we now
transform them into Wannier-like states 〈r|WRn(t)〉 =
Wn(r − R, t) in the usual way,

|WRn(t)〉 = Ω−1
B

M∑

m=1

∫
dk e−ik·R Uk,mn(t) |φkm(t)〉,

(18)
where a periodic gauge is assumed and we have inserted
a unitary rotation (10) among the occupied states. The
assumption that by a judicious choice of the matrices
Uk(t) the Bloch-like states can be made to vary smoothly
with k is equivalent to the assumption that the Wannier-
like states can be chosen to be well localized.3

The density matrix (8) can now be recast as

n(r, r′; t) =

M∑

n=1

∑

R

WRn(r, t)W ∗
Rn(r′, t). (19)

We will term Wannier-representable (WR) a state whose
density matrix is of this form. An insulating ground state
is WR, while a metallic state is not. We have established
that under the Hamiltonian (2) and in the absence of
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scattering, an initially insulating system remains WR, or
“insulating-like”, even if at some later time the ground
state of Ĥ0(t) becomes metallic.17 Unlike a true insulat-
ing ground state, or a stationary field-polarized state,8

a dynamic WR state will in general break time-reversal
symmetry and carry a macroscopic current. This is the
subject of the next Section.

III. DYNAMIC POLARIZATION AND

CURRENT

A. Derivation

Our aim in this Section is to show that a WR state
carries a current that can be expressed as the rate of
change of a polarization per unit volume,

J(t) =
dP(t)

dt
, (20)

where P(t) is given in a periodic gauge by

Pα(t) = −
ie

(2π)
3

M∑

n=1

∫
dk 〈vkn(t)|∂kα

vkn(t)〉 (21)

(α is a cartesian direction) or, equivalently, by

P(t) = −
e

v

M∑

n=1

∫
r |Wn(r, t)|2 dr. (22)

Eqs. (21)-(22) are identical to the King-Smith–Vanderbilt
expressions appropriate for the adiabatic regime and E =
0,1 except that in (21) the valence-band eigenstates |ukn〉
have been replaced by the instantaneous solutions of the
TDSE (14), and the Wn(r, t) in Eq. (22) are the Wannier
states corresponding to the vkn(r, t). Eq. (21) can be
interpreted as a nonadiabatic geometric phase.18

As in the adiabatic case, P(t) is invariant under the
transformation (10) only up to a “quantum of polariza-
tion” (e/v)R. Naturally, this gauge indeterminacy does
not affect the measurable J(t). The total change in bulk
polarization in a time interval [0, T ] is also well-defined

as the integrated current: ∆P =
∫ T

0
J(t) dt. It can be de-

termined, apart from an integer multiple of the quantum,
by evaluating P(t) at the endpoints: ∆P = P(T )−P(0).
In practice the remaining indeterminacy can be removed
in the manner described in Ref. 1, by evaluating P(t)
with sufficient frequency during that interval.

To establish Eqs. (20)-(21), we first evaluate dP/dt by
taking the time derivative of Eq. (21) and obtain, after
an integration by parts,

dPα

dt
= −

ie

(2π)
3

M∑

n=1

∫
dk

[
〈v̇kn|∂kα

vkn〉 − c.c.
]
. (23)

Inserting the TDSE, Eq. (14), we note that the contribu-
tion arising from the second term therein, which explic-
itly involves E , may be written as

J̃α =
e2

(2π)3h̄

M∑

n=1

∑

β

Eβ

∫
dkΩ

(n)
αβ (k) (24)

where

Ω
(n)
αβ (k) = i

[
〈∂kα

vkn|∂kβ
vkn〉 − 〈∂kβ

vkn|∂kα
vkn〉

]
. (25)

This takes the form of a (nonadiabatic) Berry
curvature.19 Using Stokes’ theorem, its volume integral
can be turned into a surface integral around the edges of
the BZ of the Berry connection Ak,nn, where

Aα
k,mn = i〈vkm|∂kα

vkn〉. (26)

Such an integral vanishes in a periodic gauge, so that

J̃α = 0. The remaining contribution, arising from the
insertion of the first term of Eq. (14) into Eq. (23), then
gives

dPα

dt
=

e

(2π)
3
h̄

M∑

n=1

∫
dk

[
〈vkn|Ĥ

0
k|∂kα

vkn〉+c.c.
]
. (27)

On the other hand, the current is

Jα = −
e

v
Trc(n̂v̂α). (28)

Here Trc denotes the trace per unit cell,

Trc(Ô) =
1

N

∫
O(r, r) dr, (29)

where N is the (formally infinite) number of real-space
cells in the system. The velocity operator is defined as

v̂α =
1

ih̄
[r̂α, Ĥ]. (30)

Inserting the Hamiltonian (2) and using [r̂α, Ĥ
E ] = 0,

v̂α =
1

ih̄
[r̂α, Ĥ

0]. (31)

In the position representation we find, combining (8),
(28) and (31), invoking the lattice-periodicity of the in-
tegrand to replace (1/N)

∫
dr by

∫
v
dr, and inserting the

identity 1̂ =
∫
dr′|r′〉〈r′|,

Jα = −
e

(2π)3h̄

M∑

n=1

∫
dk

∫

v

dr

∫
dr′ v∗

kn(r′)vkn(r)

× H0(r′, r)∂kα
e−ik·(r′−r). (32)

Integrating by parts in kα (the boundary term vanishes
in a periodic gauge), and using

H0
k
(r′, r) = e−ik·(r′−r)H0(r′, r), (33)
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Jα reduces to exactly the same expression appearing on
the right-hand side of Eq. (27). This completes the proof
of Eqs. (20)-(21) for WR states evolving under the Hamil-
tonian (2).

We note in passing that the integral on the right-hand
side of Eq. (27) can be recast as

∫
dk

[
∂kα

〈vkn|Ĥ
0
k|vkn〉 − 〈vkn|

(
∂kαĤ

0
k

)
|vkn〉

]
. (34)

The first term vanishes in a periodic gauge, leading to
the more familiar-looking form

Jα = −
e

(2π)
3

M∑

n=1

∫
dk 〈vkn|v̂α(k)|vkn〉, (35)

where v̂α(k) = (1/h̄)
(
∂kα

Ĥ0
k

)
.14

The above derivations (and indeed all the results in this
paper) remain valid for nonlocal pseudopotentials such as
those used in ab initio calculations, since the definition
of the velocity as the commutator (30) remains valid for
such pseudopotentials.

B. Discussion

It is remarkable that a knowledge of the wave func-
tions at t = 0 and t = T is sufficient to infer, to within a
factor of (e/v)R, the net amount of current that flowed
through the bulk in the intervening time. This is a di-
rect consequence of representability by localized Wannier
functions, that is, of the insulating-like character of the
many-electron system. For such systems the integral in
Eq. (22) can be evaluated, and it becomes possible to
track the time evolution of the electronic center of mass,
i.e., of P. Indeed, the center of mass can be meaning-
fully defined within periodic boundary conditions only
for many-electron states that are localized in the man-
ner of insulating states.20,21 Under these conditions, the
history of the coherent current flow is contained (mod-
ulo the quantum of polarization) in the initial and final
wave functions, related by the time evolution operator

exp[−(i/h̄)
∫ T

0 Ĥ(t)dt].
This result was previously established for adiabatic

charge flow,1 under the assumption that the ground state
is separated from excited states by finite energy gaps ev-
erywhere in the BZ. In nonadiabatic situations the oc-
cupied manifold acquires a significant excited-state ad-
mixture, so that it becomes impossible to identify an en-
ergy gap. Instead, underlying the derivation in Sec. III A
is a weaker assumption, namely, that the many-electron
state has a localized nature, as reflected by the ability
to construct, via Eq. (18), Wannier functions having a
finite localization length.21,22 (Numerical calculations of
the localization length will be presented in Sec. VI.) For
instance, when taking k-derivatives, we assumed a “dif-
ferentiable gauge” for the |vkn〉. This is only possible if
the character of the electronic manifold changes slowly

with k, which is precisely what is measured by the lo-
calization length.3 These observations are in line with
Kohn’s viewpoint that the defining feature of the insulat-
ing state is wave function localization, not the existence
of an energy gap.20

IV. DYNAMICAL EQUATIONS

Having found the Berry-phase formula (21) for the dy-
namic polarization in the presence of a field E(t), let us
now use it to obtain computationally tractable dynam-
ical equations under the Hamiltonian (2). The starting

point is the observation that the dipole term ĤE con-
tributes −vP(t) · E(t) to the energy per unit cell. An
energy functional valid for periodic boundary conditions
is then obtained by expressing P(t) via the TBP formu-
las. This program was previously carried out for insu-
lators in static fields,4,7,8,9 where stationary states were
computed by minimizing that energy functional after ap-
plying a regularization procedure (truncation of the Wan-
nier functions in real space or discretization of k-space).
Our strategy for the time-dependent problem is to im-
pose stationarity on the corresponding action functional.
Following Refs. 7,8, we adopt here a k-space formulation,
which is particularly well-suited for numerical work. Spe-
cial emphasis will be put on the discrete-k case since this
is the relevant one for numerical implementations.

A. Continuum-k case

In the continuum-k limit the TDSE may be formally
obtained from a Lagrangian density L(k) such that the
Lagrangian per unit cell is L = Ω−1

B

∫
dkL(k). For WR

states under the Hamiltonian (2) we have

L(k) = ih̄

M∑

n=1

〈vkn|v̇kn〉 − E(k), (36)

where

E(k) =

M∑

n=1

〈vkn|Ĥ
0
k + ieE · ∂k|vkn〉. (37)

Using Eq. (21) and defining the zero-field energy func-
tional

E0 = Ω−1
B

M∑

n=1

∫
dk 〈vkn|Ĥ

0
k|vkn〉, (38)

one finds the total energy functional

E = Ω−1
B

∫
dkE(k) = E0 − vP · E . (39)

The Euler-Lagrange equation23

d

dt

δL

〈δv̇kn|
+

d

dk

δL

〈δ∂kvkn|
−

δL

〈δvkn|
= 0 (40)
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then leads to the dynamical equation (14).
As already mentioned, the choice of dynamical equa-

tion for the |vkn〉 is not unique. An alternative to Eq. (14)
is

ih̄|v̇kn〉 =
(
Ĥ0

k
+ ieE · ∂̃k

)
|vkn〉. (41)

The bare derivative ∂k has been replaced by

∂̃k = ∂k + i
M∑

m,n=1

Ak,mn|vkm〉〈vkn|, (42)

where Ak,mn is given by Eq. (26). The operator ∂̃k is
a multiband version of the covariant derivative24 and is
discussed further in Appendix B. Although the field-
coupling term in Eq. (41) is no longer a scalar potential
term in the strict sense, we will continue to view it as
such in a generalized sense.

Eq. (41) preserves the orthonormality of the |vkn〉 and
generates the correct dynamics for the density matrix.
(These properties rely on (Aα

k
)† = Aα

k
, which follows from

∂kα
〈vkn|vkm〉 = 0.25) The latter is most easily seen from

the dynamics of the projector

P̂k =

M∑

n=1

|vkn〉〈vkn|, (43)

which completely specifies the occupied subspace at k

while being insensitive to unitary rotations inside that
subspace. After some algebra, it can be shown that while
the individual |vkn〉 behave differently under Eqs. (14)

and (41), P̂k stays the same.
An advantage of introducing Eq. (41) in place of

Eq. (14) is that, upon the discretization of k-space, the
former leads to an evolution equation at point k that is
gauge-covariant (in the sense of transforming in the obvi-
ous way under unitary rotations among occupied states
at k and being invariant under such rotations at neigh-
boring points k

′), as will become clear in the next section.

B. Discrete-k case

This is the relevant case for numerical work. The La-
grangian for a uniform mesh of N points in the BZ is

L =
ih̄

N

M∑

n=1

∑

k

〈vkn|v̇kn〉 − E, (44)

where E is the energy in an electric field,

E = E0 − vE ·P, (45)

with

E0 =
1

N

M∑

n=1

∑

k

〈vkn|Ĥ
0
k
|vkn〉 (46)

and a discretized expression for P to be given shortly.
Applying the Lagrangian equations of motion23

d

dt

δL

〈δv̇kn|
−

δL

〈δvkn|
= 0 (47)

yields

ih̄
d

dt
|vkn〉 = Ĥ0

k
|vkn〉 −NvE ·

δP

〈δvkn|
. (48)

Writing

P =
1

2π

3∑

i=1

ai (P · bi) (49)

where ai and bi are the direct and reciprocal lattice vec-
tors respectively, and defining

vP · bi = −eΓi, (50)

the last term in Eq. (48) becomes

+
Ne

2π

3∑

i=1

(E · ai)
δΓi

〈δvkn|
. (51)

According to the Berry-phase theory of polarization,1

Γi is the string-averaged discretized geometric phase
along the bi direction,

Γi = −
1

N⊥
i

N⊥
i∑

l=1

Im ln

N
‖
i
−1∏

j=0

detS(k
(i)
j ,k

(i)
j+1). (52)

Here Smn(k,k′) = 〈vkm|vk′n〉 is the M ×M overlap ma-
trix, N⊥

1 is the number of strings along b1, each contain-

ing N
‖
1 points k

(1)
j = k

(1)
⊥ + j∆k1, k

(1)
⊥ is a point on the

(b2,b3) plane labeled by l, and ∆k1 = b1/N
‖
1 . Eqs. (50)

and (52) provide the discretized version of the nonadia-
batic Berry-phase polarization, Eq. (21). (A discrete-k
formula for the macroscopic current J(t) is given in Ap-
pendix D.) As in the continuum case, a periodic gauge
is assumed.

A compact expression for δΓi/〈δvkn| is derived in Ap-
pendix C 2 using the following notation. Let kiσ =
k + σ∆ki, where σ = ±1. The overlap matrix becomes
Skiσ,mn = 〈vkm|vkiσ,n〉. Next we define

|ṽkiσ,n〉 =

M∑

m=1

(
S−1

kiσ

)
mn

|vkiσ,m〉 (53)

which is a “dual” of |vkn〉 in the space of the |v〉’s at the
neighboring point kiσ, since

〈vkn|ṽkiσ,m〉 = δn,m. (54)

The |ṽkiσ,n〉 are gauge-covariant in the sense that (i) they
are invariant under unitary rotations among the |vkiσ,n〉
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at any neighboring point kiσ, and (ii) they transform un-
der unitary rotations among the |vkn〉 in the same man-
ner as the |vkn〉 themselves, i.e.,

|ṽkiσ,n〉 →
M∑

m=1

Uk,mn|ṽkiσ,m〉. (55)

Then it is shown in Appendix C 2 that

δΓi

〈δvkn|
=

i

2N⊥
i

∑

σ=±1

σ|ṽkiσ,n〉. (56)

Combining Eqs. (48), (51), and (56), and defining

|wkn〉 =
ie

4π

3∑

i=1

N
‖
i (E · ai)

∑

σ=±1

σ|ṽkiσ,n〉, (57)

the dynamical equation becomes

ih̄
d

dt
|vkn〉 = Ĥ0

k
|vkn〉 + |wkn〉. (58)

Eq. (58) is a discretized version of Eq. (41), i.e.,

|wkn〉 ≃ ieE · ∂̃k|vkn〉. (59)

This is connected with the fact that the duals provide
a natural framework for writing a finite-difference repre-

sentation of ∂̃k|vkn〉.
10 In our notation,

∆ki · ∂̃k|vkn〉 ≃
1

2

∑

σ=±1

σ|ṽkiσ,n〉. (60)

Both dynamical equations (14) and (41) lead to
d〈vkn|vkm〉/dt = 0 for WR manifolds, so that the time
evolution of the individual states |vkn〉 is unitary. This
property is preserved in the discretized form (58), since
〈vkn|wkm〉 = 0. In order to take advantage of certain
unitary integration algorithms, it is useful to recast the
term |wkn〉 on the right-hand-side as an hermitian op-
erator acting on |vkn〉. For that purpose let us define

P̂kiσ =

M∑

n=1

|ṽkiσ,n〉〈vkn|, (61)

which converts an occupied state at k into its dual at kiσ
and is invariant under gauge transformations (i.e., under
independent unitary rotations among occupied states at
both k and kiσ). It follows that the operator

ŵk(E) =
ie

4π

3∑

i=1

N
‖
i (E · ai)

∑

σ

σP̂kiσ (62)

turns |vkn〉 into |wkn〉, which is the property we seek.
Lastly, for the purpose of acting on |vkn〉 the nonhermi-

tian ŵk can be replaced by ŵk + ŵ†
k

since P̂kP̂kiσ = P̂k,

so that Q̂kŵk = ŵk (where Q̂k = 1 − P̂k) and therefore

ŵ†
k
|vkn〉 = 0. We have thus achieved our goal: Eq. (58)

now takes the canonical form of a TDSE,

ih̄
d

dt
|vkn〉 = T̂k|vkn〉, (63)

with an hermitian operator on the right-hand side:

T̂k(E) = Ĥ0
k

+ ŵk(E) + ŵ†
k
(E). (64)

We remarked previously that in the continuum-k limit
Eq. (58) reduces to Eq. (41). The corresponding analysis
for Eqs. (63)-(64) is left to Appendix B.

The operator ŵk appearing in Eq. (64) is defined via
Eqs. (53), (61), and (62). It should be emphasized that
it depends explicitly on the occupied states at k and kiσ.
In particular, even when Ĥ0

k
and E are time-independent,

if the occupied manifolds at k and kiσ are changing over
time, so is T̂k. However, T̂k remains invariant under uni-
tary rotations at k-points k and kiσ. Hence the resulting
dynamics of the occupied manifold (Eq. (66) below) has
the essential property of being insensitive to the gauge
arbitrariness that is always present in numerical simula-
tions.

Note that when the Lagrangian procedure was applied
in Sec. IVA to the continuum-k problem, we arrived at
Eq. (14), which contains ∂k|vkn〉. When the same was
done after discretization, the resulting dynamical equa-

tion contained instead ∂̃k|vkn〉. The reason is that the
gradient of the discretized Berry’s phase, Eq. (56), is
by construction orthogonal to the occupied subspace at
k, whereas the corresponding continuum-k term used in
Sec. IVA was not. Had we orthogonalized that term, we
would have obtained Q̂k∂k|vkn〉 instead of ∂k|vkn〉, which

is equivalent to ∂̃k|vkn〉 (see Appendix B).

C. Numerical time integration

In the applications of Sec. VI we use the algorithm26

|vkn(t+ ∆t)〉 =
1 − ih̄(∆t/2)T̂k(t)

1 + ih̄(∆t/2)T̂k(t)
|vkn(t)〉 (65)

to perform the time integration. Note that in order to
use this algorithm it was necessary to invoke the form
(63) of the TDSE. The hermiticity of T̂k guarantees that
the time evolution is strictly unitary for any value of
∆t. Since the system under study in Sec. VI is a tight-
binding model with only three basis orbitals, the matrix
inversion is very inexpensive. The same algorithm has
been successfully used to perform self-consistent time-
dependent density-functional calculations of the optical
properties of atomic clusters using localized orbitals as
a basis set.45 For calculations with large basis sets (e.g.,
plane-waves) more efficient algorithms are available.27,28
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Owing to the hermiticity of T̂k, the projector (43)
obeys

dP̂k

dt
=

1

ih̄
[T̂k, P̂k]. (66)

Hence, a variation of the above approach would be to
replace T̂k by

T̂k = Q̂kT̂k + T̂kQ̂k, (67)

which is also hermitian. Because [T̂k, P̂k] = [T̂k, P̂k], this
choice does not change the dynamics of the occupied sub-
space P̂k, but it does change the dynamics of the individ-
ual states |vkn〉. In fact, T̂k generates a parallel transport

evolution characterized by 〈vkn|v̇kn〉 = 0, thus discard-
ing the “irrelevant” part of the dynamics associated with
phase factors and unitary rotations inside the occupied
subspace. We have found empirically, however, that the
use of T̂k in Eq. (65) appears to result in a less stable
numerical time evolution, and we have therefore chosen
to retain the original T̂k dynamics in our practical imple-
mentation.

D. Discussion

It may seem surprising that a linear potential can be
accommodated in a theoretical description of a periodic
bulk system. A commonly-held viewpoint is that a linear
potential can be implemented within periodic boundary
conditions only for the case of a finite system (molecule or
cluster) in a supercell, in which case it becomes possible
to introduce a sawtooth potential as long as its disconti-
nuity is located in a region of negligible electron density.
To the contrary, Eqs. (14), (41), and (63) demonstrate
that it is perfectly permissible to insist on the usual pe-
riodic boundary conditions on the wave functions while
allowing for nonperiodicity of the potential. This can be
done because the potential takes the special form of a
sum of spatially periodic and linear contributions, rel-
evant to a crystal in a homogeneous electric field. As
shown in Sec. II A, the action of the nonperiodic Hamil-
tonian, Eq. (2), then preserves the lattice periodicity of
the density matrix, which can therefore be represented
by periodic wave functions.

Incidentally, we note that a sawtooth operator of sorts
is “hiding” behind the TBP formulas. The Berry-phase
polarization has been recast as the expectation value of a
properly-defined center-of-mass position operator of the
many-electron periodic system.21 That operator, intro-
duced by Kohn,20 is a sawtooth, not in real space but
in the configuration space of the many-body wave func-
tion. It can only be constructed for wave functions hav-
ing a certain disconnectedness (localization) property in
configuration space characteristic of the insulating state.
This observation is closely related to the discussion in
Sec. III B.

Finally, we mention that an alternative approach
for introducing a linear potential into a periodic solid

is via the crystal momentum representation (CMR)
formalism.14 This approach is summarized in Ap-
pendix A, where the connection with our formalism is
established. The CMR dynamical equations appear to
be less convenient for computational work. However, the
advantages of the present formulation came at the ex-
pense of generality, since our equations are restricted to
the scattering-free dynamics of initially insulating sys-
tems.

V. STABLE STATIONARY SOLUTIONS

A. Formulation

Let us try to find, for a constant E 6= 0, solutions
to Eq. (63) for which the occupied manifold remains
unchanged over time. A natural guess is the manifold
spanned by M eigenstates of T̂k at each k,

T̂k|vkn〉 = Ekn(E)|vkn〉. (68)

Since T̂k depends on the occupied states at the neigh-
boring k-points, Eq. (68) must be solved self-consistently

among all k. If a solution exists, the corresponding T̂k

and P̂k commute and, according to Eq. (66), dP̂k/dt = 0,
i.e., the solution is stationary.

We are now ready to make contact with Refs. 8,9,
where the energy functional E of Nunes and Gonze,7

Eq. (45), was minimized at fixed E. A stationary point
of E has zero gradient: |Gkn〉 = δE/〈δvkn| = 0, where
the functional derivative is taken in such a way that the
gradient is orthogonal to the occupied space. In Ap-
pendix C 2 it is shown that

|Gkn〉 = (1/N) Q̂kT̂k |vkn〉, (69)

so that solutions of Eq. (68) obey |Gkn〉 = 0. Thus,
stationary solutions of the dynamical equation are sta-
tionary points of E.

A Hessian stability analysis30 shows that a necessary
condition for a stationary point of E to be a minimum
is that the M lowest-lying eigenstates of T̂k are chosen.
Since doing so at E = 0 yields the ground state, at fi-
nite E that procedure yields a state that is is adiabat-
ically connected to it by slowly ramping up the field,
keeping the system in a minimum of E. Such “polarized
manifolds” have been discussed previously in a pertur-
bative framework,29,31,32 treating k as a continuous vari-
able. In that limit the electric field perturbation becomes
singular. That is, even an arbitrary small field induces
a current via Zener tunneling to higher bands, and the
polarized manifolds are not stationary, but rather, are
long-lived resonances. In other words, an infinite crystal
in the presence of a static electric field does not have a
ground state. This is reflected in E loosing its minima
as soon as E departs from zero.

Instead, for a discrete mesh of k-points, arguments can
be given7,8 suggesting that E loses its minima only when
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E exceeds a critical value Ec(N) that decreases as the
number N of k points increases; this is supported by nu-
merical calculations.8,9 It follows from the preceding dis-
cussion that the minima of E below Ec(N) are stable sta-
tionary solutions of the dynamical equation. Conversely,
above Ec(N) there are no such solutions.

These two regimes – below and above the critical
field – will be explored numerically in Sec. VI C via
time-dependent calculations. If one stays below Ec(N),
the stationary solutions can be computed using time-
independent methods, such as the diagonalization algo-
rithm described next or the minimization methods of
Refs. 8,9.

B. Diagonalization algorithm

We have in Eq. (68) the basis for an algebraic method
of computing stationary states at finite E on a uniform
k-point mesh, for |E| < Ec(N): loop over the k points;

for each one select the M eigenstates of T̂k with the low-
est eigenvalues; iterate until the procedure converges at
all k and the occupied subspace stabilizes (this will only
happen below Ec). Even in a tight-binding model with-
out charge self-consistency, the set of equations (68) has
to be solved self-consistently throughout the BZ, since
the operators T̂k couple neighboring k points via their
dependence on the |vkn〉. One may choose to update T̂k

either inside or outside the loop over k; the latter option
renders the algorithm parallelizable over k points.

We have tested this scheme on the tight-binding model
of Sec. VI, and confirm that it produces the same state
as a direct steepest-descent or conjugate-gradients mini-
mization of the functional E.8 This algorithm may be es-
pecially suited for implementation in certain total-energy
codes that are based on iteratively diagonalizing the
Kohn-Sham Hamiltonian expanded in a small basis set
of local orbitals.33

C. Discussion

Eq. (68) is a discretization of the time-independent ver-
sion of Eq. (41):

(
Ĥ0

k
+ ieE · ∂̃k

)
|vkn〉 = Ekn(E)|vkn〉. (70)

An analysis of the eigenvalues of this equation will serve
as a guide for discussing those of Eq. (68). (For the
present purposes we will assume that the continuum
form (70) has solutions for E 6= 0.) As a result of the
properties of the covariant derivative (Appendix B) the
Ekn(E) are invariant under diagonal gauge transforma-
tions Uk,mn = eiθkmδm,n. Upon multiplying on the left
by 〈vkn| the second term on the left-hand-side of Eq. (70)
vanishes. Integrating over k and summing over n, we

then find

Ω−1
B

M∑

n=1

∫
dkEkn(E) = E0(E) ≥ E0(E = 0), (71)

where E0(E) is the zero-field energy functional (38) eval-
uated at the field-polarized stationary state, and the
inequality follows from the variational principle. The
same properties hold for the eigenvalues of the discretized
form (68), which can be obtained by diagonalizing Ĥ0

k

inside the occupied manifold. We have here the inter-
esting situation that a minimum of the total energy E
can be obtained by solving the eigenvalue equations (68)
whose eigenvalues, summed over n and k give instead
the zero-field contribution E0. This can be traced back
to Eq. (B2), which expresses the “parallel-transport-like”
nature of the covariant derivative.

The above is to be compared with the time-
independent version of Eq. (14),

(
Ĥ0

k + ieE · ∂k
)
|v′kn〉 = E′

kn(E)|v′kn〉. (72)

Under a diagonal transformation |v′
kn〉 → eiθkm |v′

kn〉 its
eigenvalues change as E′

kn(E) → E′
kn(E) − eE · ∂kθkn.

The analog of Eq. (71) is

Ω−1
B

M∑

n=1

∫
dkE′

kn(E) = E0(E) − vE · P(E). (73)

The quantity on the right-hand side is now the total en-
ergy E, which is invariant only modulo eE ·R.

Although the individual eigenstates of Eq. (70) are
in general different from those of Eq. (72), the self-
consistent solutions for all k and n span the same space
in both cases, i.e., they differ only by a gauge transforma-
tion. It is then a matter of convenience to choose which
of the two equations to solve in practice. Our particular
approach is to discretize Eq. (70) in a gauge-covariant
manner, and then solve the resulting Eq. (68).

VI. NUMERICAL RESULTS

A. Tight-binding model

We have applied our scheme to the one-dimensional
tight-binding model of Ref. 4, a three-band Hamiltonian
with three atoms per unit cell of length a = 1 and one
orbital per atom,

Ĥ0(α) =
∑

j

{
ǫj(α)ĉ†j ĉj + t

[
ĉ†j ĉj+1 + h.c.

]}
, (74)

with the site energy given by ǫ3m+l(α) = ∆cos(α − βl).
Here m is the cell index, l = {−1, 0, 1} is the site index,
and βl = 2πl/3. Before the Berry-phase polarization
can be computed34 (or an electric field applied to the
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FIG. 1: Energy dispersion of the tight-binding model for the
choice of parameters t = 1, ∆ = −1, and α = 0.

system4,35), the position operator must be specified. Al-
though this may be done without introducing additional
parameters,36 we adopt the simple prescription of Ref. 4:

x̂ =
∑

j xj ĉ
†
j ĉj , with xj = j/3. In the results reported

below we have set e = h̄ = 1, t = 1, and ∆ = −1, and
only the lowest band is filled (with single occupancy).
Fig. 1 shows the band structure at zero field for α = 0.

B. Sliding charge-density wave

The Hamiltonian of Eq. (74) is a simple model of a
commensurate charge-density wave which slides by one
period as the parameter α evolves adiabatically through
2π. It is easiest to see this by noting that in the space
of parameters ∆x = ∆cosα and ∆y = ∆sinα, cycling
α by 2π corresponds to tracing a circle about the origin
in the ∆x–∆y plane. The system is insulating (i.e., a
gap remains open) at all points in this plane except for a
singular point at the origin where the system is metallic.
Thus, this cyclic adiabatic change in Ĥ0 takes the system
along an insulating path that encircles this singular point,

so that a quantized particle transport ∆P =
∫ T

0 J(t) dt

of a unit charge is obtained.37

Away from the adiabatic regime, deviations from exact
quantization are expected. This can be understood from
the fact that under nonadiabatic conditions the state
at time t depends on the history at times t′ < t. In
particular, the final state may be be different from the
initial one even though Ĥ0(T ) = Ĥ0(0), in which case
P (T )−P (0) 6= 1. By contrast, an adiabatically-evolving
system has no memory, being completely determined by
the instantaneous Ĥ0(t) and dĤ0/dt.

To illustrate this point, we increased α from 0 to 2π
during a time interval t ∈ [0, T ] according to α(t) =
2π sin2(πt/2T ), and held it constant afterwards. The
system was prepared at t = 0 in its ground state, and
the wave functions evolved in time according to Eq. (65),

0 40 80 120 160 200
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0

0.5

1
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tio
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Adiabatic

80 120
0.992

0.996

1

Dynamic (200 k points)
Dynamic (100 k points)
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FIG. 2: Time evolution of the polarization as a result of
changing the sliding parameter α from 0 to 2π over the time
interval [0, 80], using 200 k points. The solid line shows the
actual dynamic polarization, while the dashed line shows the
ground-state polarization of the instantaneous Hamiltonian.
Inset: Detail of the remnant oscillations of the polarization
after the Hamiltonian stops changing, at t = 80. For compar-
ison, the results using 100 k points are also shown.

using ∆t = 0.005 (the same time step was used in all
other simulations in this work). At each time step we
computed the dynamic polarization using Eq. (52).

The resulting P (t) for T = 80 and 200 k points is
shown in Fig. 2, where we also display the exact adi-
abatic (T → ∞) limit Pstatic[α(t)] obtained by diago-

nalizing Ĥ0
k(α(t)) on the same mesh of k points.38 (To

check that our calculations are converged with respect to
the number of k points, the inset of Fig. 2 compares the
results for 100 and 200 k points.) The dynamic polariza-
tion P (t) obtained by solving the TDSE follows closely,
but not exactly, the adiabatic curve. In particular, at
the time t = 80 when the Hamiltonian stops changing,
the polarization differs slightly from unity (see inset in
Fig. 2), indicating that the system is not in the ground
state. The oscillations that follow arise from quantum in-
terference (beats) between valence and conduction states,
as a result of having excited electrons across the gap dur-
ing [0, T ]. Their period, of 5.5 time units, corresponds to
the fundamental gap in Fig. 1, Egap = 1.137. This is
consistent with the k-space distribution of the (small)
electron-hole pair amplitude present in the system after
time T : for a sliding period of T = 80, the distribution
is mostly concentrated around k = 0, and it is essen-
tially the lowest conduction band that gets populated.
As the adiabatic limit is approached by increasing T , the
amplitude of the remnant oscillations of the polarization
decreases. This is illustrated in the upper panel of Fig. 3,
where we compare T = 80 with T = 120.

Besides the macroscopic polarization P (t), another
quantity of interest is the electronic localization length
ξ(t) that characterizes the root-mean-square quantum
fluctuations of the macroscopic polarization.21 It is given
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FIG. 3: Upper panel: Same as Fig. 2, but now using two
different time intervals, [0, 80] and [0, 120], for changing the
sliding parameter α. Lower panel: electron localization length
ξ(t) versus the instantaneous value of α, during the time in-
tervals [0, T ] during which α is changing.

by ξ2 = ΩI/M , where ΩI is a gauge-invariant quantity
which in one dimension is equal to the spread of the
maximally-localized Wannier functions (18).3 We have
computed ΩI using Eq. (34) from Ref. 3, and in the lower
panel of Fig. 3 we plot ξ(t) against α(t)/2π. In the adia-
batic limit the resulting curve consists of three identical
oscillations, reflecting the existence of three equivalent
atoms in the unit cell. As nonadiabaticity increases, ξ
tends to increase as well. Nevertheless, the electrons re-
main localized, i.e., “insulating-like”, in the sense dis-
cussed in Sec. III B.39

The above results are representative of the regime
where deviations from adiabaticity are small. If we in-
crease the degree of nonadiabaticity by choosing a smaller
T (e.g., T = 40), we begin to notice a linear increase of
the polarization at later times. This new behavior can be
traced to the excitation of electron and hole wavepackets
centered at some k0 and propagating at different group
velocities. Let ∆Ek0

be the interband separation, and
∆vg be the difference of group velocities of the two low-
est bands, at k0. Then, in addition to the quantum beats
of period 2πh̄/∆Ek0

caused by the interband dynamics,
we observe a linear-in-t term in P (t) with slope propor-
tional to ∆vg, reflecting the change in dipole moment
as the electron-hole pair separates. (More precisely, the
preceeding statements apply only in the limit of a dense
k-point mesh; for any finite mesh spacing ∆k, the linear
behavior is replaced by an oscillatory one with an am-
plitude scaling as 1/∆k and period 2π/(∆vg ∆k). Thus,
an especially fine k-point mesh should be used if these
effects are to be investigated.)
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FIG. 4: Time evolution of the polarization as a result of in-
creasing the electric field from 0 to Emax = 0.025 over two time
intervals, [0, 40] and [0, 80], using 200 k points. The solid line
shows the actual dynamic polarization, while the dashed line
shows the static polarization for the instantaneous value of
the field. Inset: Comparison of the dynamic polarization for
100 and 200 k points.

C. Gradual turn-on of an electric field

In the previous example the electric field was held at
zero, and the dynamics was produced by varying the
parameter α in Ĥ0. Let us now study the polariza-
tion response of the system when an electric field E(t)
is switched on linearly over a time interval [0, T ] and is
held fixed afterwards. We have set α = 0, so that the
ground state is centrosymmetric, with zero spontaneous
polarization.

We begin by considering a situation where the final
value of the field, Emax, is smaller than the k-mesh-
dependent critical field Ec(N) above which the energy
functional (45) has no minima. This allows us to compare
the dynamic polarization P (t) with the static polariza-
tion Pstatic[E(t)] of the stationary state in the presence of
the same field, which we find by minimizing the energy.8

In Fig. 4 we display the results for Emax = 0.025 and two
different switching times, T = 40 and T = 80. The simu-
lation was done using 200 k points, to which corresponds
a critical field Ec(N = 200) ∼ 0.037. (The inset shows
the agreement between the results obtained using 100
and 200 k points.) Clearly, P (t) tracks quite closely the
adiabatic curve Pstatic[E(t)], the more so as T increases.
This illustrates the point, emphasized in Ref. 4, that the
state obtained by minimizing a field-dependent energy
functional should be thought of as the one which is gen-
erated from the zero-field state by adiabatically turning
on E .

Let us now explore the regime above Ec(N), where
energy-minimization schemes fail. For Emax > Ec(N)
the exact adiabatic limit of the process of ramping up
the field is unattainable. Nevertheless, if Emax is small
compared to the field scale at which intrinsic breakdown
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occurs (i.e., at which the Zener tunneling rate becomes
on the of order interband frequencies, which is a bulk
property40), a quasistationary state should be reachable
by turning on the field at a rate that is slow compared
to the usual electronic processes, but fast compared to
the characteristic tunneling rate at the maximum field
encountered. After the ramp-up is completed, but at
times still short compared to the tunneling rate, this state
should provide the appropriate extrapolation to fields
above Ec(N) of the truly stationary state that exists be-
low Ec(N).

To illustrate this situation, we repeated the calcula-
tion with 200 k points depicted in Fig. 4, but increasing
the maximum field from 0.025 to 0.05, somewhat larger
than Ec(200) ∼ 0.037. The resulting curve for P (t) is
very similar to that in Fig. 4, without any sign of run-
away behavior. As a more striking example, we show in
Fig. 5 the outcome of calculations with the same final
field of Emax = 0.05, but with even denser sets of 400
and 800 k points. For the latter Ec ∼ 0.01, considerably
smaller than Emax, and still there is no sign of instability.
(Note also that the P (t) curve in Fig. 5 – whose verti-
cal scale differs from that in Fig. 4 by the same factor
of two that exists between the respective values of Emax

– looks almost identical to that in Fig. 4.) These results
confirm that, as long as we are solving a time-dependent

Schrödinger equation for a given history of switching on
the field, there is no such thing as a ∆k-dependent criti-
cal field; the thermodynamic limit of an infinitely dense
k-point mesh is perfectly well defined. The only break-
down behavior that may be observed in short time scales
is the physical one that occurs when the applied field
is large enough that the Zener tunneling rate becomes
significant.40,41 The concept of a ∆k-dependent critical
field applies only to the attemp to obtain solutions in the
presence of a static electric field from an energy varia-
tional principle. By going back to the original dynamical
problem of slowly ramping up the field, we circumvent the
difficulties that ultimately resulted from trying to treat
as a (stable) stationary state what is really a long-lived
resonance.

D. Dielectric function in a static field

There is great interest in modulating the optical prop-
erties of crystals and superlattices by applying static
electric fields. An example of such an electro-optical ef-
fect is the modification of the dielectric function. This
is known as the Franz-Keldysh effect, or electroabsorp-
tion. Although it has been extensively studied in bulk
semiconductors,42 quantum wells,43 and superlattices,44

we are not aware of any first-principles investigations.
The present method may provide a route to such calcu-
lations.

We compute the dielectric function in the presence of a
static field E0 as follows. The system is prepared at t = 0
in the stationary state polarized by a field E0 +∆E , with
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FIG. 5: Same as Fig. 4, but now using Emax = 0.05 and 800
k points. Since Emax is larger than the critical field for this
number of k points (Ec ∼ 0.01), no adiabatic curve Pstatic[E(t)]
is shown. Inset: Comparison of the dynamic polarization for
400 and 800 k points.
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|∆E| << |E0|. By using a field of magnitude below the
critical field, we are able to find that state by minimizing
the energy. For t > 0 we let the system evolve in time
in the presence of the target field E0. Let Pstatic[E0] be
static polarization of the system under the field E0. The
polarization response to the step-function discontinuity
in E(t) = E0 + ∆E θ(−t) is ∆P (t) = P (t) − Pstatic[E0].
To obtain the frequency-dependent response we need the
Fourier transform of ∆P (t) for t > 0 only:

∆P (ω) =

∫ +∞

0

∆P (t) e(iω−δ)t dt, (75)

where a damping factor δ has been introduced as an ap-
proximate way to account for level broadening.45 To lin-
ear order in ∆E the susceptibility is

Reχ[E0](ω) =
dPstatic[E ]

dE

∣∣∣∣
E=E0

−
ω

∆E
Im∆P (ω), (76)

Imχ[E0](ω) =
ω

∆E
Re∆P (ω). (77)

With this real-time approach the need to perform a
summation over conduction-band states is circumvented.
Previous real-time, scalar potential approaches45,46 were
restricted to finite systems, since it was unclear how
to evaluate the dynamic macroscopic polarization of an
extended system. A real-time, vector-potential scheme
valid for bulk systems was proposed in Ref. 47.

We validate our method by comparing in Fig. 6
the ground-state susceptibility with the analytic Kubo-
formula (sum-over-states) result, using in both cases the
same broadening δ and k-point mesh. Also shown in
Fig. 6 is the susceptibility in the presence of a E0 = 0.05
bias field, displaying the Franz-Keldysh effect: an absorp-
tion tail below the gap caused by photon-assisted tunnel-
ing, and oscillations above the gap.42 The Franz-Keldysh
oscillations become more widely spaced with increasing
E0. This is illustrated in the inset of Fig. 6, where we
compare them for E0 = 0.05 and E0 = 0.03.

VII. SUMMARY

The work of King-Smith and Vanderbilt demonstrated
that the bulk electronic polarization, defined in terms
of the current flowing during the adiabatic evolution of
an insulating system in a vanishing macroscopic elec-

tric field, could be related to a Berry’s phase defined
over the manifold of occupied Bloch states.1 We have
generalized this result by considering the time evolution
of an initially insulating electron system under the very
general Hamiltonian (2), where the lattice-periodic part

Ĥ0(t) and the homogeneous electric field E(t) may have
an arbitrarily strong and rapid variation in time. In
the absence of scattering, we have proved that the in-
tegrated current ∆P =

∫
J(t) dt is still given by the

King-Smith–Vanderbilt formula, but written in terms
of the instantaneous Bloch-like solutions of the time-
dependent Schrödinger equation. The coherent dynamic
polarization P(t) was interpreted as a nonadiabatic ge-
ometric phase.18 These generalizations of the theory al-
lowed us to justify recent developments in which the en-
ergy functional E of Nunes and Gonze7 has been used
as the basis for direct DFT calculations of insulators in
a static homogeneous electric field.8,9 The limitation of
those methods to fields of magnitude smaller than a ∆k-
dependent critical field that vanishes in the thermody-
namic limit has been removed: we have shown numeri-
cally that quasistationary states in finite fields exist for
arbitrarily dense k-point meshes, and can be obtained
by solving the time-dependent Shrödinger equation for a
slowly-increasing field. The present method also provides
a convenient framework for the computation of coherent
time-dependent excitations in insulators. As an example,
the dielectric function was calculated for a tight-binding
model by considering the response to a step-function dis-
continuity in E(t), illustrating effects such as photon-
assisted tunneling and Franz-Keldysh oscillations. A full
ab initio implementation within the framework of time-
dependent density-functional theory should be possible.
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APPENDIX A: CRYSTAL-MOMENTUM

REPRESENTATION

The introduction of linear scalar potentials in crys-
tals is usually discussed in the language of the crystal-
momentum representation (CMR).14 Instead, we have
used the Berry-phase theory of polarization, and the pur-
pose of this Appendix is to show how to switch from one
to the other. The CMR uses as a basis the eigenstates
|ψkm〉 of Ĥ0 with eigenvalues Ekm. In accordance with
Eq. (17) we assume that |ψkm(r)|2 integrates to one over
the unit cell volume v. That implies48,49

〈ψkm|ψk′l〉 ≡

∫
ψ∗

km(r)ψk′l(r) dr = ΩBδ(k − k
′)δml.

(A1)
The CMR expansion of the identity operator is

1̂ = Ω−1
B

∞∑

m=1

∫
dk |ψkm〉〈ψkm|, (A2)

so that a general one-electron state |φ〉 is expanded as

|φ〉 = 1̂|φ〉 =

∞∑

m=1

∫
dk′fk′m|ψk′m〉, (A3)
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where fk′m = Ω−1
B 〈ψk′m|φ〉. For the occupied Bloch-like

states |φkn〉 in a WR manifold, the CMR wave function
fk′m(k, n) takes the form

fk′m(k, n) = ck′,nmδ(k
′ − k) (A4)

with
∑∞

m=1 |ck,nm|2 = 1, which leads to Eq. (9).

1. Current and the CMR velocity operator

The velocity operator (31) is diagonal in k and is con-
veniently split into a sum of two operators, one diagonal
and the other off-diagonal in the band index:14

v̂ = v̂
d + v̂

od. (A5)

The matrix elements of v̂
d are

〈ψkm|v̂d|ψk′l〉 = ΩBδ(k − k
′)δmlv

d
km, (A6)

where

v
d
km =

1

h̄
∂kEkm. (A7)

The matrix elements of v̂
od are

〈ψkm|v̂od|ψk′l〉 = ΩBδ(k − k
′)vod

k,ml, (A8)

where

v
od
k,ml =

i

h̄
Xk,ml [Ekm − Ekl] (A9)

and we have defined the hermitian matrix

Xα
k,ml = i 〈ukm|∂kα

ukl〉, (A10)

which is analogous to Eq. (26) for the |vkn〉.
The current, Eq. (28), is split into intraband and in-

terband parts,

J(t) = Jintra(t) + Jinter(t). (A11)

Writing the density matrix as

〈ψkm|n̂|ψk′l〉 = ΩBδ(k − k
′)nk,ml, (A12)

where

nk,ml =
M∑

n=1

ck,nm [ck,nl]
∗, (A13)

we find

Jintra = −
e

v
Trc

(
n̂v̂d

)
=

−e

(2π)3

∞∑

m=1

∫
dknk,mm v

d
km

(A14)
and

Jinter = −
e

v
Trc

(
n̂v̂od

)
=

−e

(2π)3

∞∑

m,l=1

∫
dknk,mlv

od
k,lm.

(A15)

In the above we used the CMR form of Eq. (29),

Trc(Ô) = Ω−1
B

∞∑

m=1

∫
dk

1

N
〈ψkm|Ô|ψkm〉, (A16)

where N should be taken to signify ΩBδ(0).49

Plugging (9) into (27) yields, after some manipula-
tions, Eqs. (A11), (A14), and (A15), confirming that the
Berry-phase polarization correctly accounts for both in-
traband and interband contributions. It is instructive
to consider some particular cases. The adiabatic current
J = (dP/dλ)λ̇ discussed in Refs. 1,37 is purely interband.
If the perturbation is a sinusoidal electric field, the linear
response is again a purely interband current, while the
nonlinear response has also an intraband component.50,51

2. Polarization and the CMR position operator

Along the same lines, one can show that the Berry-
phase expression for P is consistent with the CMR posi-
tion operator, which takes the form14

〈ψkm|r̂|ψk′l〉 = −iΩB∂k′δ(k′−k)δmn+ΩBδ(k
′−k)Xk,ml.

(A17)
Combined with Eqs. (A12) and (A16) this yields

P = −
e

v
Trc(n̂r̂) =

−e

(2π)3

∞∑

m,l=1

∫
dknk,mlXk,lm,

(A18)
which is the same results one gets from inserting the
CMR expansion (9) into the nonadiabatic Berry-phase
formula (21). The linear character of r̂ is reflected in the
above equation being defined only up to a quantum of
polarization.

3. CMR dynamical equations

In the case where Ĥ0 (and hence the CMR basis) is
constant in time, plugging (9) into the TDSE (14) yields
the CMR form of the Schrödinger equation,32,52

ih̄ ċkm =
(
Ekm + ieE · Dk

)
ckm, (A19)

where we have simplified ck,nm to ckm and defined

Dkckm = ∂kckm − i

∞∑

l=1

Xklckl, (A20)

which is reminiscent of the covariant derivative, Eq. (42)
(but note the difference in the sign of the last term). It
is customary to write Eq. (A19) as

ih̄ ċkm =
(
E

(1)
km+ieE ·∂k

)
ckm+eE ·

∞∑

l 6=m

cklXk,ml, (A21)
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where

E
(1)
km = Ekm + eE ·Xk,mm (A22)

is a shifted energy eigenvalue. E
(1)
km is identical to Eq. (37)

except that |vkm〉 has been replaced by the zero-field
eigenstate |ukm〉. Upon averaging over k the last term on
the right-hand-side becomes the first-order shift in total
energy, −vP0 · E, where P0 is the spontaneous Berry-
phase polarization.

In general the above TDSE has no stationary solutions.
Approximate solutions – the Wannier-Stark states – re-
sult from restricting the wavepacket dynamics to a single
band (the semiclassical approximation). That is achieved
by dropping the sum on the right-hand-side of Eq. (A21),
which is responsible for interband tunneling.41,52

Finally, combining (A13) and (A19) produces the dy-
namical equation for the CMR density matrix:

ih̄ ṅk,nm = (Ekn − Ekm)nk,nm + ieE · ∂knk,nm

− eE ·

∞∑

l=1

(
nk,nlXk,lm − Xk,nlnk,lm

)
.

(A23)

A closely related form has been used to study the non-
linear optical susceptibilities of semiconductors.51,53

APPENDIX B: COVARIANT DERIVATIVE AND

RELATED OPERATORS

In Sec. IVA we introduced a modified TDSE that con-
tains the multiband covariant derivative ∂̃k, Eq. (42),
that was instrumental for making contact with the
discrete-k dynamical equations of Sec. IVB. Here we
summarize the properties of the covariant derivative and
other closely related operators.

The covariant derivative ∂̃k|vkn〉 of an occupied state
transforms in the same way as that state under a gauge
transformation, Eq. (10):

∂̃k|vkn〉 →

M∑

m=1

Uk,mn ∂̃k|vkm〉. (B1)

Moreover, it is orthogonal to the occupied subspace at k,

〈vkm|∂̃kvkn〉 = 0. (B2)

Recalling that parallel transport is characterized by
〈vkn|∂kvkn〉 = 0, for m = n this relation shows that

∂̃k acting in an arbitrary gauge gives the same result as
∂k acting in the parallel-transport gauge that shares the
same states at k. In the discretized form (60) the prop-
erty (B1) is a consequence of Eq. (55), and the property

(B2) is a consequence of Eq. (54). Like i∂k, i∂̃k is her-
mitian. By this we mean that its matrix representation

in an orthonormal basis (e.g., the |vkn〉, n = 1, . . . ,M
complemented by a set of unoccupied states |ckj〉) is her-
mitian. This is closely related to the hermiticity of the
matrix Aα

k
defined in Eq. (26). Finally, note that

i∂̃k|vkn〉 = iQ̂k∂k|vkn〉 = iQ̂k∂kP̂k|vkn〉, (B3)

i.e., the action of i∂̃k on an occupied state is identical
to that of iQ̂k∂k and iQ̂k∂kP̂k. They differ in how they

act on the unoccupied states. Unlike i∂̃k, the other two
are not hermitian: for instance, (iQ̂k∂kP̂k)†|vkn〉 = 0. It
follows from these considerations that Eq. (41) can be
recast as

ih̄|v̇kn〉 =
[
Ĥ0

k
+ eE ·

(
iQ̂k∂kP̂k + h.c.

)]
|vkn〉. (B4)

This is the form of the TDSE to which Eqs. (63)-(64)
reduce in the continuum-k limit, since

ŵk ≃ ieE · Q̂k∂kP̂k (B5)

(compare with Eq. (59)).

APPENDIX C: GRADIENT OF THE ENERGY

FUNCTIONAL

The purpose of this Appendix is to obtain expressions
for the derivatives of the two terms in the energy func-
tional of Eq. (45) with respect to the occupied Bloch-like
states in the discrete-k case. The results have been used
in Secs. IVB and VA for the discussion of the time-
dependent evolution equations and the stationary solu-
tions, respectively.

1. Band-structure contribution

To find the gradient δE/〈δvkn| of the energy functional
(45), let us isolate the terms that depend on 〈vkn|. Using
(43) the zero-field part (46) can be expressed as E0 =

(1/N)
∑

k
tr[P̂kĤ

0
k
], so that

δE0

〈δvkn|
=

1

N

δtr[P̂kĤ
0
k
]

〈δvkn|
. (C1)

In order to allow for arbitrary variations of 〈vkn|, even
those for which the 〈vkn| do not remain orthonormal, we
write

P̂k =

M∑

m,n=1

(S−1
k

)
mn

|vkm〉〈vkn|, (C2)

where Sk,mn = 〈vkm|vkn〉. Dropping the subscript k,

δtr[P̂ Ĥ0] = tr[(δP̂ )Ĥ0]

=
∑

m,n

(S−1)mn

[
〈vn|Ĥ

0|δvm〉 + 〈δvn|Ĥ
0|vm〉

]

+
∑

m,n

〈vn|Ĥ
0|vm〉 δ(S−1)mn. (C3)
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Using δ(S−1) = −S−2 δS and δSmn = 〈vm|δvn〉 +
〈δvm|vn〉, and evaluating at S = 1, we arrive at

δtr[P̂kĤ
0
k
]

〈δvkn|
= Q̂k Ĥ

0
k
|vkn〉. (C4)

Thus the consequence of expressing P̂k as (C2) instead
of (43) is to render the gradient orthogonal to the oc-
cupied manifold at k. (When we derived the dynamical
equation (58) using (47), the gradient of E0 was not or-
thogonalized, which is why the dynamics did not follow
parallel transport (see Sec. IVC)).

2. Polarization contribution

To find the gradient of the field-coupling term −vE ·P
we need δΓi/〈δvkn|. Let us start by recasting Eq. (52) as

Γi =
1

N⊥
i

N⊥
i∑

l=1

N
‖
i
−1∑

j=0

φ(k
(i)
j ,k

(i)
j + ∆ki), (C5)

where we have defined the phase

φ(k,k′) = −Im ln detS(k,k′). (C6)

Using φ(k′,k) = −φ(k,k′), this becomes

Γi =
1

N⊥
i

∑

σ=±1

σ φ(k,kiσ) + . . . , (C7)

where only the terms depending on 〈vkn| were written
explicitly. Hence

δΓi

〈δvkn|
=

1

N⊥
i

∑

σ=±1

σ
δ

〈δvkn|
φ(k,kiσ). (C8)

The phase φ(k,k′) can be expressed as

φ(k,k′) = −Im tr lnS(k,k′)

=
i

2
tr lnS(k,k′) −

i

2
tr lnS(k′,k). (C9)

For an arbitrary non-singular matrix A we have

δtr lnA = tr ln(A+ δA) − tr ln(A)

= tr ln[(A+ δA)A−1] = tr ln[1 + (δA)A−1]

= tr[A−1 δA] + O(δA2), (C10)

so that

δtr lnS(k,k′)

〈δvkn|
= tr

[
S−1(k,k′)

δS(k,k′)

〈δvkn|

]

=
M∑

m=1

S−1
mn(k,k′) |vk′m〉

= |ṽk′n〉. (C11)

The corresponding derivative of the last term of (C9) van-
ishes since S(k′,k) = 〈vk′n|vkn〉 does not contain 〈vkn|
as a bra. We thus arrive at

δφ(k,k′)

〈δvkn|
=
i

2
|ṽk′n〉, (C12)

which combined with (C7) gives

δΓi

〈δvkn|
=

i

2N⊥
i

∑

σ=±1

σ|ṽkiσ,n〉. (C13)

This is automatically orthogonal to the occupied man-
ifold at k. (See Refs. 7,10 for alternative derivations.)
Collecting terms and using Eq. (57), we obtain Eq. (69)
for the gradient of the full energy functional E.

APPENDIX D: DISCRETIZED FORMULA FOR

THE CURRENT

Just as the macroscopic polarization P is evaluated in
practice via a finite-difference formula on a mesh of k
points, the same can be done for the macroscopic cur-
rent J = dP/dt. The invariance of Eq. (27) under the

replacement ∂k → ∂̃k allows us to then use the discretiza-
tion rule (60), leading to

J =
e

4πh̄v

∑

n,k

3∑

i=1

∑

σ=±1

σ

N⊥
i

〈vkn|Ĥ
0
k
|ṽkiσ,n〉ai + c.c.,

(D1)
which is significantly easier and cheaper to compute
than the spatial average of the microscopic current. We
have checked numerically on our one-dimensional tight-
binding model that Eq. (D1) yields, for small ∆t, the
same result as [P (t+ ∆t)−P (t)]/∆t computed with the
discretized Berry-phase formula.

The same strategy as outlined above can be used
to derive a discretized formula for the Berry curvature
(25) summed over bands, which is also invariant under

∂k → ∂̃k. This may be useful in other contexts, such as
semiclassical wavepacket dynamics in crystals.54
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